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Preface

During the 20th century, physics experienced a rapid expansion. A gen-

eral theoretical physics curriculum now consists of a collection of separate

courses labeled as classical mechanics, electrodynamics, quantum mechan-

ics, statistical mechanics, quantum field theory, general relativity, etc., with

each course taught in a different book. I consider there is a need to write

a book which is compact and merge these courses into one single unified

course. This book is an attempt to realize this aim. In writing this book, I

focus on two purposes. (1) Historically, physics is established from classical

mechanics to quantum mechanics, from quantum mechanics to quantum

field theory, from thermodynamics to statistical mechanics, and from New-

tonian gravity to general relativity. However, a more logical subsequent

presentation is from quantum field theory to classical mechanics, and from

the physics principles on the microscopic scale to physics on the macro-

scopic scale. In this book, I try to achieve this by elucidating the physics

from quantum field theory to classical mechanics from a set of common ba-

sic principles in a unified way. (2) Physics is considered as an experimental

science. This view, however, is being changed. In the history of physics,

there are two epic heroes: Newton and Einstein. They represent two epochs

in physics. In the Newtonian epoch, physical laws are deduced from exper-

imental observations. People are amazed that the observed physical laws

can be described accurately by mathematical equations. At the same time,

it is reasonable to ask why nature should obey the physical laws described

by the mathematical equations. After wondering how accurately nature

obeys the gravitational law that the gravitation force is proportional to the

inverse square of the distance, one would ask why it is not found in other

ways. Einstein creates a new epoch by deducing physical laws not merely

from experiments but also from principles such as simplicity, symmetry

vii
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and other understandable credos. From the view of Einstein, physical laws

should be natural and simple. It is my belief that all physics laws should

be understandable. In this book, I endeavor to establish the physical for-

malisms based on basic principles that are as simple and understandable

as possible.

The book covers all the disciplines of fundamental physics, including

quantum field theory, quantum mechanics, statistical mechanics, thermo-

dynamics, general relativity, electromagnetic field, and classical mechanics.

Instead of the traditional pedagogic way, the subjects and formalisms are

arranged in a logical-sequential way, i.e. all the formulas are derived from

the formulas before them. The formalisms are also kept self-contained, i.e.

the derivations of all the physical formulas which appear in this book can

be found in the same book. Most of the required mathematical tools are

also given in the appendices. Although this book covers all the disciplines

of fundamental physics, the book is compact and has only about 400 pages

because the contents are concise and can be treated as an integrated entity.

In this book, the main emphasis is the basic formalisms of physics. The

topics on applications and approximation methods are kept to a minimum

and are selected based on their generality and importance. Still it was not

easy to do it when some important topics had to be omitted. Since it is

impossible to provide an exhaustive bibliography, I list only the related

textbooks and monographs that I am familiar with. I apologize to the

authors whose books have not been included unintentionally.

This book may be used as an advanced textbook by graduate students.

It is also suitable for physicists who wish to have an overview of fundamental

physics.

I am grateful to all my colleagues and students for their inspiration and

help. I would also like to express my gratitude to World Scientific for the

assistance rendered in publishing this book.

Jun Ni

August 8, 2013

Tsinghua, Beijing
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Chapter 1

Basic Principles

We start from the following five basic principles to construct all other phys-

ical laws and equations. These five basic principles are: (1) Constituent

principle: the basic constituents of matter are various kinds of identical

particles. This can also be called locality principle; (2) Causality principle:

the future state depends only on the present state; (3) Covariance principle:

the physics should be invariant under an arbitrary coordinate transforma-

tion; (4) Invariance or Symmetry principle: the spacetime is homogeneous;

(5) Equi-probability principle: all the states in an isolated system are ex-

pected to be occupied with equal probability. These five basic principles

can be considered as physical common senses. It is very natural to have

these basic principles. More important is that these five basic principles are

consistent with one another. From these five principles, we derive a vast

set of equations which explains or promise to explain all the phenomena of

the physical world.
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Chapter 2 

Quantum Fields 

2.1 Commutators 

2 .1.1 I den tical particles principle 

We start from the constituent principle. Matter consists of various kinds 
of identical particles. Since particles are local identities, this principle can 
be considered as the locality principle. A particle is characterized by its 
position and other internal degrees of freedom which are denoted as-\. Such 
a particle is called to be in the-\ state which is denoted by I-\). The symbol 
I ) is called ket, which was introduced by Dirac. I-\) means that there is a 
particle characterized by -\. I-\) is also called a single-particle state. An N­
particle state is denoted as I -\1 · · · Ai · · · AN). Here i labels the ith particle. 
A state of a system corresponds to a configuration of the particles. We 
denote IO) as the vacuum state, which contains no particles. When there 
is creation, there should be annihilation. For a vacuum state IO), we can 
introduce its dual state (01 by 

(OIO) = 1. (2.1) 

Eq. (2.1) means that (OI annihilates the state IO). Similarly, for any state 
I-\), we have its dual state (-\I defined by 

(-\I-\) = 1. (2.2) 

Eq. (2.1) means that (-\I annihilates the state I-\). The symbol ( I is called 
bra. 

3 



4 Principles of Physics 

2 .1. 2 Projection operator 

We can define a projection operator for single-particle states by 1>-) (>.1, 
which projects any state 1>-') onto the state 1>-), resulting in a state 

1>-)(>-1>-'). (2.3) 

When the states lA') and 1>-) are different (>. -=f A'), the projection of the 
state lA') onto the state 1>-) will be zero. We have 

(>-1>-') = c5,\,\'. (2.4) 

When a particle is in the >. state, the projection operator for the >. state 

projects the state onto itself. When a particle is in the A' -=f >. state, the 
projection operator filters out this state. Eq. (2.4) is called the orthonormal 
relation of states. We also call (>.lA') as the scalar product of two states. 
When >. is a continuous variable, the Kronecker delta should be replaced 
by the delta function. 

We can add the projections 1>-) (>.1 of all states together. Since a particle 
at least is in one state, we have 

2::: 1>-)\>-1 = 1. (2.5) 
,\ 

Eq. (2.5) is called the completeness relation of single-particle state. 

2.1.3 Creation and annihilation operators 

We introduce creation and annihilation operators to describe the particle 
state. We define the creation operator as the one mapping an N-particle 
state onto an (N+l)-particle state. For the vacuum state, we can add 
particles using the creation operator a\. >. can be position of a particle. 
When >. is the position, a 1 means creating a local particle at >. position. If 
we create a particle characterized by >., we have a state 

a\IO) = 1>-). (2.6) 

a 1 can also be denoted as 

1>-) ®. (2.7) 

® means that a 1 is operated on a state. ® is often omitted for simplicity. 
Thus Eq. (2.6) can be rewritten as 

a\IO) = 1>-) ® IO) = 1>-). (2.8) 
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The N-particle state IA1 · · · Ai ···AN) can be formed using N creation 
operators, 

IA1 ···AN) =at · · · alN IO) 

= IA1) ® .. ·IAN)® IO). 
(2.9) 

In exchanging the two creation operators, we exchange the labels of the 
two generated particles. We denote Pij the operator that exchanges the 
labels of the particles i and j. For example, 

(2.10) 
IA1A2) means that there is a particle at x1 position characterized by the 
internal degrees of freedom A~ and a particle at x2 position characterized 
by the internal degrees of freedom A~. IA2A1) means that there is a particle 
at x2 position characterized by the internal degrees of freedom A~ and a 
particle at x 1 position characterized by the internal degrees of freedom 
A~. If the two particles are fundamental, there will be no other internal 
degrees of freedom to distinguish them, which means that A has all the 
parameters to characterize a particle. The particles are identical. Then the 
states IA1A2) and IA2A1) describe the same state, i.e. a state with a particle 
at x 1 position characterized by the internal degrees of freedom A~ and a 
particle at x 2 position characterized by the internal degrees of freedom A~. 
Thus when we exchange the two particles, we have the same state. When 
we execute the exchange operator two times, the particles return to their 
initial labels and we recover the original state. Thus P 2 = 1 and P = ±1. 
Because P = ±1, we have two cases. (i) The two creation operators at and 

at commute, at at =a tat, which corresponds toP= 1; (ii) The two 

creation operators at and at anti-commute, at at = -at at' which 
corresponds to P = -1. 

If at and at commute, we call the particles bosons. For bosons, we 
have the commutation relation 

(2.11) 

If at and at anti-commute, we call the particles fermions. For fermions, 
we have the anti-commutation relation 

(2.12) 
Thus any two creation operators at and at commute or anti-commute 
depending on the types of particles. For fermions, in the case of A1 = 
A2 =A, the anti-commutation relation Eq. (2.12) becomes 2a1a1 = 0, i.e. 
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&1&1 = 0. Thus two fermions can not be accommodated in the same state, 
which is known as the Pauli exclusion principle. 

Now we introduce annihilation operator&>... The annihilation operator 
maps an N-particle state onto an (N-1)-particle state. The annihilation 
operator a>.. thus annihilates the particle characterized by-\. In the simplest 
situation, we have 

(2.13) 

which means that after annihilating the single-particle state, the state turns 
into the vacuum state. 

Similar to the creation operators, we have the following two types of 
commutation relations for the annihilation operators. For boson, the anni­
hilation operators commute, 

(2.14) 

For fermions, the annihilation operators anti-commute, 

(2.15) 

Similar to the creation operators, we can denote a>.. as 

(2.16) 

The bracket means that &1 acts on the left. Then Eq. (2.13) can be rewrit­

ten as 

Since (-\IO) = 0, we have 

&>..1-\) = &>..1-\) ®10) 

=(-\I-\) ®IO) 

= IO). (2.17) 

(2.18) 

Eq. (2.18) means that when there is no particle for annihilation, the anni­
hilation operator should be zero. Eq. (2.18) has a more general version 

&>..1l-\2) = 0, -\1 #- -\2. 

From Eq. (2.16), we have 

\01&>..1-\') =(-\I-\')= (-\'I-\)= (-\'l&11o) = (h>..'· 

Thus &>.. can be considered as the adjoint operator of &1. 

(2.19) 

(2.20) 
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The state I.A.) forms the Hilbert space 1i. I.A.) is called an orthonormal 
basis of 1i. The N-particle state are described in the Hilbert space 1iN, 
which is the N tensor product of the single-particle Hilbert space 1i. 

(2.21) 

The N-particle state l.\1 ···AN) is the tensor product of the single-particle 
state. 

(2.22) 

Since the particles are elemental and no particle is a part of other parti­
cles, the state l.\1 ···AN) are orthonormal. l.\1 ···AN) form the canonical 
orthonormal basis of 1iN. It should be noted that the states with different 
particle number are also orthonormal. All particle states form the Fock 
space. 

2.1.4 Symmetrized and anti-symmetrized states 

In order to describe the symmetry properties of the states of bosons and 
fermions, we introduce the symmetrization operator PB and the anti­
symmetrization operator Pp. 

1 
PBIAl ... AN)= N! L I.A.pl ... ApN) 

p 

PpiAl"'AN) = ~~ 2:)-1)5PIAP1 ... _\pN), 
. p 

(2.23a) 

(2.23b) 

where P is the permutation of (1, 2 · · · , N), which brings (1, 2 · · · , N) to 
( P1, P2 · · · , PN). S p is the number of the transpositions of two elements 
in the permutation P that brings (1, 2 · · · , N) to (P1 , P2 · · · , PN ). For 
example, for two particles, 

1 
PBIA1A2) = 2(1.\1.\2) + l.\2.\1) ), (2.24a) 

1 
Ppl.\1.\2) = 2(l.\1.\2)- l.\2.\1) ). (2.24b) 

The states of bosons are symmetric. We can use PBI.\1 ···AN) to describe 
the state of bosons regardless of the symmetry of I .\1 · · · AN). The states 
of fermions are antisymmetric. We can use Ppl.\1 ···AN) to describe the 
state of fermions regardless of the symmetry of l.\1 ···AN). The states of 
bosons form the Hilbert space of bosons B N, while the states of fermions 
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make up the Hilbert space of fermions FN. Eq. (2.23) can be rewritten in 
a compact form as 

(2.25) 

where~= 1 for PB and~= -1 for Pp. 
P{ ~} can be shown to be the projections that project HN onto the 

Hilbert space of bosons B N and the Hilbert space of fermions F N, respec­
tively. For any N-particle state of HN, we have 

2 1 1 LI: s s p B IAI ... AN) = -- (: pi~ pI Apt p ... Apt p ). 
{ F } N! N! ~ 1 1 N N 

p P' 

(2.26) 

We introduce Q = P' P. Since ~Sp,+SP = ~sP'P and Q corresponds toP' 
one by one, we have 

(2.27) 

Eq. (2.27) holds for any state. Thus P{ ~} are the projection operators 

projecting HN onto { ~~ }. 
Using these projection operators, we can define the symmetrized or anti­

symmetrized states as 

(2.28) 

It is usually convenient to use the normalized symmetrized or anti­
symmetrized states. The scalar product of the two same symmetrized or 
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anti-symmetrized states is given by 

s(A1, A2, · · · ANIA1, A2, · · · AN)s 

= N!(A1, A2, ... ANIPf~} IA1, A2, ... AN) 

= N!(A1, ..\2, ... ANIP{ ~} IA1, ..\2, ... AN) 

= L~5P(o:1lo:p1)(o:2lo:p2) · · · (aNiapN). 
p 

9 

(2.29) 

According to Eq. (2.4), the only non-vanishing terms in the summation of 
Eq. (2.29) are the ones with 

(2.30) 

For fermions, there is at most one particle with the same A. Ai in the 
set (A1, · · · , AN) are all different. There is only one nonzero term which 
corresponds to S p = 0. Thus we have 

(2.31) 

which means that IA1, A2, · · · AN)s is already normalized. 
For bosons, particles with the same A are allowed. Any permutation 

which interchanges the particles with the same A contributes to the sum 
in Eq. (2.29). If the state IA1, A2, ···AN) contains n1 bosons with A= o:1, 
n2 bosons with A = 0:2, · · ·, np bosons with A = ap, where all the o:i are 
different, the scalar product Eq. (2.29) is given by 

(2.32) 

with 

(2.33) 

Since ni = 1 for fermions, Eq. (2.32) is also applicable for fermions. Thus 
we obtain the normalized symmetrized or anti-symmetrized states defined 
by 

1 
IA1, A2, · · · AN)sN = IA1, A2, · · · AN)s. 

JTiana! 
(2.34) 

To simplify the notation, we use In-A) to denote IA1 = A,··· An>- = A). 
For bosons, ~-particle state should have the following normalized sym-
metric form, 

ln-A1 n.A2 ···n-Ap) 
1 (att>-1 (at)n>-2 ... (a1 t>-N IO). 

Jn.A 1 !n.A2! ···n-Ap! p 
(2.35) 
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2.1.5 Commutators between creation and annihilation 
operators 

When we apply al to the symmetrical N-particle boson state, we have 

allnA) = k(alt>-+1 10) 

= v'n>:+T (alt>-+liO) 
yl(n-\ + 1)! 

= Jn-\ + 1jn-\ + 1). (2.36) 

The annihilation operator a-\ is the adjoint operator of the creation opera­
tor. Thus we have 

Therefore, we have 

a-\jn-\) =~In-\- 1). 

Using Eqs. (2.36) and (2.38), we have 

ala-\ln-\) = n-\ln-\), 
a-\alln-\) = (n-\ + l)ln-\)· 

Subtracting the two equations, we obtain 

[a-\, alJ = 1. 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

Now we derive the commutator of aA and al, with ), -=1- >.'. Using 
Eqs. (2.36) and (2.38), we have 

aAal, I· .. nA ... nA' ... ) 

= ~JnA' + 11· · · (n-\ -1) · · · (nA' + 1) · · ·) (2.42) 

and 

al,a-\1· · · nA · · · nA' · · ·) 

= ~ JnA' + 11· · · (n-\- 1) · · · (nA' + 1) · · · ). (2.43) 

This leads to 

(2.44) 

Thus we obtain the commutation relation for the annihilation operator a-\ 1 

and the creation operator at 

[a-\1, atJ = 8-\1-\2 · (2.45) 
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Now we consider fermions. Fermions obey the anti-commutation rela­
tions. Thus a1 a1 = 0 and a>..a>.. = 0. n>.. can only be one or zero. Therefore, 
we have the following relations: 

a11o) = 1(1)>..), a11(1)>..) = o, 
a>..l(1)>..) = IO), a>..IO) = 0. 

(2.46) 

In order to deduce the commutator [a>.., a1,J, we consider the following 
state 

(2.47) 

If n>..s = 0, the direct evaluation of at ln>..l n>..l ... n>..x) gives 

attn>..1n>..2 ···n>..x) = (-1)Ss(at)n>-1 ···(a1J···(a1x)n>-xl0), (2.48) 

where the factor Ss is defined by 

(2.49) 

Thus, we have 

a1Jn>..l n>..2 ... n>..x) 

= (-1)Ssln>.. 1 • • • (n>..s + 1) · · ·n>..x) (if n>..s = 0). (2.50) 

When n As = 1' we can exchange at to the position As and get a factor 

atat, which leads to 

(2.51) 

Now we consider the annihilating operator a>..s. When n>..s = 1, since a>..s 

is the adjoint of operator at' we have 

(n>.. 1 • • • (n>..s - 1) · · · n>..,,Ja>..Jn>..1 · · · n>..s · · · n>..x) 

= (n>.. 1 • • · n>..s · · · n>..x ta1Jn>.. 1 • • • (n>..s - 1) · · · n>..x) 

= (n>..l ... n>..s ... n>..x I ( -l)Ss ln>..l ... n>..s ... n>..x) = ( -1 )Ss. (2.52) 

Thus, we have 

a>..s ln>..l ... n>..s ... n>..x) 

= ( -1)Ss ln>. 1 • • • (n>..s - 1) · · · n>.x) (if n>.s = 1). (2.53) 

If n>..s = 0, we can similarly get 

a>.s ln>.l ... n>.s ... n>.x) = 0. (if n>.s = 0). (2.54) 

In summary of the results given by Eqs. (2.50), (2.51), (2.53) and (2.54), 
we can easily obtain 

(2.55) 
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The above commutation relations are for the operators at the same 
time and are called the equal-time commutation relations (ETCR). There 
are also the commutation relations at different times [a>. 1 (t), at (t')l±· In 
order to calculate the commutation relations at different times, we need to 
know the equations of motion. We will discuss the commutation relations 
at different times [a>.l (t), at (t')]± after we derive the equations of motion. 

We introduce a(x, t) and at (x, t) by taking A in a1 and a>. as position 
X. Then a1 takes the meaning of creating a particle at position X and a,\ 
annihilating a particle at position X. a1 and a,\ become at(x, t) and a(x, t) 
respectively. Since A = x as position is a continuous variable. b>. 1 >. 2 in 
Eq. (2.55) should be replaced by a delta function 63 (x1 - x 2 ). Then we 
have 

[a(x, t), at (x', t)]± = 63 (x- x'), 

[at(x,t),at(x',t)]± = [a(x,t),a(x',t)]± = o. 
(2.56a) 

(2.56b) 

With the help of the creation and annihilation operators, we can define 
the particle-number density operator 

n(x, t) =at (x, t)a(x, t) (2.57) 

and the total particle-number operator 

N(t) = j d3xi\(x, t) = j d3 xal(x, t)il(x, t). (2.58) 

2.2 The equations of motion 

2.2.1 Field operators 

Now we discuss the particle dynamics. For bosons, we define two field 
operators 

J,(x, t) = ~(at (x, t) + ii(x, t)), 

ir(x, t) = ~(at(x, t)- a(x, t)). 

We have for their commutators 

[¢(x,t),ir(x',t)] = ~[(a(x,t)at(x',t) -at(x',t)a(x,t)) 

+ (a(x', t)at(x, t)- at(x, t)a(x', t))] 

= ~([a(x, t), at (x', t)] + [a(x', t), at (x, t)]) 

= i63 (x- x') 

(2.59a) 

(2.59b) 

(2.60) 
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and also 

[¢(x, t), ¢(x', t)] = [7T(x, t), ?t(x', t)] = 0. (2.61) 

For fermions, we can not use the definition Eq. (2.59), which will lead to 
{ ¢, 7T} = 0. If we define 7T = ~(at +a) = i¢t, we can have Eq. (2.60). 

However, ¢ and 7T should be independent. Thus ¢ should not be a real 
operator. We can use two real field operators ¢ 1 and ¢2 corresponding to 
a doublet of particles to form a complex field. We define 

(2.62a) 

(2.62b) 

with 

(2.63) 

Then we have two independent complex field operators and we can treat ¢ 
and 7T = i¢t as independent field operators. The field operators ¢ and 7T 

for fermions obey the following commutation relations 

{ ¢(x, t). ?t(x', t)} = i63 (x- x') 

and 

{ ¢(x, t), ¢(x', t)} = { ?t(x, t), ?t(x', t)} = 0. 

7T is called the conjugate field operator and is equivalent to 

Then we have 

A ·c 6 
7r=-~.,~-

6¢ 

(¢17r) = 
1 

1 exp [i~~d3x1r(x)¢(x)]. 
(21rC) 2 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

We can derive Eq. (2.67) directly from the commutation relations 
Eqs. (2.60) and (2.64). The eigenstate of¢ is defined by 

¢(x)l¢) = ¢(x)l¢). 

For bosons, using the commutation relation Eq. (2.60), we have 

[¢(x), ?tn(x')] = in7Tn- 1(x)63 (x- x'), 

[7T(x), ¢n(x')] = -in¢n-1 (x)63 (x- x'). 

(2.68) 

(2.69a) 

(2.69b) 
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Using the Taylor expansion, we have 

J,(x) exp [ -i j d3x' ¢(x')oi-(x') ]10)¢ 

= [J,(x), exp [ -i j d3x' ¢(x')oi-(x') ]liO)¢ 

= ¢(x) exp [ -i j d3 x' ¢(x')oi-(x') ]10)¢· (2.70) 

Thus the eigenstate of (/; for bosons is given by 

1¢) = exp [ -i j d3x¢(x)oi-(x)]IO)¢· (2. 71) 

Similarly, we can show that the eigenstate of fr is given by 

l1r) = exp [i J d3x1r(x)J,(x) ]10)~. (2. 72) 

Then we can calculate (¢17r). 

(¢17r) = (¢1 exp [i J d3x1r(x)J,(x) ]10)~ 

= exp [i J d3x1r(x)¢(x)] (¢10)~ 

= exp [i J d3x1r(x)¢(x)] ¢(01 exp [i J d3x¢(x)oi-(x) ]10)~ 

= exp [i j d3 x1r(x)¢(x)] ¢(010)~- (2.73) 

¢ (010)71" is just a constant for normalization, which we will take as 1/ (27rC) ~. 
Thus we get Eq. (2.67). Cis a factor in the following functional 8-function 
expression 

J d3x0(¢(x)) = 2~C J D1r(x) exp [i J d3x¢(x)1r(x)]. (2.74) 

We express the orthonormal relation in terms of the functional 8-function. 

(¢'1¢) = ¢(01 exp [ -i j d3x(¢(x) - ¢'(x))oi-(x) ]10)¢ 

= ¢(01 (¢'- ¢))¢ 

= J d3x8(¢'(x)- ¢(x)), (2.75) 
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where ¢(010)¢ is normalized as 

¢(010)¢ =I d3x8(0). (2.76) 

Since 

I D7r(<//17r) (7rl¢) = I D7r 2~C exp [i I d3x7r(x)(¢' (x) - ¢(x))] 

=I d3x8(¢'(x)- ¢(x)) 

= (¢'1¢), (2.77) 

we have the completeness relation 

Similarly we have 

I D¢1¢)(¢1 = 1. 

We can obtain the similar results for fermions. 

(¢17r) = 
1 

1 exp [-i I d3x1r(x)¢(x)]. 
(21rC) 2 

(2. 78) 

(2.79) 

(2.80) 

Generally the particle could have internal degrees of freedom. The par­
ticle number is a scalar. Then o)(x, t)a(x, t) should be a scalar. However, 
the field operator ¢ can be, for example, vector or spinor, in addition to 
scalar. 

2.2.2 The generator of time translation 

In order to consider the dynamics of particles, we introduce the time trans­
lation operator 6 = eiGtt, where Gt(fr, ¢) is the generator of translation 
transformation of timet. By definition of the generator of time translation, 
we have 

[¢, Gt] = iat¢, 

[fr, Gt] = i8tfr. 

(2.81a) 

(2.81b) 

The equations (2.81) are called the equations of motion, which is formally 
solved by 

(2.82) 
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Eq. (2.82) is the transformation for a finite translation of timet. Eq. (2.82) 
can also be proved using the general operator identity 

eA Be-A = J3 + [A, B] + ~[A, [A, B]] + . . . . (2.83) 
2. 

From the commutation relations for the generator of time translation 
Eq. (2.81 ), it can be seen that the right-hand side of Eq. (2.82) is just 
the Taylor expansion of the operator function ¢(x, t) fort. 

eiGttJ;(x, to)e-iGtt 

=¢(to)+ [iGtt, ¢(to)]+ [iGtt, [iGtt, ¢(to)]+··· 

=¢(to)+ t~¢~ + t2~ a22¢1 + ... at to 2. at to 

= ¢(t + t0 ), (2.84) 

which shows that Gt is the generator of the transformation of time 
translation. 

The field operator ¢( x, t) has a set of time-dependent eigenstates 
satisfying 

¢(x, t) 1¢, t) = ¢(x, t) 1¢, t). (2.85) 

The time dependence of the state vector 1¢, t), expressed in terms of the 
constant state vector I¢) (also called the Heisenberg vector) is determined 
by 

(2.86) 

2.2.3 Transition amplitude 

Now we can determine the scalar product of two state vectors taken at 
different times(¢', t'l¢, t), which is also called the transition amplitude be­
tween the two state vectors. Using Eq. (2.86), we have 

(¢',t'1¢,t) = (¢'1e-i(t'-t)Gtl¢). (2.87) 

This amplitude is also named as the Feynman kernel. This is the amplitude 
for making a transition from the field configuration ¢(x) at time t, leading 
to the field configuration ¢ ( x') at time t'. 
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2.2.4 Causality principle 

Now let us discuss the properties of the generator of time translation Gt. 
All the time evolution processes should obey the causality principle, which 
is the most basic principle of physics. The causality principle can be ex­
pressed as follows: The future state is only determined by the present state. 
Therefore, the generator of time translation Gt can be expressed solely as 
a function of the field at t without any time derivatives of J and ir because 
the time derivatives depend on the quantities in the future. This statement 
does not mean that one can not have an expression of Gt with time deriva­
tives of J and fr in it. It says that one can find an expression of Gt without 
time derivatives of J and ir in it. Now we express Gt as a function of the 
field operators 

(2.88) 

Qt(ir, ¢) does not contain the time derivatives of J and ir, while spatial 
derivatives are allowed. 

2.2.5 Path integral formulas 

We can construct the path integral formulas to calculate the transition 
amplitude. We divide the time interval (t, t') into many small slices with 
equal length. 

tn = t + nE (2.89) 

with 
t'- t 

(2.90) E = ]\[" 
We insert a complete set of basis states 1¢, t) at each of the grid points 
tn(n = 1, · · · , N- 1) in the Feynman kernel. 

(¢',t'l¢,t) = J D¢N-1" ·-! D¢2 J D¢1 

(¢', t'1¢N-1, tN-1) · · · (¢2, t2j¢1, t1)(¢1, t1j¢, t). (2.91) 

Using Eq. (2.87), each of the kernel elements under the integral can be 
rewritten as 

(2.92) 

When E is small, the time evolution operator can be approximated by a 
Taylor expansion 

(¢n+b tn+1i¢n, tn) = (¢n+11[1- iGt(ir, J)E]I¢n) + 0(E2). (2.93) 
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Since the generator Gt depends on fr and ¢, we also insert a complete 

set of state l7rn)· Using the completeness relation Eq. (2.78), we have 

(¢n+11Gt(fr,(/;)l¢n) = J D7rn(¢n+117rn)(7rniGt(fr,¢)1¢n)· (2.94) 

The operators fr and¢ can act to the left or to the right on their eigenstates. 
We have 

(2.95) 

One might use a more symmetric prescription, so-called Weyl's oper­

ator ordering. (7rnl¢n)Gt(7rn, ¢n) in Eq. (2.95) can be replaced by 

(7rnl¢n)Gt(7rn, ~(¢n+l + ¢n)). We will use the notation Gt(7rn,¢n) in the 

following so that we can choose Cfin = ¢n or Cfin = ~(¢n+1 + ¢n) for the 
convenience of usage. 

Using Eq. (2.67), we have 

(¢n+1, tn+11¢n, tn) 

= J ~:~ exp [i J d3
X1rn(x)(¢n+l(x)- ¢n(x))l 

X [1- iGt(7rn, Cfin)E] + 0(E2
). 

Taking the limit E--+ 0 or N--+ oo, we have 
N-1 N-1 

(¢', t'l¢, t) = lim J II D¢n II D1rCn 
N-+oo 27r 

n=1 n=O 

[~
1 

. J d3 ( ) ¢n+ 1( X) - ¢n (X) ] X exp L....t Z XE7r n X ---'---'-----

n=O E 

N-1 

X II [1- iGt(7rn, ¢n)E]. 
n=O 

(2.96) 

(2.97) 

We can reform Eq. (2.97) by using the representation of the exponential 

function 

N-1 ( N-1 ) 
J~=!! (1+ ~) =exp J~=~ ~Xn . (2.98) 

Then Eq. ( 2. 97) becomes 
N-1 N-1 

(¢', t'l¢, t) = lim J II D¢n IT D
2 

7rCn 
N-+oo 7r 

n=1 n=O 
N-1 

[. """'(j 3 ( ) ¢n+l (x)- ¢n(x) ( - ))] 
X exp ZE L....t d X7r n X E - Gt 7r n' ¢n . 

n=O 
(2.99) 
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In the limit N -+ oo, the sample values become continues. The summation 
is then replaced by the integral. We introduce the notation of path integral 

N-1 I II D¢n -+ I D¢ and 
n=1 

N-1 I II D¢n-+ I D1r. 
n=O 

(2.100) 

In the limit E -+ 0, 

¢n+J(X)E~ ¢n(x) -+ J>(tn) and E ~ /(tn)-+ l' dT/(T). (2.101) 

Then we obtain the path integral expression for the Feynman kernel (the 
transition amplitude) in Eq. (2.87). 

z = (¢', t'l¢, t) 

= N I D¢ I Drrexp [i l' dT I d3x(rr8,¢ ~ Q,(rr, ¢))] (2.102) 

with the boundary condition 

¢(x, t') = ¢'(x), 

¢(x, t) = ¢(x), 

(2.103a) 

(2.103b) 

where N is a constant factor, which is generally omitted for the simplicity 
of expression. 

2.2.6 Lagrangian and action 

We define the Lagrangian density .C' 

.C' = 7r8t¢- 9t(7r, ¢) 

and the action S' 

Eq. (2.102) becomes 

Z =I D¢ I Drrexp [i I d4
x.C' (rr, ¢) ]· 

From Eq. ( 2.102), after integrating over J D1r, we have 

(¢', t'l¢, t) = N j D¢ J Drr exp [i J d4x(rr8,¢ ~ Q,(rr, ¢)] 

(2.104) 

(2.105) 

(2.106) 

= N' j D¢exp [i J d4x.C(¢, ¢)]. (2.107) 
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Instead of £'(1r, ¢), we have the function £(¢, ¢) as Lagrangian density. 
Using the Lagrangian density £(¢, ¢), we can define the action S of the 
field by 

(2.108) 

Thus we have two types of formulas for Lagrangians. We will show 
that one corresponds to fermions and the other corresponds to bosons. It 
should be noted that we need use Grassmann algebra (a brief introduction 
on Grassmann algebra is shown in the Appendix D) in the path integration 
for fermions. 

2.2. 7 Covariance principle 

In the following, we assume that the path integral should satisfy the prin­
ciple of general covariance stating that the physics, as embodied in the 
path integral, must be invariant under an arbitrary coordinate transforma­
tion. Generally, we shall consider any curved spacetime. First we discuss 
the fiat spacetime, which is applicable to the case of vacuum state. For 
a Riemann metric, we can always find a local Minkowski metric. We will 
show in a later section that when the field is weak, as in the case of near 
vacuum state, we can use the Minkowski metric. In order to satisfy the 
causality principle, time can only be one-dimensional. We have assumed 
that space is three-dimensional. There are several reasons for a three­
dimensional space. At the present stage, we can only assume that the 
space is three-dimensional. Matter, space, and time should be considered 
as an integrated entity, as Einstein proposed. If time and space are indepen­
dent, the interaction between particles will be instantaneous, which is not 
consistent in concept with the causality principle. Because of the causal­
ity principle, a fiat spacetime can only be Minkowski-type. An Euclidean 
type spacetime will not be consistent with the causality principle because 
it extends time into the four-dimensional. The Lagrangian density £' or £ 
should be scalar in the Minkowski metric. We use a Minkowski metric TJ'w 

with signature [ +, -, -, -] in this chapter. By now, only a few forms of 
Lagrangian densities are found to satisfy both the causality principle and 
the covariance principle. Because 9t(7r, ¢) depends only on time locally, it 
does not depend on the time derivative of field functions. It can depend 
on the spatial derivatives of field functions. As we have shown, there are 
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two cases: (1) £' is Lorentz covariant; (2) C is Lorentz covariant. For the 
first case, from Eq. (2.102), we can see that £' depends on ¢ linearly. In 
order to get a covariant Lagrangian density £', 9t ( 1r, ¢) should depend on 
the spatial derivatives linearly. We will show that this case corresponds to 
the spinor fermion field in the later section. For the second case, we need to 
carry out the integration over field function 1r. When 9t ( 1r, ¢) is a quadratic 
function of 1r, we can get a ¢ 2 term in £( ¢, ¢) after completing the Gaus­
sian integration over 1r in the path integral formulation in Eq. (2.107). The 
¢2 term can match with other spatial derivative terms to form a covariant 
Lagrangian density. Thus 9t ( 1r, ¢) should also contain the quadratic spatial 
derivatives of field functions. After integrating out the field function 1r, we 
obtain the Lorentz-covariant Lagrangian £( ¢, ¢) in the Minkowski space­
time. We will show that one can get two types of covariant Lagrangians in 
this way. They correspond to the scalar and vector bosons. For 9t ( 1r, ¢) 
with other orders of spatial derivative of field functions or power functions 
of 1r, we can not find any covariant constructions of Lagrangian. Although 
this is not a strict proof, it is plausible that there are no other types of 
9t ( 1r, ¢) that can lead to covariant Lagrangian C or £'. In addition, we will 
show later that the energy is conserved due to the homogeneity of space­
time. Then the Hamiltonian operator should commute with the generator 
of time translation, which also excludes other possibility. From Eq. (2.106), 
we can see that there is only first order derivative ¢ in the Lagrangian £' 
and £. Therefore, Lagrangian can only depend on the first order derivative 
¢. In the £( ¢, ¢), there is only ¢2 term. ¢ 2 may be transformed into ¢ 
through integration by parts. Therefore, Lagrangian can only contain¢ or 
¢2 (or equivalently ¢) terms linearly. This constrains the form of covariant 
Lagrangian stiffiy. We will see that there are only very limited forms of the 
covariant Lagrangians. 

2.3 Scalar field 

The Lagrangian should be a scalar in the Minkowski spacetime due to the 
covariance principle. Since the simplest field is the scalar field, we first 
consider the scalar field. It should be noted that the underlining principle 
is independent of the types of the fields contained in the Lagrangian. 
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2.3.1 Lagrangian 

Since the derivatives can only be quadratic, the general form of covariant 
Lagrangian for a scalar field has the form 

(2.109) 

f(¢) can be put into the metric g~v when we use the curved spacetime for­
malism, which we will discuss in detail in the section on the curved space­
time. U(¢) is generally divided into the mass term ~m2¢2 and interaction 
term V(¢). 

(2.110) 

where m is called the mass and V(¢) is the self-interaction. Thus the 
general form of Lagrangian density in the Minkowski spacetime for a scalar 
field is given by 

(2.111) 

We have chosen the proper unit of field function such that the first term 
in Eq. (2.111) has the form without any parameter. We can also put n2 

in the first term and reformulate the first term as ~
2 

8~¢8~¢ to make the 
unit transformation easier, where n is called the Planck constant. All the 
terms in Eq. (2.111) are scalars in the spacetime. Thus the Lagrangian in 
Eq. ( 2.111) is Lorentz covariant. The corresponding function 9t ( 1r, ¢) is 
given by 

(2.112) 

which does not contain the time derivative terms. We can get the La­
grangian density in Eq. (2.111) by inserting Eq. (2.112) into Eq. (2.107) 
and integrating over 7r using the Gaussian integral formula Eq. (C.21) in 
the Appendix C. Thus the generator of time translation corresponding to 
the Lagrangian Eq. (2.111) is given by 

G, = j d3x [~7T2 + ~('V¢) 2 + ~m2¢2 + V(¢)]. (2.113) 

2.3.2 Klein-Gordon equation 

Now we consider the scalar field as the boson field that ¢ and it satisfy 
the commutation relations for bosons in Eqs. (2.60) and (2.61). We will 
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show later that we can not construct a consistent formulation for scalar 
fermions with anti-commutation relations. Calculating the commutator 
[¢(x, t), Gt(fr, ¢)] of ¢(x, t) with Gt, we have 

[¢(x, t), Gt(fr, ¢)] = ifr. (2.114) 

Comparing Eq. (2.114) with Eq. (2.81a), we can see that 

ao¢ = 1r = -i[¢(x, t), Gt(ir, ¢)]. (2.115) 

Using commutation relations Eq. (2.81b), we have 

fr = -i[fr(x, t), Gt(fr, ¢)] = (\72
- m2 )¢(x, t)- V'(¢). (2.116) 

In deriving Eq. (2.116), we have used the relation 

[fr(x, t), \7' ¢(x', t)] = V''[fr(x, t), ¢(x', t)] = -i\7' 83(x- x') (2.117) 

and also an integration by parts. Neglecting the interaction term and com­
bining Eqs. (2.115) and (2.116), we find that the field operator for free 
scalar bosons satisfies the following equation 

(2.118) 

Eq. (2.118) is called the Klein-Gordon equation. 

The derivation of the Klein-Gordon equation is based only on the causal­
ity principle and the covariance principle. It should be noted that if we use 
the anti-commutation relations for ¢ and fr, we get [¢(x, t), Gt(fr, ¢)] = 0. 
Gt given by Eq. (2.113) can not be the generator of time translation in this 
case. Therefore, the Lagrangian Eq. (2.111) can only be used to describe 
the scalar bosons. 1 

2.3.3 Solutions of the Klein-Gordon equation 

Eq. (2.118) is a wave equation. Thus we have the particle-wave duality for 
the scalar bosons. We can solve the operator equation (2.118) by expanding 
¢(x, t) with respect to a basis. We usually use the set of plane waves 

up(x) = Npeip·x 

for solving the wave equations. Then we have 

<f,(x, t) = j d3pNpe;p·xap(t), 

(2.119) 

(2.120) 

1 One can also use microcausality to prove that only the boson field can be used in the 
Lagrangian Eq. (2.111) (W. Pauli, Phys. Rev. 58, 716 (1940); M. Fierz, Helv. Phys. 
Acta 12, 3 (1939)). But here we consider that microcausality is just a result of causality 
principle. One can prove that the microcausality is satisfied by the scalar boson field 
with the Lagrangian Eq. (2.111). 
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where Np is the normalization constant. Inserting Eq. (2.120) into 
Eq. (2.118), we get the equation of motion for the operators ap(t): 

a(t) = -(p2 + m 2)ap(t). (2.121) 

The solution of Eq. (2.121) is given by 

a (t) = a(l) e-iwpt + a(2) eiwpt 
p p p ' (2.122) 

where a~l) and a~2) are the constant operators in time. Wp is given by the 
dispersion relation 

(2.123) 

According to Eq. (2.59a), the field operator¢ is hermitian, ¢t = ¢. The 
constraint gives 

(2.124) 

Then the basis expansion Eq. (2.120) becomes 

¢(x, t) =I d3pNp[a~l)ei(p·X-wpt) + a~l)t e-i(p·x-wpt)]. (2.125) 

Denoting a~1 ) simply by aP, we have 

¢(x, t) =I d3pNp[apei(p·X-wpt) + abe-i(p·X-Wpt)]. (2.126) 

Because fr = ¢, the basis expansion of the conjugate field is given by 

7r(x, t) = -i I d 3pNpwp[apei(p·X-wpt)- abe-i(p·x-wpt)J, (2.127) 

which is consistent with Eq. (2.114). 

2.3.4 The commutators for creation and annihilation 
operators in p-space 

The operators aP and at can be shown to fulfill the commutators for the 
creation and annihilation operators, i.e., 

(2.128) 

and 

(2.129) 
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The commutation relations Eqs. (2.128) and (2.129) for iip and at in the 
expansion of the field operators can be derived as follows. We introduce 
p = ( wp, p) and define the normalized plane waves as 

Up(x, t) = Npe-ip·x = 1 e-i(wp·t-p·x) (2.130) 
y'2wp(27r) 3 ' 

where we have used the normalization factor 
1 

Np = y'2wp(27r) 3 · 

Then Eqs. (2.126) and (2.127) become 

(/J(x, t) = 1 d3p[iipup(x, t) + abu~(x, t)], 

?T(x, t) = -i 1 d3pwp[iipup(x, t) - abu~(x, t)]. 

Projection of the field operator (/J(x, t) on Up and u~ gives 

iip =i I d3xu~(x,t)86¢(x,t) =(up,¢) 

and 

(2.131) 

(2.132a) 

(2.132b) 

(2.133) 

(2.134) 

We have defined the scalar product of two Klein-Gordon wave functions (h 
and ¢2 as 

(2.135) 

where 
H 

ABo B = A(ooB)- (ooA)B. (2.136) 

We can easily verify that the plane waves form an orthonormal set with 
respect to the scalar product Eq. (2.135) 

(up', up) = i I d3xu~, (x, t) 86 up(x, t) 

= 83 (p- p') (2.137) 

and 

(2.138) 

Similarly, 

(2.139) 
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Now we evaluate the commutator 

[ap, ap,] = i 2 1 d3x 1 d3x1 [u~(x, t) ~ ¢(x, t), u~, (x1
, t) ~ ¢(x1

, t)]. (2.140) 

The functions up ( x, t) are c numbers and commute with the field operators. 
We have 

[u~(x, t) ~ ¢(x, t), u~, (x1
, t) ~ ¢(x1

, t)] 

= u~(x, t)u~,(x1 , t)[¢(x, t), ¢(x1
, t)] 

- u~(x, t)u~,(x1 , t)[¢(x, t), ¢(x1
, t)] 

- u~(x, t)u~,(x1 , t)[¢(x, t), ¢(x1
, t)] 

+ u~(x, t)u~,(x1 , t)[¢(x, t), ¢(x1
, t)]. (2.141) 

Using the commutation relations of ¢ and ir, we get 

[ap, ap,] = -i 1 d3x[u~(x, t)u~, (x, t) _ u~(x, t)u~, (x, t)] 

= -i I d3x[u~(x,t)~u~,(x,t) = -(up,u~,) = 0. (2.142) 

Similar calculations give 

(2.143) 

Now we calculate the commutator [ap, ab,J· Using the projection formulas 
Eqs. (2.133) and (2.134), the commutator becomes 

[iip, a~, I= -i2 I d3x I d3x'[u~(x, t) 86 J,(x, t), Up' (x', t) 86 J,(x', t)]. (2.144) 

According to Eq. (2.136), we have 
* HA I HA I 

[up(x, t) 8o ¢(x, t), Up' (x, t) 8o ¢(x, t)j 
* I ;_ ;_ I = up(x,t)up'(x ,t)[¢(x,t),¢(x ,t)] 

- u~(x, t)up' (x 1
, t)[¢(x, t), ¢(x1

, t)] 

. * I A ;_ I - up(x, t)up'(x, t)[¢(x, t), ¢(x, t)] 

+ u~(x, t)up'(x1
, t)[¢(x, t), ¢(x1

, t)]. (2.145) 

Using the commutation relations of¢ and fr, we obtain 

[ap, ab,J = i I d3x[u~(x, t) ~Up' (x, t) = (Up, Up') = 83(p- p 1
). (2.146) 

Thus we get all the commutators for creation operator at and annihilation 
operator ap. 
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2.3.5 The homogeneity of spacetime 

2.3.5.1 Noether current 

27 

Now we use the symmetry principle that demands the homogeneity of space­
time. The action should possess the symmetry of spacetime translation. 
We transform the field via ¢(x) ---+ ¢(x- a), where av is a constant four­
vector. For an infinitesimal translation 8av, ¢(x) ---+ ¢(x)- 8av8v¢(x), we 
have 8¢(x) = -8av8v¢(x). If we make an infinitesimal change ¢(x) ---+ 
¢(x) + 8¢(x) in the field function, we have .C(x) ---+ .C(x) + 8£(x), where 
8£(x) is given by the chain rule, 

8£(x) 8£(x) 
8(£(x)) = 8¢(x) 8¢(x) + 8(81t¢(x)) alt8¢(x). (2.147) 

Taking 8/ 8¢(x) as a functional derivative, we have 

8S j 4 8£(y) 8£(x) 8£(x) 
8¢(x) = d y 8¢(x) = 8¢(x) - 8~t 8(81t¢(x)). (2.148) 

We use the above equation to make the replacement 

8£(x) 8£(x) 8S 
8¢(x) ---+ 

8~t 8(81t¢(x)) + 8¢(x) 
(2.149) 

in Eq. (2.147). Then we obtain 

[ 
8£(x) _ l 8S 

8£(x) = alt 8(81t¢(x)) o¢(x) + 8¢(x) 8¢(x). (2.150) 

When we transform the fields with an infinitesimal spacetime transla­
tion 8av, we have .C(x)---+ .C(x- 8a), and then 8(£(x)) = -8av8v(.C(x)) = 
-8v(8av .C(x)). Combining with the first term on the right side of 
Eq. (2.150), we find 

o!fx) 01J(x) = -8M [ 8(~~~~~)) ( -Ja" 8v1J(x)) +JaM L(x) l· (2.151) 

We introduce the Noether current for the energy-momentum 

j~(x) == 8(~~~~~)) (Ja" 8v1J(x)) - Oa~ L(x) = Oa"B~(x) (2.152) 

with 

(2.153) 

8~(x) is called the energy-momentum tensor. Then Eq. (2.151) becomes 

o!fx) 01J(x) = 8Mj~ = 8M(0a"8~(x)). (2.154) 
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2.3.5.2 Conservation of energy-momentum 

The action should possess the symmetry of spacetime translation. Under 
an infinitesimal spacetime translation, the variation of the action should be 
zero. We have 6S = 0. Then from Eq. (2.154), we have the conservation 
of energy-momentum 

af.Le~(x) = o. (2.155) 

Eq. (2.155) is the Noether's theorem for the case of the symmetry of space­
time translation. 

Now we look at the physical meaning of 8~. We define 

(2.156) 

as the energy-momentum vector. ez is called the Poynting vector. Using 
Eq. (2.153), we have 

J 3 [ .C(x) o l PJ.L = d x BBo¢(x) 8J.L¢(x)- TJwC(x) . (2.157) 

Expressing Eq. (2.155) in terms of the time and space components, 
Eq. (2.155) becomes 

aee(x) \7 ·8i -at + ~ 1/- o. 
Using Gauss's theorem, we have 

dPv 
dt=O. 

Thus Pv is the conserved four-vector. 

2.3.5.3 Hamiltonian operator 

(2.158) 

(2.159) 

For the scalar bosons, inserting the Lagrangian density in Eq. (2.111) into 
Eq. (2.157), we have 

Po= j d
3
x [~(iio¢)2 + ~(V'¢) 2 + ~m2¢2 + V(¢)]. (2.160) 

Po is defined as the energy of the field ¢ and is also called the Hamiltonian 
of the field. When we replace the field function ¢ with the field operator 
¢, we call the corresponding operator as Hamiltonian operator. 

fl =Po= j d3x [~(&0¢)2 + ~(V'¢)2 + ~m2¢2 + V(¢)]. (2.161) 
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2.3.5.4 Heisenberg's equations of motion 

Replacing 80 (/J in Eq. (2.161) with ir, we have 

Gt = fi. 
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(2.162) 

Therefore the generator of time translation Gt is equal to the Hamiltonian 
operator fi. Replacing Gt with fi in Eq. (2.81), we have 

iat¢ = [¢, fiJ, 

i8tir = [ir, fi]. 
Eq. (2.163) is called Heisenberg's equations of motion. 

According to Eq. (2.159), we have 

[Po, Gt] = o. 
We can see that Eq. (2.162) is consistent with Eq. (2.159). 

2.3.5.5 Hamiltonian operator of free scalar bosons 

(2.163a) 

(2.163b) 

(2.164) 

We can express the Hamiltonian of free scalar bosons in terms of the cre­
ation and annihilation operators ab and aP. Inserting the expansion formula 

for the field operators ¢ and ir, we have 

fi =~I d3x [ir2 + ("v¢)2 + m2¢2] 

(2.165) 

The integration over x can be carried out, which gives the delta function. 

I d3xu;, (x, t)up(x, t) = -
1
-83 (p- p'), (2.166a) 

2wp 

I d3xup'(x, t)up(x, t) = 2~P e-2iwpt53 (p + p 1
). (2.166b) 

Using Eq. (2.166), we get 

ii = ~ [- ld3p w~ (a a e-2iwpt- at a -a at+ at at e2iwpt) 2 2w -p P P P P P -p P 
p 

-I d3pL( -a a e-2iwpt- at a -a at -at at e2iwpt) 2w -p P P P P P -p P 
p 

+ ld3p m
2 

(a a e-2iwpt +at a +a at +at at e2iwpt)J (2.167) 2w -p P P P P P -p P · 
p 
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The terms involving aa and at at are multiplied by a factor ( -w~ + p2 + m 2 ) 

which is zero. The remaining expression for the Hamiltonian is given by 

(2.168) 

with 

1 j 3 3 1 j d3x 3 Eo = 2 d pwp6 (0) = 2 (2n) 3 d pwp. (2.169) 

Eo is called the vacuum energy. Since there is an infinite number of modes, 
the vacuum energy Eo is divergent. Because physical observables involve 
energy differences rather than the absolute value of the energy, the divergent 
zero-point energy Eo can be dropped out. Then the Hamiltonian can be 
rewritten as 

H = ii- Eo = j d3pwPabaP. (2.170) 

In the Hamiltonian Eq. (2.170), the creation operator is on the left of the 
annihilation operator. We call this arrangement of operators as normal 

ordering or normal product. We denote a normal product of the operators 
A and B by : AB :. Thus Eq. (2.170) has the form 

H = ~ J d3x: [7!-2 + (\7¢)2 + m2<P] 

We can see that Wp is single-particle energy. 

2.3.5.6 Momentum operator of free scalar bosons 

Now let us turn to the momentum of the field. 

pi is defined as the momentum. 

i J 3 8¢ p = -pi = - d xn 8xi . 

(2.171) 

(2.172) 

(2.173) 



Quantum Fields 31 

In vector notation 

P =- j d3x1rV¢. (2.174) 

The momentum operator of the field is given by 

P =- J d3xfr(x, t)V'¢(x, t). (2.175) 

It is more natural to use a symmetric form of momentum operator 

which guarantees that P is a hermitian operator. 
Using the commutator of ¢ and fr, we have 

[¢, 1\] = i8k¢, 

[fr, 1\] = i8kfr· 

(2.176) 

(2.177a) 

(2.177b) 

Therefore, the momentum operator Pk is the generator of space translation. 
Using Eq. (2.83), we have 

eii\xi ¢(xo, to)e-iPixi = ¢(xo + x, to), 

eiPixi fr(xo, to)e-iPixi = fr(xo + x, to). 

Thus eiPixi is the operator of space translation. 
We use the expansion formulas for the field operators and get 

(2.178a) 

(2.178b) 

P=-~ j d3x[-i j d3p'wp'(ap'up'-a~,u;,) j d3p(-ip)(apup-abu;) 

+ j d3p(-ip)(apup-abu;)(-i) j d3p'wp'(ap'up'-a~,u;,)] 
=-~Jd3p-1-w (pa_ a e- 2iwpt_pata -pa at 2 2w P P P P P P P 

p 

(2.179) 

It should be noted that the contribution involving a_pap and a!pat are 
dropped out since the integrand is an odd function of p. We can see that p 
has the meaning of single-particle momentum. The particles generated by 
at are also called the field quanta, which carry the momentum p and energy 
Wp = (p2 + m2 ) 1/ 2 , and are COUnted by the number operator np = atap. 
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2.4 The complex scalar field 

2.4.1 Lagrangian of the complex boson field 

We have discussed the scalar boson field with one component. This field 
describes the simplest boson particles. The equation of motion for the 
field is the Klein-Gordon equation. For the scalar boson field with one 
component, there is a problem in its solution Eq. (2.125) of the equations 
of motion. The terms corresponding to the annihilation operator a(x, t) 
and creation operator at (x, t) are complex, which is not consistent with the 
properties of particles without internal degrees of freedom. This problem 
can be solved by introducing the complex scalar field with the internal 
degrees of freedom. The equations of motion for the complex scalar field 
have the solutions with the real annihilation operators ai(x, t) and creation 
operators aJ (x, t). We consider the scalar boson field with two components. 
This field is equivalent to the complex field ¢ =I ¢*, which corresponds to 
a doublet of particles and antiparticles. 

The covariant Lagrangian density, which is a real-valued function, 
should be given by 

£ = 8¢* 8¢ - m2¢*¢ 
8xf1 8xf1 ' 

(2.180) 

where ¢ and ¢* can be treated as independent fields. This can be seen by 
transforming ¢ and ¢* into two real field functions ¢1 and ¢2 with 

¢1 = ~ [¢ +¢*], 

¢2 =- 01¢-¢*]. 

(2.181a) 

(2.181b) 

Then we can go to the real valued fields and use the same procedure to 
derive Gt as in the last section. These two kinds of particles have the same 
mass m and the Lagrangian density exhibits an internal symmetry under 
phase transformation. 

¢' = ¢e-ia, 

¢*' = ¢*eia 

(2.182a) 

(2.182b) 

with real phase a. The complex scalar boson field is important because it is 
the basic constituent to construct boson fields with the SU ( N) symmetry 
and we can add interaction terms with other types of fields with the gauge 
invariance. 
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We have shown that the symmetry of spacetime translation is related 
to the conservation of energy-momentum. In the following, we will show 
that any continuous symmetry transformation such as Eq. (2.182) leads to 
a conserved quantity. 

2.4.2 Symmetry and conservation law 

Suppose we have an infinitesimal transformation defined by the transfor­
mation in coordinates 

x'M = xM + 8xM 
and the transformation in the field ¢a ( x) 

¢'a(x') = rPa(x) + 8¢a(x). 

(2.183) 

(2.184) 

If the transformations Eqs. (2.183) and (2.184) leave the action integral 
invariant, we say that the system possesses the symmetry defined by the 
transformations Eqs. (2.183) and (2.184). We introduce a variation that 
keeps the value of the coordinates x fixed 

8¢a(x) = ¢'a(x)- rPa(x). (2.185) 

8¢a(x) is also called the total variation, while the variation 8¢a(x) = 
¢' a(x') - ¢a(x) is called the local variation. The two types of variations 
have the following relation 

8¢a(x) = ¢'a(x)- ¢'a(x') + ¢'a(x')- rPa(x) 

= 8¢a(x)- (¢' a(x')- ¢' a(x)) 
8¢' 

= 8¢a(X)- OX: 8xM 

8¢a 
= 8¢a (x) - oxM 8xM. (2.186) 

In the derivation of Eq. (2.186), ~~!1 is approximated by ~ because their 
difference contributes only higher order terms. According to the definition 
Eq. (2.185), we have 

(2.187) 

Thus J commutes with differentiation 8~,.. . The symmetry transformation 
leaves the action invariant. 

JS = j d4 x' L'(x')- j d4x£(x) 

= j d4x'J£(x) + j d4x' £(x)- j d4x£(x) 

= 0, (2.188) 
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where 

6£(x) = £' (x') - £(x ). (2.189) 

The transformation of the volume element in Eq. (2.188) is determined by 
the Jacobi determinant 

: 1 + 8(8x
3

) 
. 8x3 

(2.190) 

The terms of higher orders have been neglected in Eq. (2.190). Thus 
Eq. (2.188) becomes 

OS= j d4xOL(x) + j d4x£(x) 
8~::) 

= j d4x (J£(x) + 8£(x) 6x~L) + j d4x£(x) 8( 6x~t) 
8x~t 8x~t 

= j d4x [Jc(x) +a~~ (C(x)Ox~)] 
= 0. (2.191) 

J£(x) is given by the chain rule. 

(2.192) 
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On the other hand, 

8S = { d4 x' C'(x')- { d4x£(x) Jo, lo 
= j d4x£'(x)- j d4x£(x) 

= J d4 x [C'(x)- £(x)] 

= J d4xJ£(x). (2.193) 

In the derivation of Eq. (2.193), we have used 0' = n, which is also appli­
cable to the case that the volume is large enough that the boundary part is 
not important and the integration over n' is equal to the integration over 
n. Taking J<t>:(x) as a functional derivative on S = J d4y£(y), we have 

J_§_ = J d4 y 8£(y) = aC(x) _ __i_ ( aC(x) ) 
8¢a(x) 8¢a(x) a¢a(x) ax11 a(a11¢a(x)) · (

2
·
194

) 

We use the above equation to make the replacement 

ac(x) -+a ac(x) + __!_§___ 
a¢a(x) 11 a(a11¢a(x)) 8¢a(x) 

(2.195) 

in Eq. (2.192). Then we obtain 

_ a [ aC(x) - l 8S -
8£(x) = -a a( a ¢ ) 8¢a(x) + ---8¢a(x) 

x11 11 a 8¢a(x) 

a [ ac(x) - ] 
= axJ-t a(aJ-t¢a) 8¢a(x) + 8S 

a [ ac(x) - ] 
= ax11 a(a11 ¢a) 8¢a(x) . (2.196) 

Since the range of the integration can be chosen arbitrarily, the integrand 
of Eq. (2.191) should be zero when 8S = 0. Thus we have 

a [ ac(x) - 11 ] 
axJ-t a( aJ-t¢a) 8¢a (x) + C(x )8x 

_ __i_ [ aC(x) ( ( ) _ a¢a v) 11 ] 
- ax/1 a(aJ-t¢a) 8¢a X axv 8x + £(x)8x 

= 0. (2.197) 

We define the current density jl1, 

.11 _ aC(x) A ( ) ( aC(x) a¢a 11 "( )) A v 
J = a( aJ-t¢a) u¢a X - a( aJ-t¢a) axv - TJv '-' X uX . (2.198) 



36 Principles of Physics 

Then we have the equation of continuity 

a . o -a Jp,=. xf.k 
(2.199) 

Eq. (2.199) is called Noether's theorem, which states that each continuous 
symmetry transformation corresponds to a conservation law. Expressing it 
in terms of the time and space components, Eq. (2.199) becomes 

(2.200) 

Then 

(2.201) 

is a conserved quantity because of Gauss's theorem. 

2.4.3 Charge conservation 

For the complex scalar boson field, the Lagrangian density has an internal 
symmetry under the transformation Eq. (2.182). The infinitesimal form of 
the transformation Eq. (2.182) is given by 

¢'(x) = ¢(x)- ia¢(x), 

¢*'(x) = ¢*(x) + ia¢*(x), 

(2.202a) 

(2.202b) 

where a is an infinitesimal parameter. It is conventional to scale the in­
finitesimal parameter a out of the current j. 

Noether's theorem for this continuous symmetry transformation leads 
to a conserved quantity we now call the charge 

Q = j d3
xj"(x) = -i j d3

x (a~¢¢- 8~~. ¢') 
= -i J d3x(¢*¢- ¢¢*) = i J d3x(¢*86¢). (2.203) 

2.5 Spinor fermions 

2.5.1 Lagrangian 

Now we turn to another way of constructing the covariant Lagrangian. We 
use Eq. (2.106) directly without carrying out the integration over 1r. The 
Lagrangian contains only linear time derivative term. Dirac had found 
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out the covariant form for this type of Lagrangian in a genius way. The 
covariant Lagrangian density has been found to be 

(2.204) 

where we have omitted the prime ' for the Lagrangian in Eq. (2.204) to 
simplify the notation and use the conventional '1/J, instead of¢, to repre­
sent the field function for the spinor field. The field function '1/J has four 
components and satisfies the transformation laws of a relativistic spinor. 
The adjoint spinor is defined as if; = '1/J t ,a. 11-1 (J-L = 0, 1, 2, 3) are the four 
Dirac's matrices, satisfying the algebra 

and 

1at = 1a, 

,it = _,i. 

(2.205) 

(2.206a) 

(2.206b) 

We have also introduced a and (3 defined by (3 =,a and a= ,a,. A set of 
objects obeying the relations Eqs. (2.205) and (2.206) is said to construct 
a Clifford algebra. 

According to Eq. (2.104), we have 

(2.207) 

and 

(2.208) 

Eq. (2.207) gives 1r = i'l/J t. Since 1r and '1/J should be independent field 
functions, '1/J should not be a real function. Similar to complex scalar field, 
we need two independent real field functions ¢ 1 and ¢ 2 . We define 

1 
'1/J = J2(¢1 + i¢2), (2.209a) 

7/1' = ~(¢, - i¢2). (2.209b) 

Then we have two independent complex field functions and we can treat 
'1/J and 1r = i'I/Jt as independent fields. This is why the wave functions of 
electrons are complex functions. 
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2.5.2 The generator of time translation 

The spinor '1/J and '1/Jt = -i1r are treated as independent fields, each having 
four components. Using Eqs. (2.204) and (2.207), Eq. (2.208) for 9t 
becomes 

9t = '1/Jt(-ia · V + (3m)'l/J 

= 1r( -a· V- ij3m)'l/J. (2.210) 

Transforming '1/J and 1r in Eq. (2.210) into operators, we get the generator 
of time translation 

Gt(fr, ~) = j d3xfr( -a· V- ij3m)~, (2.211) 

which does not contain the time derivative term and fulfills the causality 
principle. 

2.5.3 Dirac equation 

For the spinors with internal variables, when we write out the indices 
explicitly, the commutators Eqs. (2.64) and (2.65) become 

{ ~a(x, t), fr13(x1
, t)} = i8a1383(x- x 1

), (2.212) 

{ ~a(x, t), ~13(x1 , t)} = { fra(x, t), fr13(x1
, t)} = 0. (2.213) 

This choice corresponds to the fermions. We will show later that the 
alternate choice of boson commutators would lead to inconsistencies in the 
formulation. 

Using Eq. (2.81), we can derive the equations of motion 

~a(x,t) = i J d3x1 [{~a(x,t),fra(x1 ,t)}aaf3 · V1~f3(X1 ,t) 
-ira (x1

, t)aa/3 · V 1 
{ ~a(x, t), ~/3 (x1

, t)} 

+ im{ ~a(x, t), fra(X1
, t)}f3af3~f3(X1 , t) 

- imfra(x1
, t)f3af3{ ~a(x, t), ~13(x1 , t)} J 

= J d3x1 
[ -8aa83(x- X1)aaf3 · V1~f3(X1 , t) 

3 I A I ] - im8aa8 (x- X )f3af3'1/J!3(x, t) 

= (-a· V- imf3)af3~!3(x, t) (2.214) 

or, in compact form, 

8~ A A A A 

iat = ['1/J, Gt] = -ia · V'!/J + (3m'l/J. (2.215) 
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Similarly we have 

0 8fr [ A GA l 0 v A (3 A 'l- = 1r, t = -'l 1r ·a- m1r. at (2.216) 

Thus 

acJ; t At At iTt = -iV'IjJ ·a- m'ljJ (3. (2.217) 

We can see that Eqs. (2.215) and (2.217) are consistent. If one takes hermi­
tian conjugate operation on both sides of Eq. (2.215), Eq. (2.215) becomes 
Eq. (2.217). Multiplying Eq. (2.215) by ')'0 = (3, we obtain the Dirac 
equation in the operator form 

(i/' 11 811 - m)cJ; = 0. (2.218) 

Introducing operator 

(2.219) 

we have for Eq. (2.217) 

(2.220) 

The arrow indicates that the partial derivative acts on the function of the 
left. 

2.5.4 Dirac matrices 

From Eq. (2.205), we have 

(1'0 )
2 = 1 and (!'i) 2 = -1, (2.221) 

which shows that the eigenvalues of the matrix ')'0 are ±1 and those of /'i 
are ±i. In order to be consistent with the condition that the eigenvalues 
of 1° are ±1 and those of /'i are ±i, we take 1° as hermitian and /'i as 
anti-hermitian. This selection is consistent with the condition that the 
Hamiltonian operator is hermitian and has real eigenvalues, which can be 
seen easily when we obtain the Hamiltonian for Dirac fermions later. 

Eq. (2.205) also gives 

')'0 = ')'i')'O')'i, 

')'i = -')'0/'i/'0. 

Taking the trace on both sides of Eq. (2.222), we obtain 

Tr')'o = Tr(f'i/'OI'i) = -Tr')'o, 

Tl·')'i = -Tr(')'O')'i/'0) = -Tr')'i, 

(2.222a) 

(2.222b) 

(2.223a) 

(2.223b) 
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which leads to 

Tr 1p, = 0. (2.224) 

The trace of a matrix is the sum of its eigenvalues. Tr 1p, = 0 means that 
1°(1i) shall have as many eigenvalues of +1( +i) as those of -1( -i) so that 
the sum of them is zero. Therefore, the order N of the matrix 1p, should 
be an even number. For N = 2, we have the unit matrix 

I= G ~) (2.225) 

and three Pauli's matrices 

1 (0 1) 
(J = 1 0 ' 

2 = (0 -i) 
(J i 0 ' 

3 = (1 0) 
(J 0 -1 (2.226) 

as a set of independent basis. However, they are not enough to construct 
1p,. Thus the smallest possible order is N = 4. There are 16 independent 
4 x 4 matrices. The representation of 1p, in 4 x 4 complex matrices is called 
the spinor representation and correspondingly '1/J is the column matrix with 
four components, which is called the Dirac spinor. 

2.5.5 Dirac-Pauli representation 

The 16 independent matrices ri can be constructed using 1p, and the unit 
matrix I in the following way. We consider all the possible ways of multi­

plying 1p, together. Since ( 1p,) 2 is equal to + 1 or -1, we need only consider 
the multiplications 1p,1v, 1p,1v 1>.. and 1p,1v 1>..1p with J-L #- v #- A #- p. 

There is only one product of four matrices, which we denoted as 1 5 

15 := i10111213. (2.227) 

1 5 anti-commutes with 1p, (J-L = 0, 1, 2, 3), 

(2.228) 

There are four different products of three gamma matrices. They are 1f.1>15 

(J-L = 0, 1, 2, 3). Since 1p, anti-commutes with each other, we have six prod­
ucts of two gamma matrices 

(2.229) 

Together with the unit matrix and four 1p,, we have the complete set of 16 
matrices 

(2.230) 
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The most used representation of "(11 is so-called Dirac-Pauli representa­
tion which has the form 

0 (I 0) 
'Y = 0 -I ' (2.231) 

In this representation, 1° is diagonal. There are also other representations 
which are equivalent to each other. If we choose 1 5 as diagonal matrix, it 
is called the Weyl representation. 

Comparing Eq. (2.206) with Eq. (2.222), we have 

(2.232) 

Thus the hermitian conjugate of CJp,v is 

(2.233) 

The explicit form of CJp,v in the standard representation is given by 

(2.234a) 

(2.234b) 

with 

(2.235) 

where Eijk is the antisymmetric Levi-Civita symbol, which is totally anti­
symmetric with E123 = 1. L:k is the double Pauli's matrix, which can be 
expressed in a vector form 

(2.236) 

From Eq. (2.234a), we have 

(2.237) 
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2.5.6 Lorentz transformation for spinors 

Now we consider the covariance of the spinor fermion Lagrangian density 
in Eq. (2.204). 2 

A Lorentz transformation is expressed as 

(2.240) 

The spinor fermion Lagrangian density and Dirac equation should be co­
variant for any Lorentz transformation. Since Dirac equation is linear, the 
transformation relation between 1/J'(x') and 1/J(x) should be linear. Then we 
have 

1/J' (x') = S(A)'lj;(x ), (2.241) 

where S(A) is a 4 x 4 matrix. The components form of Eq. (2.241) is given 
by 

Covariance requires 1/J'(x') to be a solution of the Dirac equation. 

(i"'(IL8'1L- m)'l/J'(x') = 0. 

Multiplying the Dirac equation Eq. (2.218) from the left by S 

S(i'"'!ILa/L- m)'lj;(x) = S(i'"'!1La/Ls- 1S- m)'l/J(x) 

= (iS"'(~LS- 1 8/L- m)'l/J'(x') 

= ( iS"'(IL s- 1 AI/ /La' 1/ - m )1/J' (x') 

= 0. 

Comparing Eq. (2.244) with Eq. (2.243), we have 

s1/L s- 1 AI/ /L = 1v. 

Eq. (2.245) can be rewritten as 

s- 1"'(/L s = AIL v'"'/1/. 

(2.242) 

(2.243) 

(2.244) 

(2.245) 

(2.246) 
2The reason that Dirac demanded rJ.L obeying Eq. (2.205) is as follows: Since it is not 

easy to see directly that the Dirac equation is covariant, it is natural to do some trying. 
Multiplying the operator (irJ.LaJ.L + m) on the Dirac equation gives 

-(rJ.LfVQJ.LOV + m2)7j; =- [~(rJ.LfV + fVfJ.L)OJ.LQV + m2] 7./J = 0. (2.238) 

If rJ.L obey Eq. (2.205), Eq. (2.238) becomes 

(8J.Lf)J.L + m 2)7j; = 0, (2.239) 

which is Lorentz covariant. 
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An infinitesimal proper Lorentz transformation is given by 

where D..wJ.L v is antisymmetric 

Eq. (2.248) can be easily derived using the relation 

Inserting Eq. (2.247), we have 

which gives 

or 

A>.J.LA>.v = (8>. J.L + D..w>. J.L)(8>.v + D..w>.v) 

= 8>. J.L8>.v + 8>-.J.LD..W>.v + 8>-.v D..w>.J.L 

= 8~ + D..wJ.Lv + D..wv J.L 

= 8~, 
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(2.247) 

(2.248) 

(2.249) 

(2.250) 

(2.251) 

(2.252) 

Under an infinitesimal Lorentz transformation, S(A) should have the 
form 

i 
S(A) = 1- -D._wJ.Lv a 4 j.LI/l 

(2.253) 

where a J.LV is a 4 x 4 antisymmetric matrix. 

(2.254) 

The factor - ~ in Eq. (2.253) is introduced for simplicity in notation, which 
will become clear later. From Eq. (2.253), we have 

'l s-1 (A) = 1 + 4D._wfLVaJ.Lv· (2.255) 

Inserting Eqs. (2.253) and (2.255) into Eq. (2.246), we have 

(1 + ~ D..waf3 a a/3 )IlL (1 - ~ D..waf3 a a/3) = ( 8viL + D..wiL v )lv. (2.256) 
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Neglecting the quadratic terms in ~w~-tv, we have 

~~waf3(C!af3/f-t _,f-tC!af3) = ~wf-t vrv 
4 

= 51-t o-~Wo-v/v 

= -~Wf3a5f-t a/{3 

= -~wf3a5f-t a/{3 

1 = --(~wf3a5J-t a/{3- ~waf35f-t arf3) 
2 
1 

= -2~wf3a(51-t a/{3- 51-t (3/a) 

1 
= 2~waf3(51-t a/{3- 51-t (3/a)· (2.257) 

Thus we obtain the relation 

2i(51-ta/f3- 51-tf3ra) = [r!-t,C!af3]· 

The solution of Eq. (2.258) is given by 

(2.258) 

~ 

C!af3 = 2[ra,/f3]· (2.259) 

This solution of Eq. (2.258) for CJ af3 is the same as that defined by 
Eq. (2.229), where we have intentionally used the same symbol. Thus the 
operator S (A) for an infinitesimal proper Lorentz transformation has the 

form 
1 

S(~w~-tv) = 1 + g-lr~-t,!v]~w~-tv. (2.260) 

We can also introduce the infinitesimal generators given by 

i 1 
(ff-tv)af3 = -2(C!f-tv)af3 = 4[!~-t,/v], (2.261) 

where J-L, v = 0, · · · , 3 are Lorentz indices and a, (3 = 1, · · · , 4 are Dirac 
indices. Then Eq. (2.260) becomes 

(2.262) 

2.5. 7 Covariance of the spinor fermion Lagrangian 

From Eq. (2.233), we have 

st = ,o s-l,o. (2.263) 

Since 'lj;tt (x') = 'lj; t (x )St, we have 

ifi' \x') = 'lj; t (x )st ,o = 'lj; t (x )1010 st ,o = if;(x )s-1. (2.264) 
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Using Eq. (2.263), we have 

if;'(x')?j;'(x') = 'lj;tt (x'),'l?j;'(x') 

= ?j;t(x)st1°S?j;(x) 

= ?j;t(x)r0 S- 1S?j;(x) 

= if;(x)?j;(x), 
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(2.265) 

which shows that {;?j; is a scalar. Similarly we can show that 1[;,~-t'lj; is a 
Lorentz vector. Using Eqs. (2.246) and (2.263), we have 

if;' (x')r~-t'lj;' (x') = 'lj;tt (x')r0 r~-t'lj;' (x') 

= ?j;t(x)Stror~-tS?j;(x) 

= if;(x )S- 1 r~-t S?j;(x) 

=A~-£ v{;(x)rv?j;(x), (2.266) 

which shows that if;(x )1~-t'lj;(x) is a vector. Since if;(x )?j;(x) is a scalar and 
if;(x)r1-t?j;(x) is a vector, the Lagrangian given in Eq. (2.204) is a Lorentz 
scalar and thus Lorentz covariant. 

2.5.8 Spatial reflection 

In addition to the scalar {;?j; and Lorentz vector 1[;,~-t'lj;, we can also define 
pseudo scalar and pseudo vector related to the spatial reflection. 

A spatial reflection is defined by the following transformation 

x'=-x, 

t' = t. 
The corresponding transformation matrix is 

A~-t = (~ - ~ ~ ~) 
v 0 0 -1 0 . 

0 0 0-1 

(2.267a) 

(2.267b) 

(2.268) 

The spatial reflection is one of the improper Lorentz transformation 
because it can not be generated by means of infinitesimal rotations. We 
denote the corresponding spinor transformation S (A) as P ( P is for parity). 
According to Eq. (2.246), we have 

p-1,~-t p = A~-t vrv· 

Comparing with Eq. (2.268), we have 

Av 1-£ = TJv W 

(2.269) 

(2.270) 
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Then we have 

(2.271) 

which gives 
3 

61-lv''( = P 2:.::: TJJ-lV '"'( p-1 (2.272) 
v=O 

or equivalently 

(2.273) 

It should be noted that there is no summation on the right hand of 
Eq. (2.273). The solution of Eq. (2.273) for P is 

p = eir.p,.l, 

p-1 = e-ir.p"'-/, 

where 'P is a phase factor. Using Eq. (2.232), we have 

pt = e-ir.p,l = p-1. 

(2.27 4a) 

(2.27 4b) 

(2.275) 

The explicit form of the spinor transformation under the spatial reflection 
is given by 

'!j;'(x', t) = '!j;'( -x, t) = P'lj;(x) = eir.p1°'1j;(x, t). (2.276) 

Using Eq. (2.274), we have 

1 5 p = 15eir.p1o = -eir.p1o15 

= -P15 = detiAIP15 (2.277) 

or 

(2.278) 

For a proper Lorentz transformation, S (A) contains only a f-ll/. We note 

/J-l/5 + /J-l/5 = ilf-l/0/11213 + ii0/11213/J-l = 0, (2.279) 

which leads to 
1 

[r5,(jf-ll/l = 2[r5(lf-lll/ _lVlf-l)- (lf-lll/ _lVlf-l)r5l = 0. (2.280) 

Since S (A) contains only a f-ll/, we have 

(2.281) 

which gives 

(2.282) 

Combining Eq. (2.278) with Eq. (2.282), we see that 1 5 behaves as a pseudo 
scalar. 
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2.5.9 Energy-momentum tensor and Hamiltonian operator 

The action should possess the symmetry of spacetime translation. Under 
an infinitesimal spacetime translation, the variation of the action should be 
zero. We have 88 = 0. Then similar to the derivation of Eq. (2.154), we 
have the conservation of energy-momentum 

With the Canonical energy-momentum tenSOr ef1V given by 

Using Eq. (2.284), we get the conserved energy-momentum vector 

The time component of this vector is the energy 

Po =I d3xi!;(i-/8o- i'"'(
0
8o- ir · V + m)'lj; 

=I d3x'lj;t(-io: · V + f3m)'lj;. 

(2.283) 

(2.284) 

(2.286) 

When we replace the field functions 1/J and 1/J t by the operators -0 and 
-0 t, we get the Hamiltonian operator 

(2.287) 

Using Eq. (2.207) and replacing the field functions by the corresponding 
operators, we can see that Eq. (2.287) becomes Eq. (2.211). Therefore, the 
generator of time translation Gt is the Hamiltonian operator fi. 

(2.288) 

From Eq. (2.285), we get the .momentum vector 

(2.289) 
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2.5.10 Lorentz invariance 

Since the action is a scalar due to the covariance principle, the action 
as a scalar is invariant under Lorentz transformation (see Eq. (A.20) in 
Appendix A). Under an infinitesimal Lorentz transformation, we have 

(2.290) 

and 

(2.291) 

Under an infinitesimal Lorentz transformation, 8S = 0. According to 
Eq. (2.198), we have the conserved current 

. 8£(x) ( i v>.. ) v>.. 
J~-t(x) = 8(8~-t'ljJ) -48Wv>..O" '1/J(x) - 8JLv8w X>.., (2.292) 

where we have omitted the derivative term containing 8~~,5~~) because it 

is zero. Since 8wv>.. is antisymmetric, the last term in Eq. (2.292) can be 
written as 

8JLv8Wv>.X>.. = ~8wv>..(8JLvX>..- 8~-t>..Xv ). (2.293) 

Thus Eq. (2.292) becomes 

j!L(x) = ~8wv>.. M~-tv>..(x) (2.294) 

with 

8£(x) ( i ) M~-tv>..(x) = 8~-t>..Xv- 8~-tvX>.. + 8(8/L'I/J) -20"v>.. '1/J(x). (2.295) 

The conserved quantity is the antisymmetric tensor 

Mv>.. = J Mov>..d
3
x 

= J d3
x [ BoAXv- BovXA + :(~~~) ( -~""') ,P(x) ]· (2.296) 

Mv>.. is called the tensor of generalized angular momentum. 

M v >.. consists of two parts 

Mv>.. = Lv>.. + Sv>.. (2.297) 

with 

(2.298) 
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and 

Sv>. = J d3
x /)~~1/J (-~<Tv>.) 1/J = ~ J d3

x1j;t<Tv>.1/J (2.299) 

The conservation of the angular momentum reflects the spatial rotation 
invariance. For a spatial rotation, the indices take the values 1, 2, 3 for v 
and >... Since both Lij and Sij are antisymmetric, we can use vectors to 
represent them. We define 

(2.300) 

and 

k 1 . "k s = -E21 S·. - 2 2J• (2.301) 

Lk is called the vector of orbital angular momentum and Sk is called the 
vector of spin angular momentum. Using the vector symbol with compo­
nents Li(Si) = -Li(Si), we have the three-dimensional vectors of orbital 
and spin angular momentum 

L = -i j d3x'lj)x x V'ljJ, (2.302a) 

S = -~ j d3x'ljJt"E'l/J. (2.302b) 

Since 

(2.303) 

we define a spin S = ~ for Dirac fermions 
For scalar bosons, ¢is a scalar and thus 6¢a = 0 under an infinitesimal 

Lorentz transformation. Therefore, there is no spin for scalar bosons or 
equivalently S = 0 for scalar bosons. 

2.5.11 Symmetric energy-momentum tensor 

Noether's theorem leads to conservation law. The density and currents ob­
tained in this way are not fixed uniquely because one can add some four 
dimensional divergence terms without influencing the equation of conti­
nuity. For the canonical energy-momentum tensor GJ.Lv, we can define a 
modified tensor through 

(2.304) 
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where x,..,11v is an arbitrary antisymmetric tensor with respect to the first 
two indices. 

(2.305) 

The conservation law remains unchanged for the transformation 
Eq. (2.304). 

811T11v = 811 8 11v + 8l18""x,..,11v 

- 8118 
1 

8118"" ( ) - 11ll + 2 XK11V - X11KV 

= 811 8 11ll 

= 0. (2.306) 

Also the total energy and momentum are not affected by the transformation 
Eq. (2.304). 

Pv = J d3
xT2 

= J d3
x(8e + 8ox

00
v- 8iX

0
iv)· (2.307) 

Since x,..,11 v is antisymmetric, x00 
v = 0. Also we use Gauss's theorem and 

neglect the surface integral terms. Then we obtain 

(2.308) 

The transformation Eq. (2.304) allows us to construct a symmetric energy­
momentum tensor T11v 

(2.309) 

which can be achieved in the following way. Since 5wv>. is any antisymmetric 
tensor, the equation of continuity Eq. (2.199) can be written as 

811M
11v>. = 0. (2.310) 

M11v>. in Eq. (2.295) can be written as 

M 11v>.(x) = 811>-.xv _ 811vx>. + ~11v>._ (2.311) 

We introduce 

(2.312) 

Since x""I1V is antisymmetric in its fist two indices, r""11V is antisymmetric in 
its last two indices. Thus we have 

(2.313) 
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Then X can be expressed in terms of T. 

1 
xK~LV = _ ( 7 KILI/ + 7~LVK _ 7 vKIL). 

2 

Thus Eq. (2.304) becomes 

1 
TILv(x) = 81Lv(x) + 2.8/'C(TK~Lv + T~LvK- TvK~L). 

Since ~KILl/ is antisymmetric in its last indices, we can set 

Then 

Using Eq. (2.313), we have 

Inserting Eq. (2.311) into Eq. (2.310), we obtain 

Comparing Eq. (2.318) with Eq. (2.319), we have 
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(2.314) 

(2.315) 

(2.316) 

(2.317) 

(2.318) 

(2.319) 

(2.320) 

Thus T~Lv given by Eq. (2.317) is the symmetric energy-momentum tensor. 

2.5.12 Charge conservation 

The Lagrangian density of Eq. (2.204) has an internal symmetry. It is 
invariant under the phase transformations '1/J --+ '1/Jeix and 'ljJ t --+ 'ljJ t e-ix. 
This leads to the conserved current-density j IL in a similar way that leads 
to the charge of complex scalar bosons. 

·e - . 8£ 8£ t - -
1 ~L - -~e( 88~L'l/J '1/J - 88~L'ljJt '1/J ) - e'l/Jr~L'l/J. (2.321) 

We have included a factor e to conform with the ordinary definition of 
electrical current of the Dirac fermion field. e can be considered as a unit 
factor. The conserved quantity is thus the total charge 

Q =I d3xj0 (x, t) = e I d3 x'l/Jt'l/J. (2.322) 
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2.5.13 Solutions of the free Dirac equation 

2.5.13.1 Plane wave expansion 

The Dirac equation is a wave equation. Thus we have the particle-wave 
duality for the Dirac spinor fermions. The solutions of the free Dirac equa­
tion for the field operator (/;(x, t) can be expanded in a complete set of 
plane wave functions. First, we consider the solutions of the classical Dirac 
equation which is the equation obtained by replacing the operators with 
the field functions in Eq. (2.218). The solutions are given by 

?/Ji;)(x,t) = (27r)-~ Ew,(p)e-icr(wpt-p·x). v Wp 
(2.323) 

The index r denotes the four independent solutions. r = 1, 2 correspond 
to the solutions with E, = + 1, while r = 3, 4 correspond to those with 
Er = -1. Inserting the plane wave solutions into the Dirac equation, we 
have 

(2.324) 

which gives 

(2.325) 

where p 11 = (wp, p ). With a special notation if.. = 111 A 11 designed for the 
calculations involving Dirac fermions, Eq. (2.325) can also be expressed as 

(2.326) 

The existence condition of a nontrivial solution to Eq. (2.326) is det(p -
Erm) = 0, which gives 

(2.327) 

Thus we have 

(2.328) 

2.5.13.2 Dirac unit spinors 

w,(p) (r = 1, 2, 3, 4) in Eq. (2.325) are called the Dirac unit spinors. In 
the rest frame of particle, p = 0. Eq. (2.325) becomes 

o ((1 - Er )I 0 ) 
m(1 -Er)w,(O)=m 0 -(1 +E,)J u(O)=O. (2.329) 
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We can express the Dirac four-component spinor Wr in terms of two 
two-component spinors ~and ry. The spinors ~and ry are usually called the 
Pauli spinors. The solution of Eq. (2.329) is given by 

(~~) u(O) = 1 ~ Er 1) · (2.330) 

For r = 1, 2, Er = 1. The solution has the form 

u= (~} (2.331) 

There are two degenerate solutions for ~. We usually choose two indepen­
dent Pauli spinors 

6 = G) and 6 = G), 
which obeys the normalized condition 

~!~s' = 8ss' · 

For r = 3, 4, Er = -1. The solution has the form 

U= (~} 

(2.332) 

(2.333) 

(2.334) 

The two degenerate solutions for ry are usually chosen as the following two 
independent Pauli spinors 

(2.335) 

which obeys the normalized condition 

(2.336) 

~s and Tfs are related conventionally by Tfs = -ia2~s· Then we have four 
unit Dirac spinors in the rest frame 

w1(0) = (!) , w2(0) = (!) , w,(O) = (!) , w4(0) = ( ~1) . (2.337) 

They are also the eigenfunctions of 

(2.338) 
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with the eigenvalues of ±1. 

(2.339) 

For r = 1, 4, the eigenvalue is +1, while for r = 2, 3, it is -1. 
Now we consider the solutions for p =/= 0. For r = 1, 2, Eq. (2.325) has 

the form 

(wp-m)~- u ·pry= 0, 

u · p~- (wp + m)ry = 0. 

The solution of Eq. (2.340) is 

O'·p 
TJ = ~· 

wp+m 

(2.340a) 

(2.340b) 

(2.341) 

Then we obtain the Dirac unit spinors in terms of the Pauli spinors 

Wr (p) = N ( IT ~p ~,) , 
wp+m 

(2.342) 

where N is the normalization factor. Similarly, we have the Dirac unit 
spinors Wr (p) for r = 3, 4 

( 

O'·p ) T/r' 
Wr(P) = N' Wp + m 

T/r' 
(2.343) 

with r' = r - 2. 
With the appropriate choice of the normalization factors, the Dirac unit 

spinors obey the following orthogonality and completeness relations: 

w:, ( tr'P )wr( Er P) = Wp brr', 
m 

Wr' (p )wr (p) = Erbrr', 
4 

L Wra(ErP)w:jJ(ErP) = Wp bajJ, 
r=l m 

4 

L ErWra(P)WrJJ(P) = bajJ· 
r=l 

(2.344a) 

(2.344b) 

(2.344c) 

(2.344d) 

To fullfill Eq. (2.344), the normalization factors should be chosen as 

N=N'=Jwp+m. 
2m 

(2.345) 
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The explicit forms of Eqs. (2.342) and (2.343) are then given by 

where 

( ) _ Jwp +m WlP-
2m 

( ) _ Jwp +m W2 p -
2m 

( ) _ Jwp +m 
W3 p -

2m 

( ) _ Jwp +m 
W4 p -

2m 

1 
0 

Pz 
wp+m 

P+ 
wp+m 

0 
1 

P-
wp+m 

-pz 
wp+m 

P-
wp+m 

Pz 
wp+m 

0 
1 

-pz 
wp+m 

-p+ 
wp+m 

-1 

0 

P± = Px ± iPy· 

They can also be expressed in a compact form 

Er'/J+m 
Wr(P) = V

2 
( ) Wr(O). 

mwp+m 
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(2.346) 

(2.347) 

(2.348) 

(2.349) 

(2.350) 

(2.351) 

One can easily check that Eq. (2.344) guarantees the correct normaliza-
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tion to delta function 

(2.352) 

where E; = 1 is used. 

2.5.13.3 Plane-wave expansion of field operators 

Since Er = 1 in 1);};) (x, t) for r = 1, 2 and Er = -1 for r = 3, 4, in compar­

ison with Eq. (2.126), 1);};) (x, t) for r = 1, 2 correspond to the expansion 

functions for annihilation operators while 1);};) (x, t) for r = 3, 4 correspond 
to the expansion functions for creation operators. We form the plane-wave 
expansion of the field operators by 

4 

+ 2: Jt (p, r )wr (p )e-iErp·x J. (2.353) 
r=3 

b and bt are the operators for particles. d and dt are the operators for 
antiparticles. The names of particles and antiparticles are just the conven­
tion. We have two kinds of particles and we need two names to distinguish 
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them. The hermitian conjugate field operator is given by 

,Z,l(x,t) = J d3p [t,iJt(p,r),pi;ll(x,t) + t,d(p,r),pi;lt(x,t)] 

= J d3p3 f"!!i["t,bt(p,r)wr(P)roeiErp·x 
(27r)2Vwp r=l 

2 

+ L d(p, r )wr (p )'Yo eiErp·x J . (2.354) 
r=l 

2.5.13.4 Creation and annihilation operators in p-space 

We can invert the expansion by projecting on a plane wave using Eq. (2.352) 

J d3xV;};H (x, t)~(x, t) 
2 4 

= J d3p'[L b(p',r') + L dt(p',r')] J d3xV;};H(x,t)V;t')(x,t) 
r'=l r'=3 

2 4 

= J d3p'[L b(p',r') + L Jt(p',r')]8rr'83 (p- p') 
r'=l r'=3 

or 

= { Ab(p, r) for r = 1, 2 
dt (p, r) for r = 3, 4 

Similarly we get 

for r = 1, 2 

for r = 3, 4 

(2.355) 

(2.356) 

(2.357) 
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Then the commutation relation of b and bt is given by 

{b(p, r ), bt (p1
, r1

)} 

= J d3x J d3x1~i;'dt(x,t)~t6(x1 ,t){~a(x,t),~b(x1 ,t)} 

= J d3x~i;'2t (x, t)~t6 (x, t)8af3 

= 8rr'83 (p- p 1
). (2.358) 

Also we have 

Similarly, other anti-commutation relations can be deduced. 
A A I I At At I I {b(p,r),b(p ,r)} = {b (p,r),b (p ,r)} = 0, 

{ d(p, r), d(p1
, r1

)} = { Jt (p, r), Jt (p1
, r1

)} = 0. 

2.5.14 Hamiltonian operator in p-space 

(2.359) 

(2.360a) 

(2.360b) 

We can express the Hamiltonian operator by b, bt, d and Jt. From 
Eq. (2.287), we get 

fi = J d3x~t (x, t)( -in· V + j3m)~(x, t) 

= J d3p J d3p1 
[ 2:= bt (p1

, r1)b(p, r) J d3x~t')t (-in· V + j3m)~i,r) 
rr'=1,2 

+ 2:= d(p1
, r1)dt (p, r) J d3x~t')t (-in· V + j3m)~i,r) J 

rr 1=3,4 

= J d3p J d3p1 
[ 2:= bt (p1

, r1)b(p, r )ErWp J d3x~t')t (x)~i;') (x) 
rr'=1,2 

+ 2:= d(p1,r1)dt(p,r)ErWp J d3x~t')t(x)~i,r)(x)] 
rr'=3,4 

= J d3p( 2:= wpbt(p,r)b(p,r)- 2:= wpd(p,r)dt(p,r)). (2.361) 
r=1,2 r=3,4 

In the derivation of Eq. (2.361), we have used Eq. (2.324), which can be 
rewritten as 

(2.362) 

The terms involving Lr=l,2 Lr'=3,4 do not contribute due to 8rr' in 
Eq. (2.352). 
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2.5.15 Vacuum state 

To make Hamiltonian operator a positive-definite, we use the anti­
commutator Eq. (2.359) and get 

2 4 

fi = J d3p[Lwpbt(p,r)b(p,r)- L:wp(83 (0)- dt(p,r)d(p,r))J 
r=l r=3 

2 4 

= J d3p[Lwpbt(p,r)b(p,r) + L:wpdt(p,r)d(p,r)J +Eo, (2.363) 
r=l r=3 

where 

4 J d3 4 _ 3 /3"'"' x/3"'"' Eo= -8 (0) d p ~wp =- (21r)3 d p ~wp. (2.364) 

Eo is the energy of vacuum, which is unobservable and can be subtracted 
from the Hamiltonian. The physical vacuum is defined to be the state which 
contains neither particles nor antiparticles 

b(p,r)IO)=O, 

d(p, r)IO) = o, 
for r = 1, 2, 

for r = 3, 4. 

For the momentum operator, we have 

P = -i j d3x,j;l(x)V,j;(x) 

= L J d3pp(bt(p,s)b(p,s) +dt(p,s)d(p,s)), 
8 

(2.365a) 

(2.365b) 

(2.366) 

which means that each particle created by z;t (p, s) or antiparticle created 
by dt (p, s) carries a momentum p. 

2.5.16 Spin state 

We consider the operator 1 5 7ft, where n is an arbitrary space-like unit vector 
(nf-lnf-l = -1) being orthogonal to the four-momentum vector p, i.e. 

(2.367) 

In the rest frame, p = 0. Eq. (2.367) gives n° = 0. Then n · n = + 1. 
We take the z-axis of the rest frame to be in the n direction. Thus nf-l = 
(0, 0, 0, 1). In the standard representation of the 1 matrices, we have 

5 5 3 (a3 
0 ) I rft = I I = O -a3 · (2.368) 
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The meaning of Eq. (2.368) is that the spin z direction assigned to the n 
direction. Using Eq. (2.368), we have 

5,J (O) = { Wr(O) r 'l~wr -wr(O) 
r = 1,3 
r = 2,4 · 

(2.369) 

Since r5 rft is a pseudo scalar, which is Lorentz covariant, Eq. (2.369) should 
hold in any frame. We have 

r = 1,3 
r = 2,4 · 

When the momentum p =/=- 0, we can choose n as 

= (1£1 Wp R_) 
n ' I I . m m p 

Using(!· p) 2 = -p2
, we have 

In the derivation of Eq. (2.372), we have used the relation 

E = ( ~ ~) = 7
5 
7° -y. 

According to Eq. (2.326), we have 

Comparing with Eq. (2.370), we have 

r = 1,4 
r = 2,3 · 

(2.370) 

(2.371) 

(2.372) 

(2.373) 

(2.37 4) 

(2.375) 
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Using Eq. (2.375), we can evaluate the operator of the spin projection in 
the direction of motion. 

A p - 1 J 3 At p A 
S · TPl - 2 d x'lj; (x, t)~ · TPI'lj;(x, t) 

= ~ J d3
p:: [ "~' bl(p,r')b(p,r)w:,(p)~ · l:lwr(P) 

r 1 =1.2 

+ "~' d(p,r')dl(p,r)w~,(p)~ · l:lwr(P)] 
r 1 =3.4 

= ~ J d3p[bt(p, 1)b(p, 1)- bt(p, 2)b(p, 2) 

- d(p, 3)dt (p, 3) + d(p, 4)dt (p, 4)] 

= ~ J d3p[bt (p, 1 )b(p, 1) - bt (p, 2)b(p, 2) 

+ Jt (p, 3)d(p, 3) - Jt (p, 4)d(p, 4)] + S0 , (2.376) 

where So is the total spin of vacuum and can be subtracted. Eq. (2.376) 
shows that r = 1, 3 gives positive sign for spin and r = 2, 4 gives negative 
sign. 

To make consistency with the notation using spin s, we introduce a set 
of new operators 

b(p, s) = b(p, 1), 

b(p, -s) = b(p, 2), 

Jt(p,s) = Jt(p,3), 

Jt (p, -s) = Jt (p, 4). 

We also introduce u(p, s) and v(p, s) for the unit Dirac spinors 

u(p, s) = w1(p), 

u(p, -s) = w2(p), 

v(p, s) = w3(p), 

v(p, -s) = w4(p). 

(2.377a) 

(2.377b) 

(2.377c) 

(2.377d) 

(2.378a) 

(2.378b) 

(2.378c) 

(2.378d) 

In the new notation, the anti-commutation relations are given by 

A At f f - 3 f {b(p, s), b (p, S)}- 6ss'{J (p- P ), 
A At f f - 3 f {d(p, s), d (p, S)}- 6ss'{J (p- P ). 

(2.379a) 

(2.379b) 
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The solutions for the field operators become 

A I d3p 0i 
'1/J(x, t) = ~ (27r)~ V Wp 

[b(p, s )u(p, s )e-ip·x + dt (p, s )v(p, s )eip·x]. (2.380) 

and 

?j)(x,t)=L/ d
3

p 3 ~ 
s (27r)2 v Wp 

[bt (p, s )u(p, s )'leip·x + d(p, s )v(p, s )'·le-ip·x]. (2.381) 

The unit spinors satisfy the following free Dirac equations 

(p- m)u(p, s) = 0, (p + m)v(p, s) = 0 

and 

u(p, s)(p- m) = 0, v(p, s)(p + m) = 0, 

where p = pf-Lrw 

2.5.17 Helicity 

In terms of u and v, Eq. (2.375) takes the form 

p 
:E ·IPiu(p, s) = su(p, s), 

p 
:E ·IPiv(p, s) = -sv(p, s ). 

(2.382) 

(2.383) 

(2.384a) 

(2.384b) 

with s = ±1. We call ~ :E · &! the helicity operator for a spin ~ particle. 
Eq. ( 2. 384) shows that u (p, s) and v (p, s) are the eigenstates of the helicity 
operator. The eigenvalues of the helicity operator are ±~. 

The eigenstates with the positive ( h = + ~) helicity are called the right­
handed states and those with the negative ( h = - ~) helicity are called 
the left-handed states. When the spin is oriented opposite to the direc­
tion of momentum, we get the opposite helicity. Thus u(p, 1) and v(p, -1) 
(or equivalently u( -p, -1) and v( -p, 1)) are right-handed states, while 
u(p,-1) and v(p,1) (or equivalently u(-p,1) and v(-p,-1)) are left­
handed states. 

2.5.18 Chirality 

r5 is called the chirality operator. Since (r5 ) 2 = 1, the eigenvalues of 1 5 

are ±1. The eigenstate of r5 with eigenvalue of+ 1 is said to have a positive 
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chirality (right-handed) and that with eigenvalue of -1 is said to have a 
negative chirality (left-handed). 

Since "(5 [(1 +"!5)?/J] = (1 +'Y5)?j; and "(5 [(1-"(5)?/J] = -(1-"(5)?/J, (1 ±"f5)?j; 
are the eigenstates of "(5 . We denote 

1 5 
?/JR = 2(1 + "( )?j;, (2.385a) 

1 ~ 
?/JL = 2(1 - 'Y<>)?j;. (2.385b) 

The Dirac spinor ?jJ can be decomposed into the left-hand field ?/JL = ~(1-
"(5) ?jJ and the right-hand field ?jJ R = ~ ( 1 + "(5

) ?jJ. '1/J L and '1/J R are called the 
Weyl spinors. 

2.5.19 Spin statistics relation 

It should be noted that if we use the commutation relations for bosons, 
through the similar deduction for Eq. (2.359), the commutation relation 
ford and Jt becomes [d(p, r), Jt (p', r')] = -brr'63 (p- p'), which gives a 
wrong sign. It seems that one can change d into creation operator and Jt 
into annihilation operator to eliminate the wrong sign problems. However, 
it would make ~ contain only annihilation operators and ~ t contains only 
creation operators which contradicts with the definition of~ and ~t given 
by Eqs. (2.62) and (2.63). Thus spinor particles can only be fermions. 

There are also the positive-definite problem for the Hamiltonian opera­
tor if we use the commutation relations for bosons. Hamiltonian 

fi = L I d3pwp[bt(p,s)b(p,s) -dt(p,s)d(p,s)] 
s 

(2.386) 

can not be transformed into a positive-definite operator by reordering d 
and Jt, which is unphysical in some sense. 

2.5.20 Charge of spinor particles and antiparticles 

From Eq. (2.209), we can see that both spinor particles and antiparticles 
are composite. We will show that they carry the opposite charge. 

The charge of the particles and antiparticles can be calculated using 
Eq. (2.322). The conserved charge is given by 

Q =I d3xj
0
(x) = e I d3

x?j;t ?j;. (2.387) 
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Inserting Eqs. (2.380) and (2.382) into Eq. (2.387), we have 

with 

I 
3 I d3p' I d3p flf2 Q-e dxLL -- -- ---

-
8 8

, (27r) ~ (27r) ~ WpWp' 

x [bt (p', s')ut (p', s')eip'·x + d(p', s')vt (p', s')e-ip'·x] 

x [b(p, s )u(p, s )e-ip·x + Jt (p, s )v(p, s )eip·x] 

= eLL I d3p "; [ht (p, s')b(p, s )u t (p, s')u(p, s) 
s s' p 

+ d(p, s')dt (p, s )v t (p, s')v(p, s) 

+ ht ( -p, s')dt (p, s )u t ( -p, s')v(p, s )e2iwpt 

+ d( -p, s')b(p, s )v t ( -p, s')u(p, s )e-2iwpt] 

=eLI d3p[bt(p,s)b(p,s) +d(p,s)dt(p,s)] 
s 

=eLI d3p[bt (p, s)b(p, s)- Jt (p, s)d(p, s)] + Q0 

s 

(2.388) 

(2.389) 

Q0 is the charge of vacuum, which is not observable. Eq. (2.388) shows that 
a spinor particle carries a charge of +e and a spinor antiparticle a charge 
of -e. Their charge are opposite. 

2.5.21 Representation in terms of the Weyl spinors 

We have seen that the Dirac spinor field 1/J with four internal variables can 
be decomposed into two fields with two internal variables, the left hand field 
1/JL = 1/2(1 - 1 5 )1/; and the right hand field 1/JR = 1/2(1 + 1 5 )1/;. We have 
1/J = 1/JL + 1/JR· Using the Weyl spinors, the kinetic term in the Lagrangian 
density Eq. (2.204) can be expressed as 

(2.390) 

If we consider only the kinetic term and do not include the mass term which 
is similar to the interaction term, the Lagrangian density Eq. (2.204) can be 
expressed as a summation of the terms, having the same form as that using 
Dirac spinor field functions, contributed by the two types of independent 
Weyl spinor field functions 1/JL and '1/JR· All the derivations for Dirac spinor 
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fields can thus be similarly applied to the Weyl spinor fields. Using the 
Weyl spinor fields, the mass term in the Lagrangian density Eq. (2.204) 
can be expressed as 

(2.391) 

The mass term describes the interaction between the left hand field '1/JL 
and the right hand field '1/J R. Therefore, the mass term should also be 
considered as the interaction term. The Weyl spinor fermions are the more 
basic particle units. The Dirac spinors have the order N = 4. The spinors 
with the order N > 4 can be consider just as the composite of the Weyl 
spinors or Dirac spinors. 

2.6 Vector bosons 

Now we consider the vector fields. First we turn to the massive vector field, 
which is simpler than the massless vector field. 

2.6.1 Massive vector bosons 

2.6.1.1 Lagrangian 

There is a possibility of constructing covariant Lagrangian defined in 
Eq. (2.107) by using vector field. The only possible covariant Lagrangian 
density for massive vector fields without interaction term is given by 

(2.392) 

where A11 is a vector function in spacetime. 

(2.393) 

Other forms such as 

(2.394) 

is equivalent to the Lagrangian density in Eq. (2.392) because it can be 
shown that 811 AJ.L = 0 (Eq. (2.416)) for the field described by the Lagrangian 
Eq. (2.392). We add a term -~(811 A11) 2 to the Lagrangian in Eq. (2.392). 
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The Lagrangian density in Eq. (2.392) becomes 

1 1/ 1 2 1 2 
.C = - 4 F~-tvF~-t - 2 (a~-tA1-L) + 2m AJ-LA~-t 

=_!a A a~-tAv +!a A av A~-t- !a A~-ta Av + !m2 A A~-t 2 J-t 1/ 2 J-t 1/ 2 J-t 1/ 2 J-t 

=_!a A 81-L Av +!a [A (av A~-t)- (8 Av)A~-t] + !m2 A A~-t 2 J-t 1/ 2 J-t 1/ 1/ 2 J-t 

=_!a A a~-t Av + !m2 A A~-t (2.395) 2 J-t 1/ 2 J-t 

In the derivation of the last line of Eq. (2.395), we have omitted the term 
~aJ-t[Av(av A~-L)-(avAv)A~-t] because it is a four-divergence and does not con­
tribute to the action integral. Thus the Lagrangian density in Eq. (2.394) is 
equivalent to the Lagrangian density in Eq. (2.392). One may put a factor 
f(AJ-LAJ-t) before FJ-tvp~-tv. But this factor can be merged into the metric 
9~-tv when we use the curved spacetime. 

2.6.1.2 The generator of time translation 

We will show that the Lagrangian density Eq. (2.392) is related to the 
following generator of time translation Gt 

which does not contain the time derivative term and thus satisfies the 
causality principle. ¢ in Eq. (2.396) is a vector operator in three­
dimensional space. It should be noted that¢ can not be a four-dimensional 
vector in spacetime because there is no A0 term in the Lagrangian density 
Eq. (2.392). Thus we consider the case of¢ as a vector in three-dimensional 
space and construct a four-dimensional vector A~-t in the following way. 

First we define a vector E which satisfies the following equation 

. 1 
4> = -E + -

2 
V(V ·E). 

m 
(2.397) 

We then introduce the four-dimensional vector 

(2.398) 

with 

0 1 A =--
2
V·E. 

m 
(2.399) 
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We have changed the notation¢ to A in Eq. (2.398) because the vector field 
describes the photon field when mass term is zero and A is the notation we 
usually used. Using notation A, we write Gt as 

G, = j d3x~ [1r2 + (V x A?+ m2 A 2 + ~2 (V · 1r)2
]. (2.400) 

In terms of A, Eq. (2.397) has the form 

. 1 
A=-E+-2 V(V·E). 

m 
(2.401) 

2.6.1.3 Deriving the Lagrangian from Gt 

Now we prove that Gt in Eq. (2.396) leads to the Lagrangian given by 
Eq. (2.392). We have three internal variables for the field operators, The 
commutators for the vector boson field are 

[¢i(x, t), frj(x', t)] = i8ij83 (x- x'), 

[¢i(x,t),¢j(x',t)] = [fri(x,t),frj(x',t)] = 0. 

(2.402a) 

(2.402b) 

We have used the commutation relations for bosons. If we use the anti­
commutation relations for fermions, similar to the scalar field, we can show 
[¢i, Gt] = 0. Then we can not obtain an equation of motion from Gt. Thus 
the vector fields can only be boson fields. 

We will show that after carrying out the integration over 1r, we can get 
a covariant Lagrangian. From Eq. (2.401), we have 

E = - V Ao - BoA. 

We also define 

B =V X A. 

We can express Lagrangian density £ in terms of E and B 

£ = ~(E2- B2) + ~m2(A6- A2). 

(2.403) 

(2.404) 

(2.405) 

Inserting Gt into Eq. (2.107) and integrating over 1r using the Gaussian 
integration formula, we have for L 

J 4 ( 1 . 1 2 1 2 2) L = d x - 2E ·A- 2B - 2m A 

J 4 [ 1 ( 1 2 1 2 2] = dx - 2E. -E-VA0)- 2B - 2mA 

= dx -E·VA0 +-E --B --mA J 4 ( 1 1 2 1 2 1 2 2) 
2 2 2 2 . (2.406) 
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In the derivation of the first line of Eq. (2.406), we have used Eq. (2.401). 
Using 

E · VAo = V · (EAo)- Ao(V ·E)= V · (EAo) + m2 A6, (2.407) 

we have 

The divergence term V · (EA0 ) has been dropped out because it yields 
only surface contribution. Therefore, Gt given by Eq. (2.400) leads to the 
Lagrangian density[, in Eq. (2.392). 

2.6.1.4 The equations of motion 

Using the generator of time translation Gt given by Eq. (2.396), we can 
obtain the equations of motion. Using Eq. (2.81) and V x V x A = 
V(V ·A)- \72 A, we have 

aA. A A ( 1 ) iat = [A, Gt] = i fr- m 2 \7(\7 · fr) , (2.409a) 

air A 2 A A 2 A 

i7ft = [ir, Gt] = i(\7 A- \7(\7 ·A)- m A). (2.409b) 

Comparing Eq. (2.409a) with Eq. (2.401), we can see that 1r =-E. 
We can define a four-dimensional vector 1r11 = (0, -Ei)· Then 7rf1 = 

(0, Ei). The four dimensional vector 1rf1 = (0, Ei) is the one used in the 
ordinary field theory on the vector field. 

2.6.1.5 Hamiltonian 

Now we consider the energy density 

o a£ . 
1l = 80 = aa

0
A

11 
A 11 - [, 

= -F0f1 A + !p F 11v- !m2 A A11 
f1 4 f.LV 2 f1 

= -E ·A- !(E2
- B2

)- !m2 (A6- A2
). 

2 2 
(2.410) 
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We have used the following formula in the derivation. 

~=_pOi= Ei (2.411) 
88oAi · 

Using E = -\7 Ao- 8oA and Eq. (2.407), we have 

1( 2 2 2 2 1 2 2 1-l = - E · (-E - V A0 ) + 2 - E + B + m A ) - 2m A0 

1 
= 2(E2 + B 2 + m2 A2 + m2 A6) + V · (EAo). (2.412) 

Dropping out the divergence term because it yields only surface contribu­
tion, we have 

H = 1 d3x~ [E
2 + (V x A)

2 + m2 
A

2 + ~2 (V · E) 2
]. (2.413) 

Comparing Eq. (2.413) with Eq. (2.400), we can see 

G, = H = 1 d3x~ [E2 + (V x A)2 + m2A 2 + ~2 (V · E)2
]. (2.414) 

Applying V· on both sides of Eq. (2.409b), we have 

(2.415) 

which gives 

(2.416) 

2.6.1.6 Fourier decomposition solution 

The equations of motion for vector bosons form a wave equation. Thus we 
have the particle-wave duality for vector bosons. We can use the following 
plane wave basis to expand the solutions of the equations of motion. 

AJ-L(k, -\; x) = Nke-i(wkt-k-x)EJ-L(k, -\) (2.417) 

with 
1 

Nk = ---;:::======= 
J2wk(27r) 3 

(2.418) 

where k is the wave vector and Wk = Vk2 + m2 . The four dimensional 
vector is defined as k = (wk, k). EJ-L(k, ,\) denotes a set of four-dimensional 
polarization vectors that plays a similar role as the unit spinors u and v in 
the plane-wave decomposition of the spinor field. In the four polarization 
vector EJ-L, there are three space-like and one time-like ones. It is general to 
define the polarization vectors with respect to the direction of wave vector 
k. 
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2. 6 .1. 7 The polarization vectors 

Without losing generality, we demand that the polarization vectors are 
orthonormal, satisfying 

We select two space-like transverse polarization vectors 

with the condition 

and 

E(k, 1) = (0, e(k, 1)), 

E(k, 2) = (0, e(k, 2)) 

E (k, 1) · k = E (k, 2) · k = 0 

e(k, i) · e(k,j) = 8ij· 

(2.419) 

(2.420a) 

(2.420b) 

(2.421) 

(2.422) 

We choose the third polarization vector A = 3 to be in parallel to the 
direction of the wave vector k. To specify the zero component of E(k, 3), we 
impose the condition that the four-vector E(k, 3) is orthogonal to the wave 
four-vector k, 

(2.423) 

The components of this longitudinal polarization vector is given by 

(k 3) = ( ~ ~ ko ) 
E ' m' lkl m. (2.424) 

For the fourth time-like polarization vector with index A = 0, we can use 
the vector k to construct it 

1 
E(k, 0) = -k. 

m 
(2.425) 

Apparently, E(k, 0) is orthogonal to the other three space-like polariza­
tion vectors E(k, i). The completeness relation for the polarization vectors 
is given by 

3 

L TJ>-.>-.Ef.L(k, A)Ev(k, A)= TJf.Lv·· (2.426) 
>-.=0 

Eq. (2.426) is a tensor equation. Thus we need only show that Eq. (2.426) 
holds in the rest frame because a transformation would generalize it to any 
frames. 
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In the rest frame of the particles, the only nonzero component of k~-L is 
the time component. Only EJ-L(k, .-\) with,\= 0 has a time-like component. 
Thus 

t TJ>..>..EJ-L(k, A)Ev(k, ,\) = (~) (~) - t (~) (~) . (2.427) 
A=O 1-L v l=l l J-L l v 

(i) If M = 0 and v = 0, the right hand of Eq. (2.427) is equal to + 1. (ii) 
If M = 0 and v = i(or M = i and v = 0), the right hand of Eq. (2.427) 
is zero. (iii) If both indices are spatial(M = i and v = j), the right hand 
of Eq. (2.427) becomes - 2:[=1 Ei(k, l)Ej(k, l). The ordinary completeness 
relation for a orthogonal basis in three dimensional space gives 

3 

L Ei(k, l)Ej(k, l) = 8ij· (2.428) 
l=l 

In summary of the results in (i), (ii), (iii), Eq. (2.426) holds for all M and v. 
For the three physical polarization states, the completeness relation con­

tains an extra term and reads 

(2.429) 

Using the basis functions A~-L(k, .-\; x), the field operator Al-L can be 
expanded as 

3 

A~-L(x) =I d3 k L:rakzA~-L(k, l; x) + aLzAJ-L*(k, l; x)] 
l=l 

=I d
3
k ~[iikzEI-L(k l)e-ik·x +at EJ-L*(k l)eik·x]. (2.430) 

vf2wk(27r)3 ~ ' kl ' 

A~-L(x) constructed by Eq. (2.430) is hermitian, which corresponds to a 
real-valued field. If one wants to describe a vector field containing multi­
components with internal symmetry such as charged vector field, we need 
to replace it by the expansion 

3 

A~-L(x) =I d3k L[akzA~-L(k, l; x) + hLzA~-L*(k, l; x)], 
l=l 

(2.431) 

where the operators iikz and bLz describe particles and antiparticles, respec­
tively. In the following, we will concentrate on the neutral field described 
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by Eq. (2.430). The treatment can be easily applied to the charge field 
described by Eq. (2.431). The operators as three-dimensional vectors for 
the vector bosons have the following expansion: 

A J d
3 
k L3 

"k t "k A(x) = E(k l)(a e-~ ·X+ a e~ ·X) 
yf2wk(27r)3 l=l ' kl kl ' 

(2.432) 

where E(k, l) are the polarization vectors described by the spatial part of 
Eqs. (2.420), (2.421) and (2.424). the corresponding canonical conjugate 
field fr is given by 

(2.433) 

where €(k, l) is the modified polarization vectors given by 

(2.434) 

The relation 

k · f. ( k, l) = Wk f.O - k · E = 0. (2.435) 

has been used in the above derivation. Eq. (2.435) is called the transver­
sality condition. 

2.6.1.8 Commutation relations 

Now let us derive the commutation relations of akz and a~z· We define a 
scalar product of A(x) by 

(A(x),A'(x)) = i j d3xAtt*(x)1§6A~(x), (2.436) 

where 

A1§6A' = A(8oA')- (8oA)A'. (2.437) 



Quantum Fields 73 

The scalar product of two plane wave components is given by 

(A(k',l'),A(k,l)) = ifd3x E11(k',l') EJ-L(k,l) eik'·x'86e-ik·x 
J2wk'(2?T) 3 J2wk(2?T)3 

= 83 (k'- k)E11 (k, l1)E11 (k, l) 

= 83(k'- k)7Jll'. (2.438) 

Similarly, we have 

(A*(k', l'), A*(k, l)) = -83(k'- k)7Jzl', (2.439) 

and 

(A(k', l'), A*(k, l)) = (A*(k', l'), A(k, l)) = 0. (2.440) 

Using the above relations and 7Jll = -1, we can project out the annihi­
lation and creation operators 

akl = (A(k, l), A(x)) = -i J d3xA11* (k, l) 86 A/1 (x) (2.441) 

and 

a~l = (A* (k, l), A(x)) = i J d3xA11 (k, l) 86 A/1 (x ). (2.442) 

Inserting the plane wave, we get 

akz = -i j d3x[A"'(k,l)8oA"(x)- 80A"'(k,l)A"(x)] 

J ~X "k A A = -i E11 (k, l)e~ ·x[80 A11 (x)- iwkA11 (x)]. 
vf2wk(27r)3 (2.443) 

We should express the expansion in terms of the three-dimensional field 
operators A and -ft: 

A • j d
3

X ik·x 
akz = -z J2wk(27r)3 e 

0 A A 0 A A 

x (E 80 A0 - E · 8oA- iwkE Ao + iwkE ·A). (2.444) 

Using 8A0 = - V ·A and -80 A = --ft + V Ao, Eq. (2.444) becomes 

A • J d
3

X ik·x 
akz = -z J2wk(27r)3 e 

0 A A 0 A A 

x ( -E V ·A- E · 7r + E · VAo- iwkE Ao + iwkE ·A). (2.445) 

Then we integrate Eq. (2.445) by parts, which gives -E0V ·A---+ -iE0k ·A. 
Since k · E = 0, we have 

A 0 A 0 A 

E · V A0 - iwkE A0 ---+ (iE · k- iwkE )Ao = 0. (2.446) 
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Thus the expansion components of the field operators become 

A I d3x ik·x[( ok) AA . A] akl = e WkE- E • + ZE · 7r 
y'2wk (27r )3 

I d3 x .k A 

= e~ ·x[wkE(k, l) · A(x) + iE(k, l) · ir(x)]. 
y'2wk(21r)3 (2.44 7) 

Similarly we have 

t I d3x .k A 

akl = e-~ ·X [wkE(k, l) . A(x) - iE(k, l) . ir(x )]. (2.448) 
y'2wk(27r )3 

Now we can derive the commutation relations of akz and atz 
immediately, 

A At I d3x' d3x ik'·x' -ik·x 

[ak'Z', akzl = y'2wk'(27r)3 y'2wk(27r)3 e e 

x (wk'E' ·A'+ iE1 
• ir', WkE ·A- iE ·it) 

= I d3x 1 ei(wk•-wk)t-i(k'-k)·x(wk'E'. E + WkE'. E) 
2(27r )3 )wk'wk 

= ~ [E(k, l') . E(k, l) + E(k, l') . E(k, l)]83(k'- k), (2.449) 

where Eq. (2.402) has been used in the derivation of Eq. (2.449). The 
vectors E and E satisfy the following orthogonality relation: 

E(k, l') · E(k, l) = E(k, l') · E(k, l) - ~c0 (k, l')k · E(k, l) 
Wk 

= E(k, l') · E(k, l) - c0 (k, l')c0 (k, l) 

= -E(k, l') · c(k, l) = -rtz'z = 8z'Z· (2.450) 

Thus we obtain 

(2.451) 

Other commutation relations can be derived similarly, we have 

(2.452) 

2.6.1.9 Hamiltonian operator in k space 

We can express the Hamiltonian operator in terms of akz and atz· The 
Hamiltonian operator is given by 

if= I d3x~ [ 1i"
2 + m 2 A+ (V x A)2 + ~2 (V ·1i") 2

] • {2.453) 
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The normal ordered form should be used in Eq. (2.453) to eliminate the 
possible divergent vacuum contribution. Inserting the expansion for A and 
fr, we obtain an expression of ii in terms of akl and aLz· The expression of 
ii contains various factor combination of akl and aL1• As an example, we 
consider the terms containing at a, which are given by 

1 Jd3 ""/ d3k' d3k i(k'-k)•xAt A 

- x L......t e ak'l'akz 
2 ll' J2wk'(27r) 3 yl2wk(27r)3 

X [wk'Wki' · E + (k' X E
1

) • (k X E)+ m 2
E

1 
• E + ~Wk1 Wk(k' · i')(k · €)] 

m 

3 

1 ""J d3k At A = 2 L......t wkakzakl· 
1=1 

(2.456) 

In the derivation of the second line ofEq. (2.456), we have used Eqs. (2.434) 
and (2.435). The terms contains aat gives the same result as that in 
Eq. (2.456). Similarly we can calculate the terms containing aa and atat. 
Both of them vanish. Thus we have 

3 

fi ='E. J d3
kwk&t1akl· 

l=l 

(2.457) 

For the momentum vector, we have 

pi = J d3 xT0
' = - J d3 x8° A" 8' A,. (2.458) 
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Similarly, in terms of akl and aLz' the momentum operator p is given by 

3 

P = L j d3 kkaLzakz· 
l=l 

(2.459) 

The quanta for the vector bosons carry energy Wk and the momentum k. 
Thus we also call k as the momentum of the vector bosons. 

2.6.1.10 The spin operator 

Now we discuss the angular momentum tensor for vector bosons. The action 
is Lorentz invariant because it is a scalar. Under an infinitesimal Lorentz 
transformation, 

(2.460) 

The transformation of a four vector AJ.L is given by 

(2.461) 

We can also use the general form of an infinitesimal Lorentz transformation 
given by 

A'J.L(x') = A~-L(x) + ~8Waf1(r:~f1tv Av(x). (2.462) 

Comparing Eq. (2.461) with Eq. (2.462), we have 

&wa~ [~w~t" -1)0~1)~"] = o. (2.463) 

Since 8waf1 is antisymmetric, we can choose (Iaf1tv to be antisymmetric 
for a and (3, i.e. (Iaf1)J.Lv = -(Jf1atv because the symmetric part cancelled 
out after contraction with the antisymmetric 8waf1· Thus the solution of 
Eq. (2.463) gives 

(Iaf3)J.LV = rJaJ.Lr-/v _ T}av T}f1J.L. (2.464) 

According to Eq. ( 2.198), we have the conserved current 

. ( ) _ 8£(x) A (Jaf1)>..vA ( ) _ A v>.. 
JJ.LX -a(aJ.LAA)uWaf1 vX -81-LvuW X)... (2.465) 

Similar to Eq. (2.294), Eq. (2.465) becomes 

jJ.L(x) = ~8wv>.. MJ.Lv>..(x) (2.466) 
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with 

a L (X) ( ) U/ ( ) 
M,_w>-. (x) = 8 J-LAXv - 8 J-LvX>-. + B( BJ-L Au) lv>-. A1 X 

= 81-L>-.Xv- 81-LvX).. + FJ-Lu(TJv (7 TJ>-. I- T/v 'TJ>-. (J')A,(x). (2.467) 

Thus, similar to the derivation of Eq. (2.297), we have the spin matrix of 
the vector boson field. 

Sij = f d3x(FojAi- FoiAj)· (2.468) 

We can use a vector to represent it. We define 

k 1 . 'k s = -f.t] s. - 2 tJ• (2.469) 

Using the vector symbol, we have 

S = j d3xE x A. (2.470) 

2.6.1.11 Spin 1 

In the following, we show that the vector boson field is a spin 1 field. 
According to Eq. (2.470), the spin operator of vector bosons has the form 

S = j d3x : E x A: . (2.471) 

Inserting Eqs. (2.432) and (2.433) into Eq. (2.471), we have 

S=jd3xj d3 k' j d3k t(-iwk')e(k',l')xE(k,l) 
J2wk' (21T )3 yf2wk(27r) 3 

ll'=l 

: ( ak'l'e-ik'·x- at,z,eik'·x) ( akze-ik·x + a~zeik·x) : 

. f 3 = ~ d3 k L [e(k, l') x E(k, l)(a~zakz' - a~z,akz) 
ll'=l 

+ E( -k, l') X E(k, l)( -fL-kzfLkl'e-2iwkt + fL~kl'fL~ze2iwkt)]. (2.472) 

We define the helicity operator 
A A k 
A= S · Tkf' (2.4 73) 

which gives the projection of the spin in the direction of wave vector. Using 
Eq. (2.472), Eq. (2.473) becomes 

A= ~ J d3 k f. 1 ~ 1 · [<'(k, Z') x E(k, Z)J (at,ak,, - aL,ak,)· (2.474) 
ll'=l 
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In Eq. (2.474), the summation does not contain the longitudinal polar­
ization term (l = 3) because €(k, 3) and e(k, 3) is parallel to k. For the 
transverse polarizations (l = 1, 2), €(k, l) = e(k, l). Since the terms with 
a-kl'akl and a~kl'a~1 in Eq. (2.472) change their signs when we exchange 
the labels l f--t l' and k f--t - k, they vanish. Thus only the terms containing 

a~zakl' (l, l' = 1, 2) remain. 
We choose the unit vectors e(k, 1) and e(k, 2) in such a way that the 

unit vectors e(k, 1), e(k, 2) and ek = 1 ~ 1 form a right-handed orthogonal 
basis. Thus Eq. (2.474) becomes 

A= i J d3k(a~2akl- a~1 ak2)· (2.475) 

To diagonalize the operator A, we introduce a new set of operators 

A 1 (A •A ) 
ak+ = v'2 ak1 - zak2 , 

1 
ak- = v'2(akl + iak2), 

aka= ak3· 

The inverted relations are 

(2.4 76a) 

(2.476b) 

(2.4 76c) 

(2.4 77a) 

(2.477b) 

(2.477c) 

The operators ak+, ak-, aka and their hermitian conjugate operators satisfy 
the commutation relations. 

(2.4 78) 

and all the other commutation relations are zero. Thus ak+, ak- and aka 
are the annihilation operators, while a~+' a~_ and a~a are the creation 
operators. 

The Hamiltonian operator and momentum operator remain diagonal 
when they are expressed in terms of the new set of operators aka and ata 
(0" = +, -, 0). 

(2.479) 
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and 

P = L j d
3 kkataaka· 

a=-,0,+ 
(2.480) 

Expressed with the new set of operators, the helicity operator in 
Eq. (2.475) becomes 

(2.481) 

The quanta created by ata are called the circularly polarized particles with 
the energy Wk and momentum k. Thus the quanta created by at+ have 

the helicity of + 1 and those created by at_ have the helicity of -1. Since 
the spin projection in the direction of momentum is ±1 for the circularly 
polarized quanta, the vector bosons are spin 1 particles. 

Since both scalar bosons and vector bosons have integer spin while 
spinor fermions have half-integer spin, one may summarize the spin statis­
tics relation as follows: The particles with integer spin are bosons and those 
with half-integer spin are fermions. 

We can also define the circular polarization vectors (also called helicity 
vectors) by 

1 
Ell(k, ±) = J2[cll(k~ 1) ± icll(k, 2)], 

Ell(k, 0) := Ell(k, 3). 

(2.482a) 

(2.482b) 

The field operators can be expanded in terms of the circular polarization 
vectors defined by Eq. ( 2.482). 

2.6.2 Massless vector bosons 

2.6.2.1 Differences between massive boson field and massless 
boson field 

In the previous treatment of massive spin-1 vector bosons, we have intro­
duced the 0-component of All by A0 = -1/m2V ·E. Then we can use the 
four-dimensional vector All to construct a covariant Lagrangian L. How­
ever, for massless particles (m = 0), this method fails, which leads to some 
difference. We can not construct the Lagrangian - i Fllvpllv in a similar 
way used for the massive vector bosons. One may ask why we can not 
construct a vector boson theory with Lagrangian - ~81lAv81l Av by ordi­
nary procedure. We will try to construct this Lagrangian using ordinary 
procedure in order to understand what the underlying difficulty is. 
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In order to maintain the covariance of Lagrangian L, we use 81-lAI-l = 0 
for the introduction of artificial components of Al-l. We can then do similar 
deduction as for the massive vector bosons. The fourier expansion of the 
field operator is given by 

Af-l(x, t) = j d
3
k t [ak>..EI-l(k, .>..)e-ik·x 

}2wk(27r)3 >..=O 

+ at)..Eil(k, A)eik·x]. (2.483) 

The differe~ce is that Wk = k0 = I k I because of the vanishing mass. The 

field frll = All is given by 

J 
~k 3 . 

frll(x, t) = -i wk L [ak>..Eil(k, .>..)e-~k·x 
}2wk(27r)3 A.=O 

-at).. Ell(k, )..)eik·x]. (2.484) 

The commutation relations for the operators ak>.. and at>.. follow from the 
commutation relations of All and frl-l. 

(2.485) 

(2.486) 

In order to remain covariant form, we need to choose the artificial compo­
nent of operators All and frl-l to satisfy the following commutation relations. 

[AI-l(x,t),frv(x',t)] = -iryllv83(x'-x), 

[AI-l(x, t), Av(x, t)] = [frl-l(x, t), frv(x, t)] = 0. 

(2.487a) 

(2.487b) 

The commutation relation for A0 (x, t) has the wrong sign. The commuta­
tion relation for ak).. and at).. then becomes 

(2.488) 
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Covariant form in Eq. (2.487) is crucial to get the factor El-l(k, A')EJ.l(k, A) in 
Eq. (2.488), which enables us to use the orthogonality relation of the four­
dimensional polarization vectors El-l(k, A')EJ.l (k, A) = 7]>..>..'. Thus we have 

(2.489) 

and 

(2.490) 

The operators ako for the polarization A = 0 satisfy the commutation re­
lation with the wrong sign. Wrong sign will cause problem if one tries to 
construct the Fock space for ako. The norm of one-particle state is 

\lkllk) = (Oiakoa~0 IO) 
= (OI( -77oo63 (k'- k) + a~oako)IO) 
= -7]oo63 (0)\0IO). (2.491) 

Thus the norm of the state for the A = 0 case is negative. The number 
operator for A = 0 obtain a wrong minus sign nko = -a~0ako, which is 
inconsistent with that the particle number should be positive. This also 
leads to a wrong sign in the Hamiltonian operator fi = - J d3 kwka~0ako. 
Therefore, we can not construct a covariant Lagrangian for massless spin-
1 bosons with three components. However, we can construct a covariant 
Lagrangian for massless bosons with two components. Since we have two 
artificial components, one with positive sign and one with negative sign, we 
can manage them to cancel out each other. 

2.6.2.2 Faddeev-Popov method 

We consider the particles with two internal degrees of freedoms. We have 
A1 and A2 . We introduce two artificial variables A0 and A3 in order to 
construct a covariant Lagrangian. Then we integrating out the artificial 
variables and leave only A1 and A2 variables using the Faddeev-Popov 
method. We start with the covariant Lagrangian density 

L = _!pJ.lVpl-lv 
4 

(2.492) 

There are four variables and we need to integrate out the redundant vari­
ables. It should be noted that the covariance should be maintained in the 
integration of the redundant variables. We note that there is a transfor­
mation Al-l -+ Al-l- 81-lA = AJ.l(A) leaving the Lagrangian invariant. Thus 
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we factor out the redundancy by the integration over A using the Faddeev­
Popov method. We first define 

[~(A)r 1 = 1 nAb[J(A(A))J. (2.493) 

Then 

~(A) I DAb[f(A(A))] = 1. (2.494) 

Now we consider the path integral 

Z = I DAeiS(A). (2.495) 

We can multiply ~(A) J DAb[f(A(A))] on the right side of Eq. (2.495) and 
get 

Z =I DAeiS(A) ~(A) I DAb[f(A(A))] 

=IDA I DAeiS(A) ~(A)b[f(A(A))]. (2.496) 

We change A ---+ A( -A) = A+ 81-lA, which is equivalent to A( A) ---+ A. 
Z = J DA J DAeiS(A) is invariant with this transformation. We have also 

~(A(A)) =~(A- 81-LA) 

= [! DA'6[f(A(A' + A))]l-
1 

=~(A). 

Then Eq. (2.496) becomes 

Z = (IDA) I DAeiS(A) Ll(A)6[f(A)]. 

(2.497) 

(2.498) 

The integrand does not depend on A and the factor (j DA) can be thrown 
away in Eq. (2.498). We then choose j(A) = 8A- a, where a is a function 
of x. Eq. (2.493) becomes 

[~(A)r 1 =I DA6(8J-lAfk- 82A- a} (2.499) 

Since ~(A) is multiplied by b(f(A)) in Eq. (2.498) and we use ~(A) only in 
evaluating Eq. (2.498), we can set f(A) = 8/kAJ-L- a = 0 in Eq. (2.499) and 
get ~(A)- 1 =? J DAb( 82 A). It can be seen that ~(A) does not depend 
on A. Thus we can throw ~(A) away in Eq. (2.498). Since Z does not 
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depend on CJ, we can integrating Z with an arbitrary functional of CJ which 
we choose as 

(2.500) 

where~ is a parameter. Thus we have 

Z = J Duexp [- 2i~ J d4xu2 (x) l J DA exp(iS(A))J(BMAM- u) 

= J DAexp [iS(A)- 2i~ J d4x(8MAM)2
]. (2.501) 

From Eq. (2.501), we can see that the original action S(A) is replaced by 

(2.502) 

Correspondingly we have the new Lagrangian density 

[, = -~F FfLV- ~(8 A11 ) 2 • 
4 {LV 2~ IL 

(2.503) 

It should be noted that we have used the symmetry that the action S 
is invariant with the transformation 

(2.504) 

in the construction of the Lagrangian of the massless vector bosons, which 
can be seen from the derivation of Eq. (2.498). Eq. (2.504) is called the 
gauge transformation. The symmetry that the action S is invariant under 
the gauge transformation is called the gauge symmetry. Since the La­
grangian for the massless vector bosons is gauge-invariant, we also call the 
massless vector bosons as gauge bosons. The gauge symmetry is a condition 
imposed on the derivation of the covariant Lagrangian for the massless vec­
tor bosons. Therefore the interaction terms of the massless vector bosons 
with other particles should also have the gauge symmetry. This is why the 
gauge symmetry plays the important role to unify the different interactions. 
Since mass term breaks the gauge transformation A11 ---+ A~ = A11 - 811 A, 
we can not have massive bosons with two components. For vector bosons 
with only one components, there are three virtual components and the way 
to construct a covariant Lagrangian has not been found. 



84 Principles of Physics 

2.6.2.3 Coulomb gauge 

Since the action is invariant for the gauge transformation Ap, --+ A~ = 

Ap, - Bp,A, we can take A~ = A0 - 80 A = 0. Therefore, with proper gauge 
transformation, we can take A0 = 0. The action is also invariant for the 
transformation Bp,A~t --+ Bp,A'I-l = Bp,A~t - a. We can take Bp,A~t = 0 with 
proper choice of a. Then V ·A = 0. This is called the Coulomb gauge. 
The massless vector bosons have only two internal degrees of freedoms. 
The Coulomb gauge V · A = 0 means that the longitudinal component 
vanishes and the two transverse components are not zero. Thus we have the 
massless vector bosons with two transverse freedoms and add two artificial 
variables, one is the longitudinal component A3 = 0 and another is the 
fourth component A0 = 0. We have initially the following commutation 
relations 

[Ai(x, t), frj(x', t)] = i6ij63(x- x'), 

[Ai(x, t), Aj(x', t)] = [fri(x, t), frj(x', t)] = 0 

(2.505a) 

(2.505b) 

with i, j = 1, 2. After introducing the third artificial variable, we have avec­
tor A with three components, which are not independent and constrained 
by V · A = 0. We have only two independent transverse components. We 
could use the transverse projection operator P1_ to impose the transversality 
condition. P 1_ is defined by 

A 1 
(Pl_)ij = 6ij- ai 

6 
aj. (2.506) 

Then we can impose V ·A = 0 by acting on Ai with the projection operator 
pl_ 

(2.507) 

We can change the commutation relations to the projected commuta­
tion relations for a vector with three components. After projection, the 
commutation relation Eq. (2.505a) becomes 

[Ai(x, t), frj(x', t)] = ibiij(x- x') (2.508) 

with i,j = 1, 2, 3. 6iij(x- x') is the transverse delta function defined by 

6iij(x- x') = (P1_)ij63(x- x') 

=/ d3k ik-(x-x)(b··-kikj) (2.509) 
(27r)3e ~J k2 . 

Besides the Coulomb gauge V ·A= 0 with A0 = 0, which is also called 
the radiation gauge, we can choose other gauges. We have two functions A 
and a to determine A0 and A3 using A0 = 80 A and 8J.LA~t =a. 
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2.6.2.4 Gt of massless vector bosons 

We can show that the following generator of time translation Gt leads to 
the covariant Lagrangian Eq. (2.492). 

Gt = j d3x~ [*2 + (V x A) 2
], (2.510) 

which contains no time derivative and satisfies the covariance principle. 
We introduce the four dimensional vector AJL with V · A(x, t) = 0 and 
A0 (x, t) = 0. The Lagrangian density in Eq. (2.503) becomes the La­
grangian density given by Eq. (2.492). We then define the electric field E 
by 

8A 
E =-at- VAo. (2.511) 

We also define 

B =V X A. (2.512) 

B is called the magnetic field. In the radiation gauge, we can express the 
Lagrangian density in Eq. (2.503) in terms of E and B as 

£ = _!p FJ.Lv = !E2- !B2 
4 j.LI/ 2 2 (2.513) 

After carrying out the integration over 1r in Eq. (2.107), we can see that Gt 
in Eq. (2.510) leads to the Lagrangian given by Eq. (2.492). The massless 
vector bosons described by the Lagrangian density in Eq. (2.513) are also 
called photons. 

2.6.2.5 The equations of motion for massless vector bosons 

Using the generator of time translation Gt given by Eq. (2.510), we obtain 
the equations of motion 

.aA. [AA cA l ·p A 
'l8t= 't='l.l'Tr, (2.514a) 

i ~; = [7r, Gt] = i\72 P.lA- iV(V. P.lA). (2.514b) 

The equations of motion for massless vector bosons form a set of wave 
equations. Thus we have the particle-wave duality for the massless vector 
bosons. 
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2.6.2.6 The solution of the equations of motion 

For the solution of the equations of motion Eq. (2.514), we can consider 
only the two projected transverse modes. Thus we have the following plane 
wave expansion of the field operator 

A J d
3 
k L2 

'k t 'k A(x t) = E(k l)(a e-~ ·X+ a e~ ·X) (2.515) 
' J2wk(2n)3 l=l ' kl k>. ' 

where E(k, l) are the transverse polarization vectors satisfying 

k · E(k, /) = 0, 

E(k, l) · E(k, l') = bll'. 

The electric field E is given by 

EA ( ) J d
3
k ~ o (k l)(A -ik•x At ik•x) x, t = . 1 3 

L....t 2WkE , akze - akze . 
y 2wk(2n) l=l 

Then we get the expansion for 7r =-E. 

J 
d3k 2 

ir(x, t) = L iWkE(k, l)( -akze-ik·x + atzeik·x). 
J2wk(2n)3 

l=l 

The magnetic field B becomes 

BA ( ) J d
3
k ~ 'k (k l)(A -ik•x At ik•x) x, t = L....t 2 x E , akze - ak>. e . 

y'2wk(2n)3 
l=l 

(2.516a) 

(2.516b) 

(2.517) 

(2.518) 

(2.519) 

The operators akz and a~z have the properties of creation and anni­
hilation operators for the transverse photons. They satisfy the following 
commutation relations 

[ak'l', a~zl = 83 (k'- k)8zl', 

[ak'l', akz] = [aL'z'' atzl = o. 

(2.520a) 

(2.520b) 

It is easy to check that the commutation relations give the correct results. 
using the commutators of a and at' we have 

[A i ( ) A j ( I ) l J d
3 
k J d

3 
k' 

x, t '1T' x 't = y'2wk(2n)3 J2wk' (2n)3 

2 

X iwk' L Ei(k,l)e/(k',l')([akz,aL,z,]e-i(k·x-k'·x') 
ll'=l 

[At A ] i(k·x-k'·x')) - akl' ak'l' e 
d3 2 

= i J 2(2:)3 I:>'(k, l)Ej (k, l') 
l=l 

( 
ik-(x-x') + -ik·(x-x')) x e e . (2.521) 
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The transverse polarization vectors E(k, 1) and E(k, 2) are orthogonal to each 
other. They are also orthogonal to the unit vector k/lkl in the direction of 
momentum k. Thus E(k, 1), E(k, 2) and k/lkl form an orthogonal basis of 
three dimensional space and satisfy the completeness relation 

2 . . kikj L Et(k, l)E1 (k, l) + -2 = <Sij· 
l=l k 

(2.522) 

With Eq. (2.522), Eq. (2.521) becomes 

3 ( . . 
[AAi( ) A j ( t )] _ ·I _.!!.__!:_ ik-(x-x') ~ .. _ kt kJ) 

X, t 1 7r X , t - Z (21r )3 e UtJ k 2 

= i<S_iij(x- x'). (2.523) 

2.6.2.7 Hamiltonian and momentum operators ink space 

Using the expansion expression, the Hamiltonian operator becomes 

A I 3 1 A2 A2 H = d x2 : (E + B ) : 

1 I d3k 2 
= 2 

2
w L [w~E(k, l') · E(k, l) + (k x E(k, l')) · (k x E(k, l))] 

k ll'=l 

x (atl'akz + atzakl') 
2 

= I d3 kwk L atzakl· 
l=l 

(2.524) 

In the derivation of the last line of Eq. (2.524), (k x E') · (k x E) = k2E'. 
E- (k · E')(k ·E) and w~- k2 

= 0 have been used. We can similarly obtain 
the momentum operators 

A I 3 A A I 3 ~ At A P = d x : E x B := d k L kakzakz· 
l=l 

2.6.2.8 Spin of massless vector bosons 

The spin of the photon field is given by 

Sij =I d3 x(FojAi- FoiAj) 

2 

= i I d3 k L Ei(k, l')Ej(k, l)(atzakz' - atz,iikz). 
ll' 

(2.525) 

(2.526) 
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Using the vector symbol, the spin operator of the massless vector bosons 
has the form 

s = J d3 
X : E X A : 

J J d3 k' J d3 k 
2 

= d3 x J J L (iwk' )E(k', l') x E(k, l) 
2wk' (27r) 3 2wk(27r)3 ll'=l 

. (aA e-ik'·x _ aA t eik'·x) (aA e-ik·x + aA t eik·x) . . k'l' k'l' kl kl . 

. J 2 = ~ d3k L [E(k, Z') x E(k, l)(a~zakz'- atz,akz) 
ll'=l 

+ E( -k, l') X E(k, l)( -Ct-kzCtkz'e-2iwkt + Ct~kl'Ct~ze2iwkt)]. (2.527) 

Then the helicity operator is given by 

AA - SA k - . J d3k( At A At A ) - . lkl - z ak2akl - akl ak2 . (2.528) 

Similar to what we did to diagonalize Eq. (2.475), we can diagonalize 
Eq. (2.528) using the transformation Eq. (2.476), which gives 

A= j d3k(a~+ak+- a~_ak- ). (2.529) 

Thus the photons are spin 1 particles. 

2. 7 Interaction 

By now, we have only considered the Lagrangian without interaction. The 
interactions can be added into the Lagrangian without violating the causal­
ity principle when they contain no time derivatives. Since any terms in­
volving field function 1r in the generator of time translation Gt for bosons 
will give terms related to time derivative, the interaction terms for bosons 
should not contain 1r. The physical mass and interaction terms should 
achieve the lowest energy for the ground state when the temperature effect 
is small. By now, we have no good numerical methods to calculate the 
ground state in the Riemann spacetime. However, we know that symmetry 
plays an important role in the ground state. Generally, the ground state 
should have high symmetry. Some symmetries are related to the Lorentz 
covariance. These symmetries should always be guaranteed when we add 
mass and interaction terms. In these symmetries, the most important one 
is the gauge symmetry, which correlates different types of particles. We 
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have shown that the Lagrangian containing the massless boson field should 
possess the gauge symmetry in order to fulfill the covariance principle in the 
previous section. Therefore, any Lagrangian contains the massless boson 
field should have the gauge symmetry. We will discuss the gauge symmetry 
in the following section. 

2. 7.1 Lagrangian with the gauge in variance 

We can couple the vector bosons with the spinor fermions by adding an 
interaction term eAJ.L {ryJ.L'!jJ. The Lagrangian for a spinor fermion field in­
teracting with a vector field reads 

- - 1 
L = 'l/J(i!J.L8J.L- m)'l/J + eAJ.L'l/JiJ.L'l/J- 4FJ.LvpJ.Lv 

- 1 
= 'l/J[i!J.L(8J.L- ieAJ.L)- m]'I/J-

4
FJ.LvpJ.Lv. (2.530) 

The above Lagrangian density is invariant by the gauge transformation 
described by 

A (x) -+A (x) +~a A(x) =A (x) + ;_e-iA(x)a eiA(x) (2.531) J.L J.L e J.L J.L ze J.L 

and 

(2.532) 

We define the gauge covariant derivative 

(2.533) 

Then Eq. (2.530) can be rewritten as follows: 

(2.534) 

The gauge transformation Eq. (2.531) makes FJ.Lv(x) -+ FJ.Lv(x), which 
means that the Lagrangian of photons is invariant. The Lagrangian den­
sity in Eq. (2.530) possesses the symmetry of gauge invariance. From 
Eq. (2.532), we can see that A(x) and A(x) + 27r give exactly the same 
transformation. The gauge transformation U = eiA(x) in Eq. (2.532) forms 
the abelian group U(1) because A(x) is a simple function of spacetime 
coordinates. 
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2.7.2 Nonabelian gauge symmetry 

The transformation can be generalized to the nonabelian case where Al-l 
is composite. In the gauge transformation '1/J(x) -t U'lj;(x), U can be an 
element of SU ( N) with ut U = 1, which guarantees the term '1/J t '1/J for 
scalar field or i/;'1/J for fermion field to be invariant. This generalization was 
introduced by Yang and Mills in 1954. 

Similar to the abelian case. We introduce the gauge covariant derivative 
Dl-l =al-l- igAI-l to replace the ordinary derivative al-l, where g is called the 
coupling constant. Under the transformation 

'1/J(x) -t U?jJ(x), (2.535) 

we have 

(2.536) 

Then we have an invariant kinetic term Df.l'I/Jt Dl-l?jJ for scalar boson field 
or i{;f/Jf.l '1/J for spinor fermion field. Now we consider a Lagrangian with N 
field '1/Ji ( x) under a continuous SU ( N) symmetry transformation '1/Ji ( x) -t 

Uij(x)'I/Jj(x). The gauge transformation is an SU(N) transformation. An 
infinitesimal SU ( N) transformation has the form 

(2.537) 

The index j and k run from 1 to N. a runs from 1 to N 2 
- 1. In the 

Eq. (2.537), the summation over a is implied. ra are the generators of 
SU(N). Due to the special unitarity of U, ra are hermitian and traceless. 
The Lie algebra of group gives the commutation relations 

(2.538) 

where the real factors !abc are called the structure constant. For SU(2), 
!abc = Eabc, where Eabc is the antisymmetric Levi-Civita symbol. For the 

abelian case !abc = 0. The generators obey the normalization condition 

(2.539) 

Under the gauge transformation 

In order to give 

(2.541) 
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AIL should transform as 

AIL(x)---+ U(x)AIL(x)ut(x) + iu(x)a~Lut(x). 
g 

This can be verified directly. 

DIL'lj; = aiL'lj;- igAIL'lj; 

---+ u[aiL'l/J + (utaiLU)'l/J]- igUAILutu'l/J + uaiLutu'l/J 
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(2.542) 

= U[aiL'ljJ- igAIL]UtU'ljJ. (2.543) 

We have used utu = 1 in the derivation of Eq. (2.543). U(x) can be 
expressed in terms of the generator ra as 

U(x) = exp[-igB(x)Ta]. (2.544) 

For the kinetic term of vector boson field AIL(x), we replace FILv = 
aiLAv - avAIL by 

i 
FILv =: - [DIL, Dv] 

g 

= aiLAV- avAIL- ig[AIL, Avl· 

Eqs. (2.541) and (2.545) give 

FILv(x)---+ U(x)FILv(x)Ut(x). 

Then we can construct a gauge invariant kinetic term 

r - 1TrF1Lvp 
J..,gb- -2 ILVl 

where the subscript 'gb' represents gauge bosons. 

(2.545) 

(2.546) 

(2.54 7) 

We can derive this Lagrangian from the generator of time translation 
in a similar way as we used for the photon field. We will give the detailed 
deduction later. 

AIL should be N by N matrices. From Eq. (2.537), we have 

(2.548) 

Taking the trace of Eq. (2.548), we can see that the trace of AIL does not 
transform. Thus AIL can be traceless and hermitian. Then we can expand 
AIL in terms of the generator Ta 

(2.549) 

Using Eq. (2.539), we have 

A~(x) = 2 Tr AIL(x)Ta. (2.550) 
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For Fp,v(x), we have 

Fp,v = op,Av- ovAp,- ig[AJL, Av] 

= (8 Ac -8 Ac )Tc- igAa Ab [Ta Tb] JLv Vp, JLV l 

= (8 Ac- 8 Ac + gfabc Aa Ab)Tc JLv Vp, JLV • (2.551) 

Then, we can express Fp,v(x) as 

Fp,v(x) = F~v(x)Tc (2.552) 

with 

F~v(x) = oJLA~- ovA~+ gfabc A~ A~. (2.553) 

Thus the kinetic term Eq. (2.547) becomes 

£ = -~Fap,v pa gb 4 p,v· (2.554) 

This is the so-called Yang-Mills Lagrangian density. From Eq. (2.553), we 
can see that Lgb contains the self-interactions among the gauge fields. Using 
Eq. (2.553), we can express the Yang-Mills Lagrangian density Eq. (2.554) 
by 

£ =-~Fa pap,v gb 4 JLV 

= -~(8 Aa- a Aa)2- ~g(o Aa- a Aa)fabc AbJL ACI/ 4 JLv Vp, 2 JLv Vp, 

_ ~g2 Jabc Jade A~A~AdJL Aev. (2.555) 

We use the Faddeev-Popov method to integrating out the redundant 
components. We consider the path integral 

Z = I DAeiS(A)' (2.556) 

where S(A) = J d4 x.Cgb is the Yang-Mills action. We define a function 

~(A) =c {I Deb[f(A(O))]} _,, (2.557) 

where 

(2.558) 

A(B) corresponds to the gauge transformation of A and U(B) = e-ige(x)·T 
is the group elements that defines the gauge transformation at x. We use 
Eq. (2.496) and factor out integration over e. Then we have 

Z =I DAeiS(A) L1(A)6[f(A)]. (2.559) 
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We can choose suitable form of function for f (A). A suitable selection 
is 

j(A) = 8A- a. (2.560) 

Since ..6.(A) appears in Eq. (2.559) together with 8[f(A)], only infinitesimal 
e is relevant. under an infinitesimal transformation 

Eq. (2.557) becomes 

Ll(A) = {I De6[0A" ~a"+ OM(gf"b'gb A~~ OMO")]} -
1 

Thus 

Ll(A)6[f(A)] = {I D06[0A" ~a"+ OM(gf"bcOb A~ ~ OMO")]} -
1 

X 8(f(A)) 

(2.561) 

(2.562) 

= {I D06[0M(gf"b'Ob A~~ OMO")]} -
1 

6(f(A)). (2.563) 

We define an operator Kab(x, y) by 

(2.564) 

Then we have 

(2.565) 

Since J d88(K8) = 1/ det K, we have ..6.(A) = det K. We can express the 
determinant det K as a functional integral over Grassmann variables by 

(2.566) 

with 

Sghost(ct, c) =I d4 x I d4 ycl(x)Kab(x, y)cb(Y) 

= I d4x[811cl (x )811 ca(x) - 811cl (x )gfabc A~cb(x )]. (2.567) 

The field functions Ca and cl are the ghost field functions. They do not 
correspond to the real particles. Thus scalar fields Ca and cl can be anti­
commuting without causing problems. 
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Since Z does not depend on a-a, similar to Eq. (2.501), we multiply a 
Gaussian functional 

and integrate over a-. Thus 5 (f (A)) is replaced by 

e--k I d4x(aAa)2. 

The final expression for Z is then given by 

z = I DADcDct eiS(A)-*I d4x(aAa)2+iSghost (ct ,c). 

The gauge Lagrangian density is changed to 

Lgb =- ~ ( attA~ - avA~) 2 

_ 2_(att Aa)2 _~(a A a_ a Aa)gjabc Abtt Acv 
2~ JL 2 JL v v JL 

_ ~g2fabcfade Ab Ac Adtt Aev + attct a c _ attctgjabc Ac c 4 JL v a JL a a JL b· 

(2.568) 

(2.569) 

(2.570) 

(2.571) 

Now we construct the generator Gt of time translation corresponding to 
the Lagrangian density Lgb. Similar to photons, we have only two internal 
degrees of freedoms for each A a. Since the action is invariant for the gauge 
transformation A a --+ A a + gjabceb A c - a ea we can take A' a = A a + 

JL JL JL JL ' 0 0 
gfabceb A0 - attea = 0 with proper gauge transformation. Therefore, we 
can choose A0 = 0. The action is also invariant for the transformation 
a A --+ 8A'a = aAa -a-a. We can take 8Aa = 0 with proper a-a. Then 
V ·A a= 0. For the three spatial components, we have constructed the four­
vector A a by choosing two transverse components and one zero longitudinal 
component. We can only choose the two components of gauge bosons as 
two transverse components and add one artificial longitudinal component 
A3 = 0 and the fourth component A0 = 0. 

We have initially the following commutation relations 

[Af(x, t), irj(x', t)] = i5ij53(x- x'), 

[Af(x, t), Aj(x', t)] = [irf(x, t), irj(x', t)] = 0 

(2.572a) 

(2.572b) 

with i, j = 1, 2. After introducing the third artificial variable, we have three 
A a 

variables of Ai which are not independent and constrained by V ·A = 0. 
If we use the commutation relations for a vector, we could use the .trans­
verse projection operator (Pj_)ij in Eq. (2.506) to impose the transversality 
condition. After projection, the commutation relations Eq. (2.572) become 

[Ai(x, t), irj(x', t)] = iblij(x- x'). (2.573) 
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Using the four-dimensional vector A~ with V ·.A a= 0 and A0 = 0, we 
can express the Yang-Mills Lagrangian density Eq. (2.571) as follows: 

L = ~ (aAa) 
2 

_ ~(V X Aa)2 aAj fabc Abi A co 
gb 2 at 2 + at 

_ ~(a·A~ _ a-AI!)gjabc AaiAbj _ ~g2Jabcjade Ab Ac Ad/1 Aev 
2 ~ J J ~ 4 /1 l/ 

+ a11ct a c - a11ctgfabc Ac c a/-La a 11b 

= ~ (aAa)2- ~(V x Aa)2 
2 at 2 

_ ~ (a·A~ _ a-AI!)gjabc Aai Abj _ ~g2Jabcjade Ab Ac AdJL Aev 
2 ~ J J ~ 4 JL v 

(2.57 4) 

We can show that the following generator of time translation Gt leads 
to the Yang-Mills Lagrangian density Eq. (2.574). 

Gt =I d3x[~(1ra)2 + ~(V X .Aa)2 + ~(aiAj- ajAngfabcAaiAbj 

(2.575) 

with 

(2.576) 

Gt in Eq. (2.575) does not contain the time derivative term of the field func­
tions and thus satisfies the causality principle. Inserting Gt in Eq. (2.107) 
and carrying out the integration over ira and introducing the ghost fields, 
we get the Yang-Mills Lagrangian density Eq. (2.574). Using the generator 
of time translation Gt given by Eq. (2.575) with the fields replaced by the 
operators, we obtain the equations of motion 

aA.a A A 

iat = [Aa,Gt], (2.577a) 

'aft-a A a A 

~at= [1r ,Gt]· (2.577b) 

Since there are self-interaction terms, we are not be able to solve the equa­
tions of motion for the Yang-Mills gauge bosons exactly. 





Chapter 3 

Quantum Fields in the Riemann 
Spacetime 

3.1 Lagrangian in the Riemann spacetime 

Now we turn to the curved spacetime. In order to fulfill the causality prin­
ciple, the physical spacetime should be the Riemann spacetime as discussed 
in the Appendix A. The action should satisfy the principle of general co­
variance. Thus, the action S is a scalar in the Riemann spacetime. Let 
us construct the Lagrangian which should be the scalars in the Riemann 
spacetime. The simplest field is the scalar field. We consider the scalar 
field as an example. The underlining principle is independent of the types 
of the fields contained in the Lagrangian. 

Let us begin with the Lagrangian of matter .Cm. The general form of 
the Lagrangian density of matter .Cm with ¢2 term for a scalar field in the 
Riemann spacetime is given by 

(3.1) 

where m is the mass and V(¢) is the self-interaction term. g~-tv is the metric 
tensor in the Riemann spacetime. g11v can be a functional of the field ¢ and 
its spatial derivatives. It should not contain ¢. If g~-tv is not a function of 
¢, all the procedure of constructing covariant Lagrangian in the Minkowski 
spacetime can be applied similarly to the Riemann spacetime. The more 
general form for Eq. (3.1) is 

(3.2) 

f( ¢) can be absorbed into the metric g~-tv because the metric g~-tv is the func­
tional of the field functions. Therefore the Lagrangian density in Eq. (3.2) 
is equivalent to that in Eq. (3.1). We will only consider the Lagrangian 
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density in Eq. (3.1). The action for a scalar field of matter in the Riemann 
spacetime is given by 

For a vector AJ-t, we should use a covariant derivative 

DaA~-t = 8aA~-t - r~~-tAv. (3.4) 

where r~J-t is the Levi-Civita connection of the metric given by 

f~v = ~gAP(8vgpJ-t + 8J-tgpv- 8pgJ-tv), (3.5) 

The first order covariant derivative of a scalar function coincides with the 
ordinary derivative. 

With the Lagrangian density of matter .Cm, we can define the energy­
momentum tensor 

Using the energy-momentum tensor TJ-tv, we can also construct a scalar 

with 

Be = a1 J d4 xv=ggJ-tvTJ-tv 

= J d4xFg£, (3.7) 

(3.8) 

where a 1 is a constant parameter. This Lagrangian density can be consid­
ered as a part divided from the Lagrangian density of matter. With the 
metric g~-tv, we can construct a scalar as follows: 

S9 = a2 j d4 xv=gR, (3.9) 

where a 2 is a constant parameter. R is the Ricci scalar curvature. S9 is the 
so-called Einstein-Hilbert action for gravity. R is defined as g~-tv RJ-tv. RJ-tv 
is the Ricci tensor defined by RJ-tv = R~""v· R~v"" is the Riemann curvature 
tensor defined by 

(3.10) 
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The total action St should be the sum of the above three parts and a 
constant term. 

St = J d4x~.Cm + 0:1 J d4x~gJ-LvTJ-Lv 
+ a:2 j d4x~R + j d4x~A' 

= j d4x~.Ct (3.11) 

with 

(3.12) 

where A' is a constant. There are other scalar terms such as R 2 , we will 
discuss other terms later. Now we consider the total action is given by the 
above three contributions. If all the quantum fields involved are considered 
in the matter Lagrangian density .Cm, then the action St contains all kinetic 
terms and the interactions. 

It should be noted that we do not consider the metric g J-LV as an inde­
pendent field. gJ-Lv is a functional of field functions ¢a(x), gJ-Lv = gJ-Lv(¢(x)). 

3.2 Homogeneity of spacetime 

We use the principle that the spacetime is homogeneous. The total action 
should possess the symmetry of spacetime translation. We transform the 
fields via ¢a(x) -t ¢a(x- a), where al-l is a constant four-vector. For an in­
finitesimal translation, ¢a ( x) -t ¢a ( x)- 8¢a ( x) with 8¢a ( x) = -av 8v¢a ( x). 
Correspondingly, we have y'-g.Cm ( x) -t J=9.Cm ( x) + 8 ( J=9.Cm ( x)), 
where 8(J=9.Cm(x)) is given by the chain rule 

D( y'-g.Cm(x)) D( J=9.Cm) 
8( ~.Cm(x)) = D¢a(x) 8¢a(x) + D(DJ-L¢a(x)) DJ-L8¢a(x). (3.13) 

We also evaluate the functional derivative 8!:0:), which gives 

8Sm = J d4y 8( J=9.Cm(Y)) 
8¢a(x) 8¢a(x) 

= D( J=9.Cm(x)) _ D D( J=9.Cm) 
D¢a(x) 1-l D(DJ-L¢a(x))' 

(3.14) 

where Sm = J d4yJ=9.Cm(Y) is the action for matter. Thus 8( J=9.Cm(x)) 
has the form 

D(J=9.Cm) 8Sm 
8( ~.Cm(x)) = D11 D(D

11
¢a(x)) 8¢a(x) + 8¢a(x) 8¢a(x). (3.15) 
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When we transform the fields with an infinitesimal spacetime translation 
av, we have <S(v=g.Cm(x)) = -av8v(v=g£m(x)) = -8v(av v=g£m(x)). 
Expressing the right side of Eq. (3.15) with the Noether current for the 
energy-momentum 

we have 

o!~~) li¢a(x) = FYD,,j~ = FYD,,(avT~"(x)). 
Then the functional derivative for the total action St becomes 

o:~tx) li¢a(x) = FYD~(avT~"(x)) + a,li(g~vFYT~") 

(3.16) 

(3.17) 

+ a26( .j=gR) + <5( .j=gA'). (3.18) 

The action should possess the symmetry of the spacetime translation. U n­
der an infinitesimal spacetime translation with <5¢a(x) = -av8v¢a(x), the 
variation of the total action should be zero. We have 

(3.19) 

Here we demand <58= 0 for a specific variation <5¢a(x) = -av8v¢a(x) from 
an infinitesimal spacetime translation due to the homogeneity of spacetime, 
which should lead to the conservation of energy-momentum. Since the 
current conservation is valid in all circumstances, it should also hold in the 
Minkowski spacetime and the classical case. Eq. (3.16) gives the correct 
limit for the Minkowski spacetime and the classical case. 

In the Minkowskian action, the metric gf1v is constant. We do not have 
an equation to relate the matter field with the geometric metric. It seems 
that the Minkowski metric has a symmetry of spacetime translation and we 
can have the conservation of energy-momentum. However this is true only 
when background is vacuum. Generally we have inhomogeneous matter 
distribution as background. When we consider the transition amplitude 

(3.20) 

we find that the symmetry of spacetime translation is not guaranteed in 
the Minkowski spacetime for the transition amplitude with inhomogeneous 
initial state ¢( x, 0). When the initial state is inhomogeneous, any spacetime 
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translation will result a different initial state. Thus the transition amplitude 
is not invariant for the time translation in the Minkowski metric. This is 
another reason that we should use the Riemann spacetime. 

The conservation of energy-momentum is given by 

(3.21) 

Therefore, we have 

(3.22) 

Using the following relation 

R = 1: 4(3gJLv(RJLv + (3g1Lv R), (3.23) 

we can write Eq. (3.22) in a more symmetric way, 

6 [ ( <>1 ..FijT~" + ~2:J (R~" + (3g~" R) + ~..FijA' g"") g~" l 
= 0. (3.24) 

3.3 Einstein equations 

Since we can use any local coordinate frame, gJLv can be a very general 
function and we expect the terms in the bracket before gJLv in Eq. (3.24) 
cancel out except for a constant term. Thus we have 

(3.25) 

where c is a constant. cgJLv term can be merged with i A' giLl/ term and thus 
we take c = 0. Using the Bianchi identity, we can see that (3 = -1/2 in 
order to guarantee the equation of the conservation of energy-momentum 
Dp,TJLv(x) = 0. We introduce the gravitational constant G, which relates 
the parameters a1 and a2 by a1 = -81rGa2. Then Eq. (3.25) becomes 

1 
RILl/ - 2gjLl/ R +giLl/ A = -87rGTJLl/' (3.26) 

where A= 27rGA' /a1, which is call the cosmological constant. Eq. (3.26) is 
called the Einstein equations or Einstein field equations of general relativ­
ity. Since the Einstein equations Eq. (3.26) guarantee both Eq. (3.21) and 
Eq. (3.22) to be satisfied, Eq. (3.19) is fulfilled automatically. Therefore, 
the homogeneity of spacetime is guaranteed. 
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When we put back the Einstein equations into the total action St and 
use the parameter relation a1 = -81rGa2, we find the terms Se and 8 9 

cancel out. Only the action Sm for matter remains in the total action St. 
Thus the action becomes 

(3.27) 

The path integral for the action of Eq. (3.27) should be carried out for 
the field functions with the metric giLl/ in the action satisfying the Einstein 
equations Eq. (3.26). Both Tttv and giLl/ are symmetric for the index J-l 

and v. There are 10 independent functions for gttv. Thus there are 10 
equations in Eq. (3.26). Since the energy-momentum conservation equa­
tions Dp,Tttv(x) = 0 are satisfied automatically. We have 6 independent 
equations for 10 functions. We have then 4 functions to make coordinate 
transformation for gttv. Thus the Einstein equations uniquely determine 
the metric gttv from the field functions. On the right side of Eq. (3.26), 
Tttv is determined by Eq. (3.6). 

3.4 The generator of time translation 

We will show that the following generator of time translation gives the 
action of Eq. (3.27) 

(3.28) 

where the metric gttv is only the functional of the field functions ¢a: gttv 
should not contain the conjugate field function 1r a and the time derivative 
terms. Thus the causality principle could be guaranteed. We can get the 
action of Eq. (3.27) by inserting Eq. (3.28) into Eq. (2.107) and integrating 
over ?Ta. 
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Z = j D¢ j Drrexp [i j d4x(m~- Q,(rr, ¢))] 

= J D¢exp{ i J v=fjd4x [ ~g00 (Do¢a)2 + g0'D;¢aDo¢a 

+ ~gij D;</>aDj</>a- ~m2¢~- V(¢)]} 

= J D¢exp { i J v=fjd4
x [~g~" D~¢aDv¢a- ~m2¢~- V(¢)]} 

=I D¢exp [i I v=fjd
4
x.Cm(¢)]. (3.29) 

Thus the generator of time translation corresponding to the action of 
Eq. (3.27) is given by 

A J 3 [ 1 1 A Oi A 2 
Gt = yC"gd X 2 ( -ggOO) (7ra- yC"gg Di¢a) 

1 i • A A 1 2 A2 A ] 
- 2g J Di¢aDj¢a +2m ¢a+ V(¢) . 

In the meanwhile, the energy-momentum vector is defined as 

Pv =I v=fjd3xT~ 

J r-::. 3 [ 1 D(F9Cm) o l = V -gd X F9 D(Do¢a(x)) Dv¢a(x)- gvCm(x) . 

Since g11v is independent of ~a, we have 

(3.30) 

(3.31) 

Po is the energy of the fields ¢a and is called the Hamiltonian of the fields. 
When we replace the field functions ¢a with the field operators ¢a, the 
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corresponding operator is the Hamiltonian operator. 

fi =Po 
= J yf=gd3 x [~g00 Do¢aDo¢a- ~gij Di¢aDj¢a 

+ ~m2¢~ + V(¢)]. (3.33) 

Similar to the flat spacetime, we can show that we can not construct a 
consistent formalism for the scalar fermions which obey anti-commutation 
relations. Thus we consider that the scalar field is a boson field that Ja 
and fra satisfy the commutation relation in Eq. (2.60) for bosons. Inserting 
Gt(fr, ¢) in Eq. (3.30) into the commutator [¢a(x, t), Gt(fr, ¢)],we have 

A A A 1 • A gOt • A 

[¢a(x, t), Gt(fr, ¢)] = ~ 00 ~1ra- -~Di¢a· (3.34) g gOO 

Using the equations of motion 

We find 

Thus we have 

i8t¢a = [Ja, GtJ, 

i8tfra = [fra, Gt], 

fra = ~gOv Dv¢a. 

Using Eq. (3.37) to express Po in terms of fra, we have 

6t =if. 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Therefore the generator of time translation Gt is equal to the Hamiltonian 
operator fi and Eq. (2.81) becomes Heisenberg's equations of motion. 

In order to calculate the second equation of motion, we need to know 
the relation of 9p,v(¢) with the field operator¢. The relation of 9p,v(¢) with 
the field operator¢ is described by the Einstein equations Eq. (3.26), which 
we can not solve exactly. 

It should be noted that if we use the anti-commutation relations of 
fermions for¢ and fr, we get [¢(x, t), Gt(fr, ¢)] = 0. Gt given by Eq. (3.28) 
can not be the generator of time translation. Therefore, the Lagrangian 
Eq. (3.2) can only be used to describe the scalar bosons. 

In the derivation of the Einstein equations, we have only used the R 
term. We have not considered the high order terms of R because they 
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involve the time derivatives of third order on the left side of the Einstein 
equations while only the time derivatives of up to the second order are 
involved on the right side. The terms contributing the third order time 
derivative should be zero. Thus the terms containing the high order terms 
of R should vanish and only the linear R term is needed. 

The gravitational effects are mainly caused by the mass of particles and 
the mass effect is involved not only in the range of low energy. In order 
to calculate the gravitational effect in a general way, we need consider a 
broad range of energy spectrum. This poses a computational difficulty of 
gravitational effect due to the failure of ordinary perturbation. Because 
in the ordinary perturbation, when we consider the Minkowski metric as 
a starting metric and use plane wave basis, we encounter the integral of 
J d4 k that is integrated over the whole range of energy. Thus the ordinary 
perturbation calculations fail. 

3.5 The relations of terms in the total action 

Now let us consider the value of the parameter o:1 . o: 1 can take an arbitrary 
value. Since the action with o:1 has the similar terms as the action for 
matter, it is natural to choose 0:1 = 1/4, which gives o: 1 g~ = 1 because 
g~ = 4. Then the total action becomes 

St = J d4 x-J=g.Ct 

= J d4 x-J=g(.Cm + .Ci) (3.40) 

with 

(3.41) 

The terms in .Ci are canceled out except for a constant term due to the 
symmetry of spacetime translation. We call .Ci the invariant Lagrangian. 

The invariant Lagrangian .Ci plays the role of guaranteeing the conservation 
of energy-momentum. In addition, we find that it implicates a symmetry 
of the scale invariance for the total action. It can be seen that in the 
total action, the matter Lagrangian has a minus counterpart - .Cm ( x) in 
the invariant Lagrangian. Therefore any mass and interaction terms can 
be canceled out without changing the total action. In the second term of 
Eq. (3.40), the kinetic terms play a special role. Since the matter action 
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can be canceled out, the remaining action related to matter particles are 
the following action _ J 4 r-;: _ 1 J 4 r-;: p,v D( ~Lm) ( ( Sr- d Xy -gLr- 4 d Xy -gg D(Dp,¢a(x)) Dv¢a x). 3.42) 

3.6 Interactions 

Similar to the Minkowski spacetime, the interaction can be added into the 
Lagrangian. Any terms involving field function 1r in the generator of time 
translation Gt for bosons will give terms related to the time derivative. The 
interaction terms generally should not contain boson field 1r except for the 
linear term of 1r. Although we can add any mass and interaction terms 
without changing the total Lagrangian, the suitable form of the mass and 
interaction terms should be that which achieves the lowest energy for the 
ground state when temperature effect is small. Determination of the form 
of the interaction terms that achieves the lowest energy for ground state 
involves the calculations of the ground state in the Riemann spacetime, 
which is difficult. We note that a sign change of all mass and interaction 
terms is equivalent to the sign change of kinetic terms and thus the sign 
change of the gravitational constant G. Therefore, the sign of G is related 
to the ground state. 

Generally, the ground state should have high symmetry. There are some 
symmetries which are related to the Lorentz covariance. These symmetries 
should always be guaranteed when we add interaction terms. In these 
symmetries, the most important one is the gauge symmetry, which corre­
lates different types of particles. We have shown that massless boson field 
should possess the gauge symmetry. Therefore, any Lagrangian containing 
the massless boson field should have the symmetry of gauge symmetry. We 
can couple the vector bosons with the spinor fermions by adding an in­
teraction term gAp,ifrp,'l/J, where g is the coupling constant. We introduce 
the gauge covariant derivative Dp, = Dp, - igAp, to replace the spacetime 
covariant derivative Dp, to include this interaction term. For the kinetic 
term of the gauge boson field Ap,(x), we use Fp,v = Dp,Av- DvAp, for the 
abelian gauge symmetry and use 

Fp,v = Dp,Av- DvAp,- ig[Ap,, Av]· (3.43) 
for the nonabelian gauge symmetry. Then we have a gauge invariant kinetic 
term for the Yang-Mills Lagrangian 

r - 1 Tr pp,vp 
_,_,gb- -2 p,v· (3.44) 
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Since r~J.l = r~a, the terms involving r~J.l canceled out and we do not need 
to consider them. We can construct the generator of time translation in a 
similar way used for the case of the Minkowski metric in the section 2. 7.2. 





Chapter 4 

Symmetry Breaking 

4.1 Scale invariance 

4.1.1 Lagrangian with the scale invariance 

Dilatation transformation on spacetime is defined by 

x-+ x' = ..\x, ( 4.1) 

where,.\ is a real number. With the change in coordinate scale x-+ x' = ..\x, 
if we also define a field transformation of the form 

(4.2) 

then the transformations Eqs. ( 4.1) and ( 4.2) are called the scale transfor­
mation. d¢ is called the scaling dimension of the field ¢. If the action S is 
invariant with the scale transformations Eqs. (4.1) and (4.2), we say that 
the system has the symmetry of scale invariance. The Lagrangian without 
the mass terms and interaction terms has the symmetry of scale invariance, 
which we call the plain Lagrangian. 

For the d-dimensional space, in order to maintain the scale invariance, 
the field transformation needs to have the following forms. 

(i) For scalar bosons, 

d-1 

'P(x)-+ 'P'(x') = ,.\-2 'P(..\x). (4.3) 

(ii) For spinor fermions, 

1/J(x)-+ 1/J'(x') = ,.\~1);(..\x). ( 4.4) 

(iii) For vector bosons, 

(4.5) 
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With these transformation, we have 

C(x) --+ C' (x') = Ad+l C(Ax) (4.6) 

and 

S =I dd+ 1xC(x)--+ I dd+ 1xAd+l C(Ax) =I dd+ 1x' C(x'). (4.7) 

When S is unchanged with the scale transformation, for a Lagrangian with 
the gauge symmetry, A11 should be scaled as a11 because of the presence of 

d-1 
the covariant derivative D11 = a11 -igAw We have A-2- =A from Eq. (4.5). 
Then d = 3, which means only four-dimensional spacetime can have both 
scale invariance and gauge invariance. We have shown that the action with 
massless vector bosons should be gauge invariant. In the three-dimensional 
space, when we add gauge interaction terms to the plain Lagrangian, we 
still have the symmetry of scale invariance. For other space dimension, the 
symmetry of the scale invariance will be broken when we add the gauge 
interaction terms. 

4.1.2 Conserved current for the scale invariance 

In order to consider an infinitesimal transformation, we introduce eo: = A. 
Then the field transformation is expressed as 

(4.8) 

We have 

8x =ax (4.9) 

and 

8¢ = eo:dq,¢(eo:x)- ¢(x) 

= (1 + ad¢)¢(x +ax)- ¢(x) 

= ( C<d¢ +<>X>.a~J r/J. (4.10) 

Then 

( 4.11) 

The variation 8S = J d4x8C vanishes upon integration by parts. Using 
Noether's theorem, the invariance of actionS leads to the conservation law 
corresponding to the scale invariance 

(4.12) 
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with the canonical Noether current () given by 

()11-~d A. -(~a A. - £/11') v 
- aatJ-¢a ¢'+'a aatJ-¢a v'f'a UvJ...., X . ( 4.13) 

In the above formula, the second term can be rewritten in terms of the 
canonical energy-momentum tensor 

etJ-V = ~ av A, _ 71tJ-V L 
aatJ-¢a 'f'a 'I • 

Then the canonical dilatation or scaling current ()11 is expressed as 

()11 = Xv811V + ~11, 

where 

is called the internal part. 

( 4.14) 

( 4.15) 

(4.16) 

It is possible to eliminate the internal part ~P-in Eq. ( 4.15) by redefining 
an symmetric energy-momentum tensor TP-v in the following way. We use 
Eq. (2.315) 

and set 

7 K11v = ~KtJ-V + ~ (TJKtJ-aV f _ TJKV 8 11 f), 

where f is the solution of the differential equation 

Df = aK(~K- TJtJ-V~tJ-VK). 

Dis the d'Alembert operator. Then 

Using Eq. (2.319), we have 

TP-V _ TVP- = aK(MKtJ-V _ ~KtJ-V + rKP-V) 

= aK( -~KtJ-V + rKP-V) 

= ~aK ( TJK/1 av f - TJKV 811 f) 
3 

= 0, 

( 4.17) 

( 4.18) 

(4.19) 

( 4.20) 

( 4.21) 

which shows that TP-v is antisymmetric. Using Eq. ( 4.17) and rKtJ-v +rKVtJ- = 
0, we have 

( 4.22) 



112 Principles of Physics 

Using Eq. (4.15), we find 

aiL elL = e~ + aiL~IL, 
Inserting Eq. ( 4.23) into Eq. ( 4.22), we obtain 

Tt = 8,.(8"'- ~"' + TIILvTILV"') 

= a,.(T/ILV~ILV"'- ~"') + Df 
= 0. 

We introduce TIL without internal part by 

Then the conservation law Eq. (4.12) is replaced by 

a" elL = TIL = o 
r' IL ' 

( 4.23) 

( 4.24) 

( 4.25) 

( 4.26) 

which implies that the scale invariance leads to the vanishing of the trace 
of the energy-momentum tensor. 

4.1.3 Scale invariance for the total Lagrangian 

The action given by Eq. (3.42) has a symmetry of scale invariance. When 
we change the scale of coordinates x ---+ x' = .Ax together with the field 
transformations 

¢a(x)---+ ¢~(x') = A.¢a(A.x), 

'1/J(x)---+ '1/J'(x') = A.3121jJ(A.x), 

AIL(x)---+ A~(x') = A.AIL(A.x), 

( 4.27a) 

( 4.27b) 

(4.27c) 

where ¢a(x), '1/J(x) and AIL(x) are the scalar boson field, spinor fermion 
field, and vector boson field, respectively. the Lagrangian .Cr changes as 

Thus the action Sr is unchanged under the scale transformation, 

Sr = I d4x~.Cr(x) 
--+I d4xF[J>.4Lr(Ax) =I d4 x'FiJLr(x') =Sr. 

( 4.28) 

( 4.29) 

Using Noether's theorem, the invariance of action leads to the conserva­
tion law corresponding to the scale invariance, aiL(xvTILV) = Tt = 0, which 
implies that scale invariance is equivalent to the vanishing of the trace of 
the energy-momentum tensor. When we put the Tj: = 0 into the Einstein 
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equations, we have R = 0 if the cosmological constant is zero. The space­
time will have zero curvature for a system with the scale invariance. From 
Eq. ( 4.29), we can see that only four-dimensional spacetime can have the 
symmetry of scale invariance. Since the time can only be one-dimensional 
due to the causality principle, this might be one of the reason that the space 
dimension is three-dimensional. 

4.2 Ground state energy 

Energy plays an important role in physics. The energy is excited over a 
background to generate particles. There are two special backgrounds which 
are important. One is the ground state, which is the state having the low­
est energy and is thus the state with the highest stability. The other is 
the vacuum, which does not contain particles. Each ground state has its 
vacuum. But vacuum is not necessarily equivalent to the ground state. 
When the ground state does not contain particles, the ground state is then 
the same with the vacuum. When the ground state contains particles, the 
ground state is not the vacuum. The universe is not empty. Our universe 
consists of various types of particles. Because our universe is not in the 
temperature of zero, we do not know whether the ground state of our uni­
verse is a vacuum. However, in most cases, the universe can be considered 
almost empty. This means that the ground state can be approximated by 
the vacuum. The ground state energy is then equal to the vacuum energy 
approximately. The vacuum energy is also called the zero point energy 
because it is related to 1 /2fiwp in the case without interactions of the par­
ticles. As an example, we calculate the vacuum energy of the free scalar 
boson field in the Minkowski spacetime, which is the expectation value 

( 4.30) 

Let us first calculate 

(OI¢(x, t)¢(x, t)IO) = lim (OI¢(x, o)¢(o, O)IO) 
x-+0 

( 4.31) 
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Other terms in Eq. (4.30) can be calculated similarly, we get 

I d3p 1 
(OIHIO) = v 2wp(21r)3 2 (w~ + p 2 + m 2

) 

I d3p 1 
= V (21r) 3 2Wp. (4.32) 

We can see that the energy of vacuum is the integration of 1 /2wp over all 
momentum mode and over all space. It should be noted that the integration 
over p diverges. However, what matters is the difference of energy. These 
could be (i) the energy difference of systems with and without particles; 
(ii) the energy difference between different vacuums corresponding to 
different ground states. 

For the spinor fermions, the energy of vacuum in the Minkowski space­
time is given by 

(OIHIO) = (OI I d3p L Wp [ht (p, s )b(p, s) - d(p, s )dt (p, s )]IO) 
s 

= (OI I d3p L Wp [ht (p, s )b(p, s) + Jt (p, s )d(p, s) - <5
3 (0) JIO). 

s 

It should be noted that 

Then we get 

<53 (0) = lim -
1

- ld3xeip·x 
p-tO (27r)3 

1 I 3 = (27r)3 d X. 

(OiiliO) =- ( 2~)3 I d3
x I d3

p L 2~wp. 
s 

( 4.33) 

( 4.34) 

( 4.35) 

The factor 2 comes from the summation of the contributions of particles 
and antiparticles, such as, electrons and positrons. 

Eq. ( 4.35) has an minus sign with it. The spinor fermion field has a 
negative vacuum energy, while the scalar boson field has a positive vacuum 
energy. Since Wp = .jp2 + m 2 increases with the increase of m. The mass 
of particles increases the vacuum energy. A Lagrangian with positive mass 
term for scalar bosons will increase the vacuum energy. The ground state 
should have the lowest energy. Thus we can only add a negative mass 
term, which means that we can not give mass directly to the scalar bosons. 
Instead, we need a negative mass term and then with a symmetry breaking 
to transform the negative mass term into positive mass term, which is the 
reason why we need Higgs mechanism to generate mass for particles. The 
Higgs mechanism will be discussed in the section 4.4. 
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4.3 Symmetry breaking 

When temperature is high, we have the state with high symmetry due to the 
entropy effect (see chapter of statistical mechanics). When temperature is 
low, the high symmetry state will transform into a state with lower energy, 
which usually has lower symmetry. The symmetry breaking is related to 
the phase transitions of second order and critical phenomena. It is one of 
the most important physical mechanisms. 

Now we consider the Lagrangian 
1 1 2 2 A 22 

£ = 28pJ/J8~¢- 2m ¢ - 4(¢ ) , (4.36) 

where cp = ( cp1 , cp2 , · · · , cp N). This Lagrangian corresponds to the scalar 
bosons with mass m and a self-interaction ~¢4 . The Lagrangian exhibits 
an O(N) symmetry under which cp transfers as anN-component vector and 
is renormalizable. We can add a term that does not possess the O(N) 
symmetry to break the O(N) symmetry. For instance, we can add cpi¢2 to 
break the 0 ( N) symmetry down to 0 ( N - 1). However, the Lagrangian 
does not possess the original O(N) symmetry anymore. There is another 
way for system to break the symmetry. We keep the Lagrangian with the 
O(N) symmetry, but the ground state turns out to be a state without 
the 0 ( N) symmetry. This phenomenon is called spontaneous symmetry 
breaking. 

4.3.1 Spontaneous symmetry breaking 

We have explained that for scalar bosons, positive mass term leads to the 
ground state with higher energy. Thus a Lagrangian density with the cor­
rect ground state would have the following form 

£ = ~8~¢8~¢ + ~J-l2 ¢l- ~(¢2 ) 2 . (4.37) 

We have changed the sign of the ¢2 term in Eq. (4.36). We can not 
just say that the field has the particles with mass FJli = iJ-l, which is 
meaningless. ~(8i¢) 2 - ~f-l2¢2 + ~(¢2 ) 2 is the potential term. We notice 
that ¢ = 0 is not the position of the minimum for the potential term. It 
is the maximum position. The minimum is at ¢ =f 0. Now we determine 
the minimum of the potential term. Clearly, any spatial variation in ¢ 
will increase the energy. Thus we set ¢(x) to be a constant quantity ¢0 in 
spacetime and look for the minimum of potential. We define 

V(¢) = -~J-l2¢2 + ~(¢2)2. (4.38) 
2 4 
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V(¢) 

Fig. 4.1 Potential of field. 

First we consider the case N = 1. The potential is shown in Fig. 4.1. 
The minimum is determined by ~~ = 0 and ~~~ > 0. 

av 
8¢ = -J-L2¢ + >-.¢3 = ¢( _J-L2 + >-.¢2) = 0. ( 4.39) 

¢ = 0 corresponds to a maximum. ¢ = ±(J-L2 I>-.)~ = ±v are the two 
minima. 

There are two possibilities for the ground state: ¢ = +v or ¢ = -v. 
Physics is equivalent for the two cases. When the nature made the choice, 
the reflection symmetry ¢-+ -¢of the Lagrangian is broken. It is broken 
spontaneously. We can choose either two ground states. So we choose the 
ground state at +v and write ¢ = v + ¢'. We expand £ in ¢' and we have 

( 4.40) 

Now we have a positive mass term for the shifted field¢'. The particles 
corresponding to the field¢' with mass J2J-L. The first term is the constant 
term, which will contribute to the cosmological constant. 

4.3.2 Continuous symmetry 

The case N ~ 2 is different with N = 1. For N = 1, the symmetry is the 
reflection symmetry¢-+ -¢. It is a discrete symmetry with one symme­
try transformation. For N ~ 2, we have an infinite number of symmetry 
transformations with continuous parameters. We call it continuous sym­
metry. For N = 2, the shape of the potential is shown in Fig. 4.2. We have 
the 0(2) symmetry in the Lagrangian. The potential has the minima at 
4>2 = J-L2 I>-., which corresponds to an infinite number of equivalent vacua 
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characterized by the direction of¢. We can choose any one of them and 
others are the same with it. So we choose the one with the direction of¢ 
to be in 1 direction. In this case, ¢ 1 = v = jJli]). and ¢2 = 0. 

Now we express the field functions as the fluctuations around the vac­
uum. We have ¢ 1 = v + ¢~ and ¢2 = ¢~ and put them into the Lagrangian 
density in Eq. ( 4.37). The Lagrangian density becomes 

( 4.41) 

In Lagrangian density given by Eq. (4.41), the particles generated by the 
field ¢i have a mass v'2J.-l. However, the field ¢~ is massless due to the 
absence of ¢~ 2 term. The emergence of the massless boson field ¢~ comes 
from the symmetry of vacuum. The potential along the bottom of the 
potential takes the same values. ¢~ is the field along the bottom. It costs 
no addition energy to go around the potential bottom. The mass of particles 
is zero for the field ¢;. The massless field ¢; is called N ambu- Goldstone 

bosons or Goldstone bosons. For N > 2, we have the similar results. After 
symmetry is broken, the system has the ground state with one massive 
boson and N - 1 N ambu-Goldstone bosons. 

V(¢) 

Fig. 4.2 Potential of field with 0(2) symmetry. 
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4.4 The Higgs mechanism 

We know that scalar bosons can achieve a positive mass term through sym­
metry breaking from a negative mass term with self-interaction. Through 
interaction between different types of particles, other particles can also be­
come massive by the symmetry breaking of the scalar boson field. This 
mechanism is called the Higgs mechanism. 

We consider the simplest case: the charged scalar field (complex scalar 
field) with the local U ( 1) gauge in variance coupled with the massless vector 
bosons. The vector boson term is given by -iFJ.LvFJ.Lv. We add the inter­
action term e2 AJ.LAM¢*¢ with the gauge invariance. Then the Lagrangian 
density is given by 

£ = -~FJ.LvFJ.Lv + ~[(8J.L- ieAJ.L)¢*][(8f-L + ieAJ.L)¢] 

+ ~M2¢2 _ ~.\(¢2)2. (4.42) 
2 4 

The Lagrangian is invariant under the local abelian gauge transforma-
tion 

U = e-iO(x). 

The gauge transformation of the field functions has the form 

¢(x) -t ¢'(x) = e-iO(x)¢(x), 

¢ * (X) -t ¢ * 1 (X) = e i(} ( x) ¢ * (X) , 

( 4.43) 

( 4.44a) 

( 4.44b) 

AJ.L(x) -t A~(x) = AJ.L(x) + ~8J.Le(x). (4.44c) 
e 

AJ.L is the massless vector boson field. As we did in the previous section, we 
set 

¢(x) = v + ~(x) + ix(x), ( 4.45) 

where v = J -p,2 /A. We have shifted the field by a value of ¢vac = v. 
Inserting in Eq. (4.42), we have 

£ = -~F pJ.Lv- e2v2 A AJ.L + ~(8 ~)2 + ~(8 X)2 
4 J.LV 2 J.L 2 J.L 2 (.t 

- .\v2 ~2 - evAJ.L8f-Lx + · · · . ( 4.46) 
2 2 

A mass term e 2v AJ.LAJ.L emerges in Eq. ( 4.46). The gauge transformation 
Eq. ( 4.44) become 

~ (X) -t ( (X) = [ V + ~ (X)] COS (} (X) + X (X) sin (} (X) - V, 

x(x) -t x' (x) = x(x) cos e(x) - [v + ~(x)] sin e(x), 

AJ.L(x) -t A~(x) = AJ.L(x) + ~8J.LB(x). 
e 

(4.47a) 

( 4.47b) 

(4.47c) 
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The resulted Lagrangian now describes a massive boson field interacted 
with two scalar boson fields, the massive ~ and massless x fields. It should 
be noted that the gauge bosons have only two independent transverse com­
ponents before the symmetry breaking. The third component (longitudinal 
component) has been gauged out by 8f.l-Af.L- CJ = O(with CJ taken to be zero 
here). Now longitudinal component A3 can be nonzero because the vector 
bosons become massive. We shall use the gauge transformation to gauge 
out another component. 

Since the Lagrangian does not change with any choice of the transfor­
mation function B(x) in Eq. (4.43), we can choose 8(x) to be equal to the 
phase of ¢(x) at any spacetime point. In this gauge, 

¢'(x) = e-iO(x)¢(x) (4.48) 

becomes a real field function. We set 

¢'(x) = v + 17(x), ( 4.49) 

which shifts ¢'(x) to a new field function 17(x) in a new vacuum ¢vac = v. 
17(x) is a new real function. In the new gauge, 

A' ( ) = A ( ) ~ ae ( x) "x f.L x + a . ,.., e xf.L ( 4.50) 

The Lagrangian density in Eq. ( 4.42) becomes 

£ = -~F' F'f.Ll/- e2v2 A' A'f.L + ~(8 )2 
4 f.J-1/ 2 f.L 2 f.J- 17 

1 1 
- >.v2172- 4)..174 + 2e2(A~)2(2v17 + 172), ( 4.51) 

where 

F~v = 8f.LA~- 8vA~. (4.52) 
The Lagrangian density Eq. (4.51) now describes a massive vector boson 
field interacted with a real scalar boson field 17· 17 is called the Higgs boson 
field, which has a mass 

( 4.53) 

All massless particles become massive particles through the Higgs 
mechanism. 

If there is no gauge interaction term, the complex massless scalar bosons 
become one massive boson and one massless Goldstone boson in the sponta­
neously broken symmetry. When there is a gauge interaction term between 
the vector bosons and scalar bosons, the vector bosons acquire mass at 
the expense of the would-be Goldstone bosons. Vector bosons with two 
components become massive vector bosons with three components while 
Goldstone boson disappears. This Higgs mechanism can be applied simi­
larly to the non-abelian gauge bosons. 
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4.5 Mass and interactions of particles 

The mass terms generally are not added purely as an self-interaction term. 
If we add the mass term as an self-interaction without interaction terms 
between different types of particles, these massive particles will become 
dark matters. However, the mass of particles can be generated through 
interactions by the Higgs mechanism. It is reasonable that the favorable 
interaction terms are those possessing the scale invariance, which maintain 
the symmetry of the scale invariance in the total Lagrangian. The inter­
action terms included in the standard model of electroweak unification are 
those possessing the scale invariance. 

The gauge group in the standard model is U(1) 0 SU(2), for which the 
gauge invariant Lagrangian density for the gauge bosons has the form 

1 . . 1 
£ b = --WJ WJJ..tV- -B BJ..tV (4.54) 

g 4 J..tV 4 J..tV ' 

where 

( 4.55) 

and 

j - j- j jkl k l W,_w - aJ..t Wv av WJ..t + gc WJ..t Wv, ( 4.56) 

BJ..t is the abelian gauge boson field and wz is the nonabelian gauge bo­
son field. The self-interaction terms for the gauge boson fields are scale 
invariant. One can add other interaction terms which are both gauge in­
variant and scale invariant. There are the interaction term of the gauge 
bosons with the left hand spinor fermions Lgb-lsf, the interaction term of 
the gauge bosons with the right hand spinor fermions Lgb-rsf, the inter­
action term of the scalar bosons with the spinor fermions Lsb-sf, and the 
interaction term of the gauge bosons with the scalar bosons Lgb-lsf. They 
are given by 

r - qT. . J..t (a 1 . 'B 1 . W ) q;, 1--gb-lsf - 'f/L1/'( J..t- 2zg J..t + 2zgr · J..t 'f/L, 

Lgb-rsf = {;RirJ..t( af-t - ig" BJ..t)1/JR, 

Lgb-sf = -ge[({;L¢)1/JR + 1{;R(¢t1/JL)], 

Cgb-.<b = { (a~ + ~ig' B~ + ~igT . w ~) ¢ r 
x {(a~+ ~ig'B1, + ~igT · W~) ¢}- A(¢l¢)2

, 

( 4.57a) 

( 4.57b) 

(4.57c) 

( 4.57d) 

( 4.57e) 
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where ->..(q) ¢) 2 is the self-interaction term. When a symmetry break­
ing term -J.L2 q) ¢ in the Lagrangian of matter is generated, the scale in­
variance symmetry is broken. The particles become massive by the Higgs 
mechanism. 

Before the symmetry breaking of the scale invariance, we have only three 
basic types of particles: 

(1) the scalar bosons with the Lagrangian density 

I' - 1 J.LVa a • 
'-'sb - 2g J.L¢ v¢, 

(2) the vector bosons with the Lagrangian density 

r - 1 pJ.Lv. 
'-'sb- -4FJ.Lv , 

(3) the spinor fermions with the Lagrangian density 

Lsf = {;Li"'(J.L8J.L'l/JL + {;Ri"'(J.L8J.L'l/JR· 

( 4.58) 

( 4.59) 

( 4.60) 

All these particles are massless. The massless particles moves with the 
speed of light. When the symmetry of the scale invariance is broken, the 
particles acquire mass. 





Chapter 5 

Perturbative Field Theory 

5.1 Invariant commutation relations 

We have solved the equations of motion for free fields. In order to treat 
the quantum fields with interactions, we will develop some tools which are 
useful for the calculations of quantum fields in this chapter. 

The commutation relations Eqs. (2.60) and (2.61) are the commutation 
relations between field operators at two different spatial positions but at 
equal time. Using the equations of motion, we can calculate the commuta­
tion relations between field operators at different times. One of the most 
important commutation relations is the invariant commutation relation, 
which possesses the Lorentz invariance. 

5.1.1 Commutation functions 

In the following, we consider the scalar boson field as an example. For 
scalar bosons, we define the invariant commutation relation between the 
field operators ¢(x, x0 ) and ¢t (y, Yo) as 

iL.(x- y) = [¢(x), ¢t (y)]. (5.1) 

L.(x) is also called the Pauli-Jordan function. We have used the homo­
geneous character of spacetime to write L.(x- y) as a function of x- y 
instead of x and y separately. It can be seen that L.(x- y) is a Lorentz­
invariant function from the definition Eq. (5.1) which is not dependent on 
any specific frame of reference. 

For the free complex scalar field, we can calculate the function L.(x-y) 
easily. The generator of time translation Gt is given by 

G,=ii= j d3xGfrlfr+~V'¢t'V¢+~m2¢t¢} (5.2) 

123 
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The corresponding equations of motion are given by 

iBo¢ = [¢, Gt] = i7r t, 

i8o¢t = [¢t, Gt] = in, 

i8o1r = [7r, Gt] = i(\72 
- m 2 )¢t, 

i8o1rt = [7ft, Gt] = i(\72 
- m 2 )¢. 

The solutions of the equations of motion have the form 

A I 3 A At * ¢(x, t) = d p[apup(x, t) + bpup(x, t)], 

At I 3 At * A ¢ (x, t) = d p[apup(x, t) + bpup(x, t)]. 

(5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 

(5.4a) 

(5.4b) 

In Eq. (5.4), we have two types of creation and annihilation operators de­
noted by (a, at) and (b, ht), respectively, because we have two components 
for a complex field. Similar to Eqs. (2.142), (2.143) and (2.146), we can 
deduce the following commutation relations: 

For the vacuum state, we have 

Inserting the expansion Eq. ( 5.4) into Eq. ( 5.1), we have 

(5.5a) 

(5.5b) 

(5.5c) 

(5.6) 

if::.(x-y) =I d3p I d3p'(up'(x)u~(y)[ap',abJ +u~,(x)up(y)[b~,,bp]) 

with 

=I d3p(up(x)u~(y)- u~(x)up(Y) 

= I 2w:;~1r )3 [ e -ip ( x-y) - e'P (x-y)] 

= if::.(+)(x- y) + if::.(-)(x- y) (5.7) 

(5.8a) 

(5.8b) 
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where we have defined the four-dimensional momentum p = (p0 , p) = (wp = 
Jp2 + m2, p). i6(+)(x- y) is called the positive frequency function and 
i6(-)(x- y) is the negative frequency function. Eq. (5.7) can be expressed 
as 

."( _ )=-! d
3
p sin(p·(x-y)) 

'l~ X y (27r)3 Wp . (5.9) 

We can extend the three-dimensional integration in Eq. (5.9) to four­
dimensional one in order to show the Lorentz invariance explicitly. We 
denote z = x - y and change Po from Wp to an independent variable in 
integration. Then we have 

i6(x- y) = J d
3
P [e-i(wpzo-p·z) - ei(wpzo-p·z)J 

2wp(27r)3 

where 

= ---- [ c5 (Po - w ) - c5 (Po + w ) ] e- t(po zo -p·z) J d
4p 1 . 

(27r)3 2wp P P 

_ J d4
p E(po) [£( ) A( )] -ip·z - (21r)3 2wp u Po- wp + u Po+ wp e , 

{ 
+1, for 

E(Po) = Sign(po) = 
-1, for 

Po> 0 

Po< 0 

is the sign function. Using 

1 
-
2

- [J(po - Wp) + J(po + Wp)] = J( (Po - Wp)(po + Wp)) 
Wp 

Eq. (5.10) becomes 

= c5(p6 - w~) 
= c5(p2 _ m2), 

J 
d4 

i6(x- y) = (27r~3 E(Po)c5(p2 - m2)e-ip·z. 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

The sign of Po does not change under any Lorentz transformations because 
the time-like momentum vectors with p0 > 0 always keep (p2 = m 2 > 0) 
and thus always lie in the forward light cone while those those with p0 < 0 
are always in the backward light cone. Thus 6(x- y) is Lorentz-invariant. 

We can easily show that other commutation relations satisfy the follow­
ing equations: 

(5.14) 
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Since the field operator ¢( x) satisfies the Klein-Gordon equation 

(0 + m2)¢;(x) = 0, (5.15) 

the function Li(x) also satisfies the Klein-Gordon equation 

(5.16) 

with the following boundary conditions at vanishing time difference. 

Li(O,x) = 0 (5.17) 

and 

(5.18) 

Eq. (5.17) comes directly from Eq. (5.9) because the integrand becomes an 
odd function of p when t = 0. We can verify Eq. (5.18) by differentiating 
Eq. (5.9). In fact, Eq. (5.18) is just the equal-time commutation relation 
Eq. (2.60). 

i aa Li(x- y)l = aa [¢(x),¢t(y)]l 
Yo xo-+Yo Yo xo-+Yo 

[¢;(x), Jt (y)JI 
xo-+Yo 

[¢(x), 7T(y)JI 
xo-+Yo 

= i83(x- y). (5.19) 

5.1.2 Microcausality 

Eq. (5.17) leads to a very important property of quantum field 

Li(x- y) = 0, for (x- y) 2 < 0. (5.20) 

The invariant function Li(x- y) vanishes when x- y is a space-like four 
vector. Eq. (5.20) has important implication that two observable quanti­
ties can be measured independently when the measurements take place at 
two points that have a space-like separation. This is the so-called micro­
causality, which states that disturbances can not propagate faster than the 
speed of light. 

In the following, we will give a deduction that Eq. (5.20) leads to the 
microcausality of observables. We write the operator for a local observable 
such as PJ-L as 

O(x) = ¢t (x)O(x)J;(x), (5.21) 
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where O(x) is a c-number function or a differential operator. The commu­
tator of two observables is given by 

[O(x),O(y)] = O(x)O(y)[<P(x)¢(x),¢t(y)¢(y)] 

= O(x)O(y){ ¢t (x)¢t (y)[¢(x), ¢(y)] 

+ ¢t (x)[¢(x), ¢t (y)J¢(y) + ¢t (y)[¢t (x), ¢(y)J¢(x) 

+ [¢t (x), ¢t (y)J¢(x)¢(y)} 

= O(x)O(y){¢t(x)i~(x- y)¢(y)- ¢t(y)i~(y- x)¢(x)} 

= O(x)O(y)(¢t (x)¢(y) + ¢t (y)¢(x))i~(x- y). (5.22) 

From Eq. (5.20), we obtain the microcausality for the scalar boson field. 

[O(x), O(y)] = 0, for (x- y) 2 < 0. (5.23) 

In the frame that two space-like points x and y have the same time, 
O(x)O(y) or O(y)O(x) can be considered as two consecutive measurements 
made within an infinitesimal time difference. Eq. (5.23) means that the 
measurement first at x and then at y is equivalent to the measurements 
first at y and then at x for two space-like points x andy. Thus the observ­
able 0 can be measured independently at two space-like points. 

5.1.3 Propagator functions 

In addition to the function ~ ( x- y), we can define other invariant functions 
for the operators, the so-called propagator functions. One of the most 
important propagator functions is the Feynman propagator ~p(x - y), 
which is defined as 

i~p(x- y) = (OIT¢(x)¢t (y)IO). (5.24) 

The symbol T denotes the time-ordered product of the operators ¢(x) and 
¢t (y), which is defined by 

where 

TA(x)B(y) = A(x)B(y)8(xo- Yo)± B(y)A(x)8(yo- xo), (5.25) 

{ 
1, for x > 0 

8(x) = 
0, for x < 0. 

(5.26) 

The operator T put the factor of two time-dependent operators A and B 
into chronological order that the operator having the later time argument 
is put before the other. ±sign in Eq. (5.25) occurs due to the reordering of 
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operators. The plus(minus) sign is for the boson(fermion) field operators. 
In the case of the free fields, L,p(x- y) is also called the free propagator. 

We can evaluate the Feynman propagator using the solutions of the 
equations of motion. The solution Eq. (5.4) for the complex scalar bosons 
consists of the following parts 

J;C+)(x, t) = j d3pfLpup(x, t), 

A(-) - J 3 At * ¢ (x, t) - d pbpup(x, t), 

J;tC+)(x, t) = j d3pbpup(x, t)), (5.27a) 

J;tC-\x, t) = j d3pabu~(x, t)). (5.27b) 

They have the properties 

Thus we have 

J;tC+)(x)IO) = (OIJ;C-\x) = o, 
J;C+)(x)IO) = (OI¢tC-)(x) = o. 

i6p(x- y) = 8(xo- Yo)(OI¢C+) (x)<f;tC-) (y)IO) 

+ 8(yo- xo)(OI¢tC+)(y)J;C-)(x)IO) 

= 8(xo- Yo) j d3pup(x)u~(y) 
+ 8(yo- xo) J d3pup(y)u~(x) 

= 8(xo - Yo) J d3
p - 1-e-ip·(x-y) 

(27r) 3 2wp 

+ 8(yo- xo) J d3p _1_eip·(x-y) 
(27r) 3 2wp 

(5.28a) 

(5.28b) 

= 8(xo- Yo)iD_(+)(x- y)- 8(yo- xo)iD_(-)(x- y). (5.29) 

We can express Eq. (5.29) in a more compact form. Using the following 
mathematical formula 

_1_ [8(xo - Yo)e-iwp·(xo-Yo) + 8(yo- xo)eiwp·(xo-yo)l 
2wp 

- - __1!5!_ ___,e :::--------::---J d -ipo·(xo-yo) 

- 27ri P6 - w~ + iE' 

where E is an infinitesimal number, we have 

J 
d4p e-ip·(x-y) 

D.p(x- y) = (2 )4 2 2 + · · 
1r p - m ~E 

We can see that the fourier coefficient of D.p(x- y) is 

D.p(p) = J d3xe-ip·x D.p(x) = 2 12 .. 
p -m +zc 

(5.30) 

(5.31) 

(5.32) 
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Since Dp(x- y) satisfies the following relation 

I 
d4 -ip·(x-y) 

(Dx + m2)t:,p(x- y) = (2 p)4 ( -p2 + m2) : 2 + . 
7r p - m ZE 

=-I (~~4 e-ip·(x-y) 

= -8(x- y), (5.33) 

the function Dp ( x - y) is the solution of the inhomogeneous Klein-Gordon 
equation containing a delta function as a source term. The Feynman prop­
agator has the meaning of amplitude probability for the process in which 
a particle created at the point x 1 , h in spacetime propagates to the point 
x 2 , t 2 where it is annihilated. Since field operators ¢ and ¢t contain both 
the operators for particles and antiparticles, Dp(x- y) describes the pro­
cesses for both particles and antiparticles depending on the chronological 
order of¢ and ¢t. 

In contrast, the commutation functions !::,(x- y), t:,(+)(x- y), and 
!::, (-) ( x - y) satisfy the homogeneous Klein-Gordon equation 

(5.34) 

where Di = D, t:,C+), and t:,C-). 

In addition to !::,(x- y) and Dp(x- y), there are several other commu­
tation functions and propagator functions. For the propagator functions, 
in addition to Dp(x- y), we define Dyson propagator as 

Dv(x) = 8(xo)t:,C-)(x)- 8(-xo)it:,(+)(x). (5.35) 

Dv(x) is also known as anti-causal propagator which has an opposite 
chronological order as compared to the Feynman propagator. 

We can also define two other propagators, the retarded propagator 
DR(x) and the advanced propagator DA(x). 

DR(x) = 8(xo)D(x), 

DA(x) = -8(xo)D(x). 

(5.36a) 

(5.36b) 

The Pauli-Jordan function !::, ( x) can be written as the difference between 
the retarded propagator and the advanced propagator 

(5.37) 

Using DR(x) and DA(x), we can define the principal-part propagator ~(x) 
as 

(5.38) 
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Inserting Eq. (5.36) into Eq. (5.38), we have 

- 1 
L,(x) = 2E(xo)L,(x). (5.39) 

The propagator functions L,p(x), L,v(x), L,R(x), L,A(x) and LS,(x) are 
the solutions of the inhomogeneous Klein-Gordon equation with a delta 
function as the source term 

(5.40) 

where L,i = L,p, L,D, L,R(x), L,A(x), Zi(x). Since they are the solutions of 
the inhomogeneous Klein-Gordon equation with delta function source, we 
also call them the Green's functions. For example, 6p(x) is also called the 
Feynman Green's function. These propagator functions contain a product 
of the function L,(x) with a unit step function in time such as 8(xo) or 
~E(x0 ). The step function is the one leading to the delta function when the 
Klein-Gordon operator is applied. 

5.2 n-point Green's function 

5.2.1 Definition of n-point Green's function 

We have calculated the Feynman propagator in the previous section, which 
is shown to be the Green's function for the equations of motion. The 
Green's functions are also called the correlation functions. They are the 
useful tools in the calculations of field properties. Now we generalize the 
two-point Green's function to the n-point Green's function defined as the 
following time-ordered product. 

(5.41) 

G(x1 , x2 , · · · , xn) is also called the n-point correlation function. Similar 
to the two-point Green's function, we can calculate the n-point Green's 
function using the solution of the equations of motion. Generally, the easiest 
way to calculate then-point Green's function is that uses the path integral 
formalism. Similar to the derivation of Eq. (2.102), we can express the 
n-point time-ordered product as a path integral. Then-point time-ordered 
product, which is also called the transition matrix element, has the form in 
the path integral formalism 

(¢', t'IT[¢(xl)¢(x2) · · · ¢(xn)]l¢, t) 

= J D¢¢(xl)¢(x2) · · · ¢(xn)ei It dT.C[¢]. (5.42) 
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5.2.2 Wick rotation 

Now we consider the evaluation of the two-point function 

(5.43) 

We can extract the correlation function G(x1 , x2) from the transition ma­
trix element Eq. (5.42) in the following way. We decompose 1¢) into the 
eigenstates In) of ii, which gives 

1¢, t) = eifit L ln)(nl¢) 
n 

n 

n 

Using the expansion of Eq. (5.44), we have 

(¢', t'IT[¢(x!)¢(x2)]1¢, t) 

= L (¢', t'ln') (n'IT[¢(xl)¢(x2)]1n) (nl¢) 
n,n' 

n,n' 

(5.44) 

The term with n' = n = 0 in Eq. (5.45) contains the correlation function 
G(x1 , x2) . The trick to exact the function G(x1 , x2) from Eq. (5.45) is to 
damp out the terms with n' -=f 0 or n -=f 0. These terms have the oscillatory 
factor e-i(End' -Ent). We can take the ground state Eo = 0. Thus one can 

introduce an exponentially damping factor by attaching an imaginary part 
to the time coordinate by t' ---+ r' e-ic5 and t ---+ re-ic5. When we take the 

limit T ---+ -oo and r' ---+ oo. The terms with n' -=f 0 or n -=f 0 are damped 
out. Geometrically, this is achieved by a rotation clockwise with an angle 
0 > 8 > 1r in the complex plane. To calculate the path integral, one can 
start from any 0 > 8 > 1r. In terms of the new rotated time coordinates 
T = ei8t and r' = ei8t', the limit of the matrix element has the form 

t-+-= 

= lim (¢', e-ic5r'IT[¢(x!)¢(x2)]1¢, e-ic5r) 
r 1 -+e 2 /joc 
r-+-ei/5= 

::::;, lim (¢', e-ic5r'IT[¢(x!)¢(x2)]1¢, e-ic5r). (5.46) 
Tl -+:X: 
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In the last line of Eq. (5.46), we have made an analytical continuation by 
going to real values of the rotated time coordinate T. This is a mathematical 
manipulation. If the integral is an analytic function in the time variable, 
this can also be considered as a procedure that we calculate the well defined 
limit in the last line of Eq. (5.46) and then make an analytical continuation 
to <5 = 0. Since one can choose any 0 > <5 > 1r, the most convenient choice 
is <5 = ~, which rotates the time axis into the pure imaginary direction. 
t ---+ -it. Such a rotation is called a Wick rotation. 

Using the Wick rotation t = -iT with T being real, Eq. (5.46) becomes 

t-+-oo 

= J~= L e-(En,r'-Enr) (¢', t'Jn') (nJ¢) (n'JT[¢(xl)¢(x2)]Jn) 
T-+-= n,n' 

= lim e-Eo(r'-r)(¢', t'JO)(OJ¢)(0JT[¢(xl)¢(x2)]JO). (5.47) 
T 1 -+oo 
r-+-oo 

Similarly, we have 

lim (¢', t'J¢, t) = lim e-Eo(r'-r)(¢', t'JO)(OJ¢). (5.48) 
t 1-+oo T 1-+oo 
t-+-00 

Combining Eq. (5.47) with Eq. (5.48) gives 

(OIT[¢(xt)¢(x2)]IO) = lim (¢', t'IT/;,(x:lt(~2)]1¢, t) 
t 1 -+oo ,t ,t 
t-+-00 

l
. I D¢¢(xl)¢(x2)eiS[¢] (5.49) 

= liD I "S["'] ' t'-+= Dcpei '+' 
t-+-oo 

where S[¢] = I d4x£( ¢, ¢)) is the action of the field. Eq. (5.49) can be 
easily extended to more general cases. 

(OJT[¢(xl)¢(x2) · · · J(xn)]JO) 

= lim (¢', t'JT[¢(xl)¢(x2) · · · J(xn)]J¢, t) 
t

1 -+oo (¢',t'J¢,t) 
t-+-oo 

. I D¢¢(xl)¢(x2) · · · ¢(xn)eiS[¢] 
= hm I . [ l . 

t'-+= DcpeiS </> 
t-+-oo 

(5.50) 
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To make the notations simpler, we generally omit the lim symbol in 
Eq. (5.50). Then Eq. (5.50) is expressed as 

G(x1, x2, .. · , Xn) = (OIT[¢(xl )¢(x2) .. · ¢(xn)]IO) 
J D¢¢(x1)¢(x2) · · · ¢(xn)eiS[4>] 

f D¢eiS[4>] (5.51) 

It is noted that on the right hand side of Eq. (5.51), the path integral should 
be modified slightly in accordance with the transformation in Eq. (5.46). 

5.2.3 Generating functional 

In order to calculate the path integral in Eq. (5.51), we define the generating 
functional of a field by 

(5.52) 

Using the generating functional, we can define a normalized functional 

Z[J] = ~~~~~· (5.53) 

Then we have 

(5.54) 

G ( x1, x2, · · · , Xn) is a symmetric function of its arguments for a scalar field. 
Eq. (5.54) means 

Z[J] = L ~ J d4 x1 · · · d4 xninG(x1, X2, · · · , Xn) 
n. 

n 

X J(xl)J(x2) · · · J(xn)· (5.55) 

There is another useful functional W [ J] defined by 

Z[J] = eiW[Jl. (5.56) 

W[J] is called the connected generating functional. Using W[J], we can 
introduce the connected Green's function Gc by 

_ (1)n-l 8nW[J] I 

Gc(Xl, X2, ... 'Xn) = T 8J(x1)8J(x2) ... 8J(xn) J=O. 
(5.57) 

The physical content for the name 'connected' will become clear in the later 
usage. 
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5.2.4 Momentum representation 

For a free field or perturbation calculations based on the free field, it is 
advantageous to work in the momentum space because the solutions of the 
equations of motion for the free field can be expanded using plane wave 
basis. The transformation of the Green's functions into the momentum 
representation is defined by 

G(p1,p2, · · · ,Pn)(2n)
484

(Pl + P2 + · · · + Pn) 

= J d4x1 · · · d4xninG(xl, X2, · · · , Xn)e-i(p 1 ·x 1 +p2 ·x2 +···pn·xn). (5.58) 

The 8-function factor comes from the conservation of energy-momentum 
due to the translation invariance of spacetime. After evaluating the right 
hand side of Eq. (5.58), there would be a factor 84 (p1 + P2 + · · · + Pn) on 
the right hand side of the equation so that the factor 84 (p1 + P2 + · · · + Pn) 
would be canceled out. 

5.2.5 Operator representation 

We introduce the operator functional defined by 

Z[J] = Tei J d 4 xJ(x)¢(x), 

Now we consider the functional derivatives of (OIZ[J]IO). 
Z[O] = 1, we have 

(
1)n 8n(OIZ[J]IO) 
i 8J(xi)8J(x2) · · · 8J(xn) 

J=O 
According to Eq. (5.54), we have 

Jnz[J] 5n ( 0 I Z [ J]l 0) 

J=O 
Inserting Eq. (5.62) into Eq. (5.54), Eq. (5.55) becomes 

Z[J] = L ~ Jd4xl·. ·d4Xn 8n(OIZ[J]IO) 
n n! 8J(xi)8J(x2) · · · 8J(xn) J=O 

x J(x1)J(x2)···J(xn) 

= (OIZ[J]IO). 

(5.59) 

(5.61) 

(5.62) 

(5.63) 
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5.2.6 Free scalar fields 

For a perturbation calculation, we need define a reference field, whose equa­
tions of motion can be solved. Generally, we take free fields as base fields 
because the equations of motion for free fields can be solved exactly. Now 
we consider the case of a free scalar field. The connected generating func­
tional for the free scalar field is given by 

W[J] = J Dcpe-i J d4x[!¢(D+m2-iE)¢-J¢]_ (5.64) 

with 0 = 8J.L8J.L. Here we have performed an integration by parts for the 
kinetic term in the Lagrangian density £ = ~(8J.Lcp81-Lcp- m2¢2 ) of a free 
scalar field 

(5.65) 

A positive infinitesimal E is introduced in accordance with Eq. (5.46). An 
alternative method is the Wick rotation, which enable one to evaluate the 
path integral in the Euclidean space (see Appendix E). 

In order to calculate the generating functional, we introduce a field ¢0 

satisfying the following equation 

[0 + (m2
- iE)]¢o = J(x). (5.66) 

We take ¢0 as a reference field and shift ¢ with respect to ¢0 . ¢ = ¢0 + ¢'. 
Then we have 

S[¢, J] = ~ j d4x [~¢(0 + m 2 ~ iE)¢ ~ 1¢] 
=- j d4x[~¢'(0 + m2

- iE)¢' + ~¢o(O + m2
- iE)¢0 

+ ¢'(0 + m2
- iE)c/Jo- J¢o- J¢'] 

J 4 [1 '(0 2 . ) I 1 =- d x 2¢ + m - 'lE ¢ + 2J¢o 

+ ¢'(0 + m2
- iE)c/Jo- J¢o- J¢'] 

= -~ j d4x [¢'(0 + m2
- iE)¢'- J¢o]. (5.67) 

In the derivation of Eq. (5.67), we have used Eq. (5.66). 
The solution of Eq. (5.66) is 

¢0(x) =- j d4y~F(x- y)J(y), (5.68) 
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where ~F is the Feynman propagator, 

I 
d4k e-ik·(x-y) 

~p(x- y) = (27r) 4 k2 - m2 + iE' 

which is the solution of the equation 

(5.69) 

(D + m 2
- iE)~p(x) = -54 (x). (5.70) 

Substituting Eq. (5.68) into S[¢, J] in Eq. (5.67), we have 

S[¢, J] =-~I d4
x¢'(D + m2

- iE)¢' 

-~I d4xd4yJ(x)~p(x- y)J(y). (5.71) 

Dependence of J in the path integral is contained in the second term of 
Eq. (5.71). Thus 

Z[J] =I D¢e-i f d4x[~¢(D+m2 -iE)¢-J¢] 

= Z[O]e-1 f d4xd4yJ(x)D..p(x-y)J(y). (5.72) 

Then the normalized generating functional for the free scalar field is 
given by 

Z [J] = Z[J] = e-1 f d4xd4yJ(x)D..p(x-y)J(y). (5.73) 
0 Z[O] 

The subscript 0 is used to denote a quantity of the free field. 

5.2.7 Wick's theorem 

We expand Zo[J] in Eq. (5.73) 

00 

1 [ ·1 ln Zo[J] = ~ n! -~ d4xd4 yJ(x)t:.p(x- y)J(y) 

00 

1 ( .)nl = 1 + ~ n! ~z d
4
x, · · ·d

4
x2n 

X ~F12~F34'' '~F2n-l2nJ1J2 · · · J2n (5.74) 

with ~Fij = ~p(Xi - Xj) and Jk = J(xk)· All the n-point functions 
with odd n vanish because Z contains only even powers of J and an odd 
functional derivative leaves an odd powers of J in the integrand which 
vanishes at J = 0. 
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For the even powers of functional derivatives of Zo, we have 

(5. 75) 

where the sum runs over all permutations (Pl,P2, · · · ,P2k) of the number 
(1, 2, · · · , 2k). Eq. (5.75) shows that the n-point functions of free scalar 
bosons can be written as a product of two-point functions, which is the 
so-called Wick's theorem. Wick's theorem thus allows us to calculate the 
n-point functions of the free fields in terms of the Feynman propagator. As 
an example, we consider the case of n = 4, which corresponds to k = 2. We 
have 

1 
Go(x1,x2,x3,x4) = -8 L~FP1P2~Fp3p4· (5. 76) 

p 

There are 24 terms in the sum. Since ~Fp1 p2 = ~Fp2p1 , ~Fp3p4 = ~FP4P3, 
and ~Fp1 p2 ~Fp3p4 = ~Fp3p4 ~Fp2p1 , we obtain a 2 x 2 x 2 = 8 factor from 
the sum, which just cancels with the factor 1/8. Only 2

8
4 = 3 distinct terms 

are left, which can be written explicitly as 

Go(xl, x2, X3, X4) = -~p(xl - x2)~p(x3 - x4) 

- ~p(x1 - x3)~p(x2 - x4) 

- ~p(x1 - x4)~p(x2 - x3). 

5.2.8 Feynman rules 

(5.77) 

We can express the expansion in a graphical way using Feymann diagrams. 
The Feynman rules set up the connection between the algebraic and graph­
ical representation. For the free field, they are given by 

(1) Each Feynman propagator i~p(x- y) is represented by a line as 
shown in Fig. 5.1. 

X y 

Fig. 5.1 

(2) Each source iJ(x) is represented by a cross as shown in Fig. 5.2. 
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Fig. 5.2 

(3) There is an integration over all the spacetime coordinates. 
( 4) There is a combinatorial factor for each diagram that takes into 

account the symmetry of the diagram under exchange of the external lines. 
Using the Feynman diagrams, we can express G(x1,x2,x3,x4) in 

Eq. (5. 77) as Fig. 5.3. 

1 2 

1 2 

+ 

3 4 

3 4 

Fig. 5.3 

Since Z 0 [J] = eiWo[Jl, we have 

iWo[J] = -~ j d4xd4 yJ(x)t>.F(x- y)J(y), (5.78) 

which can be expressed by a Feynman diagram shown in Fig. 5.4. The ~ 
factor in Eq. (5. 78) comes from the symmetry of exchanging the endpoints 
in Fig. 5.4, which correspond to the invariance of the integral in Eq. (5. 78) 
when the integration variables x and y are exchanged. 

X X 
X X 

X X 

Fig. 5.4 Fig. 5.5 

For the expansion of Zo [ J], we have 

Zo[J] = eiWo[J] 

= 1 + iWo[J] + -
2
1 

(iWo[J]) 2 + ~(iW0 [J]) 3 + · · · . 
3. 

(5. 79) 
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There are two types of Feynman diagrams in the diagram representation 
of Eq. (5.79): the connected graphs that all parts are tied together, such 
as Fig. 5.4 for iW0 [J], and the unconnected graphs such as Fig. 5.5 for 
( i W0 [ J]) 2 . The connected Green's function defined by Eq. ( 5. 57), such as 

1 8
2
Wo I . 

Gc(Xl, x2) = i l5J(xl)l5J(x2) J=O = 'l~p(xl - x2) (5.80) 

can be represented as a Feynman diagram shown in Fig. 5.1. Other Gc are 
zero. 

5.3 Interacting scalar field 

We can add any interaction term V ( ¢) in the Lagrangian density of matter 
to form the interacting scalar field without changing the total Lagrangian 
in Eq. ( 3.40). The form of the interaction term V ( ¢) should be determined 
in such a way that the ground state with the lowest energy can be achieved 
by adding the interacting term V(¢). Now we consider the Lagrangian 
density with an interaction term 

£=Co- V(¢), (5.81) 

where £ 0 = ~(8JL¢8JL¢- m2¢2
) is the Lagrangian density for free scalar 

bosons. V ( ¢) is the self-interaction term, such as A.¢4 term in the Higgs 
mechanism. In the following, we will discuss the perturbation method to 
calculate the n-point functions defined by Eq. (5.51) 

J D¢¢(xl)¢(x2) · · · ¢(xn)eiS[¢] 
G(x1, x2, · · · , Xn) = J D¢eiS[¢] (5.82) 

We expand the action exponential in terms of the powers of the 
interaction 

eiS[¢] = f ~! ( ~i I a•xv) N eiSo[¢]_ 

N=O 

(5.83) 

Inserting Eq. (5.83) into Eq. (5.82), we have 

00 1 . J D¢ E -
1 
( -i J d4xV)N etSo[¢] 

N=ON· 

(5.84) 
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5.3.1 Perturbation expansion 

We can use Eq. (5.84) to make the perturbation calculations of the Green's 
functions up to any orders in V. 

The generating functional is given by 

(5.85) 

where No= Z[o]- 1 . Using the relation 

(5.86) 

we obtain 

Thus, Z[J] in Eq. (5.85) becomes 

(5.88) 

Since the V dependent factor is now taken out of the functional integral, 
the functional integral is the one for the free field and can be expressed in 
terms of the free Feynman propagator. We have 

Z[ J] = Noe -i J d4zV( t oJ~z)) e- ~ J d4xd4yJ(x)D..p(x-y)J(y) 

= No e -i I d4 x v ( t o J( x l ) Zo [ J]. (5.89) 

Expanding the exponential factor e-if d
4

yV(-f oJ~y)) in powers of V, we have 

Z[J] =No~~! [ -i J d4
xV G OJ~y)) r Zo[J]. (5.90) 

Using the expansion Eq. (5.90), we can calculate the n-point Green's func­
tion perturbatively. 
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G(x1, X2, · · · , Xn) 
= 1 N . J D¢¢(xl)¢(x2) .. · ¢(xn) N~O N! [ -i J d4xV(¢(x))] etSo[¢] 

= 1 N J D¢ L_ -
1 

[ -i J d4 xV(¢(x))] eiSo[¢] 
N=ON. 

( 1) n c5n Z [ J] I 

= i 8J(x1)8J(x2) · · · 8J(xn) J=O 

(1)n = 1 c5n 
= i zo-l L N! 8J(x1)8J(x2) ... 8J(xn) 

N=O 

X [ -i J d4
xV G JJ~y)) r Zo[J] J=O. (5.91) 

We can also make the expansion for iW[J] = ln Z[J] which is related 
to the connected diagrams and reads 

iW[J] = lnZ[J] 

= lnNo + ln ( e -i I d4xV( t .sJ~x)) eiWo[Jl) 

= lnNo + iWo + ln(e-iWoe-ii d4xv eiWo) 

= lnNo + iWo[J] + ln ( 1 + e-iWo[J] (e -i I d
4
xV( t .sAx)) - 1)eiWo[Jl) . 

(5.92) 

We define a functional s[J] as 
s[J] = e-iWo[J] [ e-i I d4

xV( t /J) _ 1 J eiWo[J] 

= e-iWo[J]{ -i J d4xv(~ J~) +H-i J d4xV(~ J~) r 
+ ... }eiWo[Jl. (5.93) 

Inserting the expansion formula Eq. (5.93) for s[J] into Eq. (5.92), we have 

iW[J] = lnNo + iW0 [J] + (£[J]- ~£2 [J] + ... ) 

= lnNo + iWo[J] + e-iWo[J] [ -i j d4xV (~ J~)] eiWo[J] 

+ _!_e-iWo[J] [-i J d4xV (~ i_) ]2 eiWo[J] 
2! i 8J 

- ~ { e-iWo[J] [ -i j d4xV G J~)] eiWo[J]} 

2 

+ O(V3) 

1 
= lnNo + iWo[J] + iWl[J] + iW2[J]- "2(iW1[J])2 + O(V3

). (5.94) 
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with 

iWo[J] =-~I d4 xd4 yJ(x)fl.p(x- y)J(y), (5.95a) 

iW,[J] = e-iWo[J] [ -i I d4xV G li~) l eiWo[Jl, (5.95b) 

iW2[J] = ~~e-iWo[J] [ -i I d4xV G li~) r eiWo[J] (5.95c) 

Inserting the expansion Eq. (5.94) into Eq. (5.57), we can calculate the 
connected Green's functions of the interacting field. 

5.3.2 Perturbation ¢ 4 theory 

Now we consider the interaction term 

(5.96) 

where g is a constant, which is also called the coupling constant. We will 
show that the cj;4 type interaction term is the only interaction term in four­
dimensional spacetime leading to meaningful results for scalar bosons. Now 
we calculate the expansion of iW[J] using Eq. (5.94). 

iW[J] = lnN0 + iW0 [J] + iWI[J] + iW2 [J] 

- ~(iWI[J]) 2 + O(V3
) (5.97) 

with 

iWo[J] =-~I d4xd4 yJ(x)fl.p(x- y)J(y), (5.98a) 

iW![J] = e-iWo[J] [ -i I d4xt G li~) 4] eiWoiJI, (5.98b) 

iW [J] = _!_e-iWo[J] [-i ld4 x!L (!_i_) 4

]

2 

eiWo[Jl. 2 
2! 4! i fJJ 

(5.98c) 
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5.3.2.1 Generating functional up to O(g) 

We first calculate the term linear in g 

iW [J] = - ig e-iWo[J] J d4x_8_4 -eiWo[J] 
1 4! 8J4 (x) 

= _ ig e-iWo[J] J d4x~e-~ f d
4
xd

4
yJ(x)l::..p(x-y)J(y) 

4! 8J4 (x) 

=-~ { -3 J ~p(x- x)~p(x- x)d4 x 

+ 6i J ~F(Y- x)~p(x- x)~p(x- z)J(y)J(z)d4xd4yd4z 

+ J ~p(x- y)~p(x- z)~p(x- v)~p(x- w) 
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x J(y)J(z)J(v)J(w)d4 xd4yd4zd4vd4w }· (5.99) 

The second term is quadratic in J and thus contributes to the two-point 
functions. The last term contains four powers of J and thus contributes to 
the four-point function. We can express the expansion Eq. (5.97) graphi­
cally using the Feynman rules: 

(1) Propagator: i~p(x- y) is represented by a line as shown in Fig. 5.1. 
(2) Source: iJ(x) = is represented by a cross as shown in Fig. 5.2. 
(3) There is an integration over the spacetime coordinates for each source. 
( 4) There is an a symmetry factor for each diagram. 
(5) Each interaction factor n is represented by a dot as shown in Fig. 5.6. 
(6) There is an integration J d4x for each loop. 

X 
Fig. 5.6 Fig. 5.7 

Generally the connected generating functional i W [ J] for interacting field 
is represented by a double line as shown in Fig. 5.7. We can represent the 
expansion by Feynman diagrams 

iW[J] =lnNo+iW0 [J]+iW1 [J]+O(g2
) 

= ln No+ Fig.5.8 + (Fig.5.9 + Fig.5.10 + Fig.5.11) + O(g2
). ( 5.100) 
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iW0 [J] is the zeroth order term, which is given by Eq. (5.78). The graphs 
in the parentheses are the first order terms given by Eq. (5.98b). The first 
one corresponds to the first integral in Eq. (5.99). There are no external 
lines in the graph, which describes the vacuum processes. The second 
graph corresponds to the second integral in Eq. (5.99). It has a single loop 
attached and is called the tadpole diagram, which gives a mass change due 
to the self-interaction. The third graph is the last integral in Eq. (5.99), 
which describes the interaction process. 

)( )( CD 0 X X: X 

Fig. 5.8 Fig. 5.9 Fig. 5.10 Fig. 5.11 

Now we show the vacuum contribution in Eq. (5.97) can be canceled 
out by the normalization term lnN0 . Since No= Z[o]-1, we have 

Z[O] = J D¢ef d'x(Co-V)IJ=O 

= e -i J d4xV( t 8J~x)) e- ~ J d4xd4yJ(x)D.p(x-y)J(y) I . (5.101) 
J=O 

Expanding ln Z[O] similarly as we did in Eq. (5.92) and using W0 [OJ = 0, 

we have 

lnZ[O] = ln[e-ifd4xV(t,5J~xl)eiWo[J]] IJ=O 

= ln [1 + (e-ifd4xV(toJ~x)) -1) eiWo[J]] IJ=O 

= -ifd4xV (~-8 ) eiWo[J]I 
i 8J(x) J=O 

+ ~ [-i Jd4xV (~-8 )]
2 

eiWo[J] 
2! i 8J(x) 

J=O 

- ~ [-i Jd4xV (~-8 ) eiWo[J]l2 + ... 
2 i 8J(x) 

J=O 

= iWo[O] + iW1[0] + iW2 [0] + · · · 
= iW[O]. (5.102) 

The vacuum terms are those without external lines. When we take J = 0 
in W[J], all the terms with external lines vanish and only vacuum terms 
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remain. Thus lnN0 = -ln Z[O] cancels with the vacuum contribution in 
the expansion of iW[J] in Eq. (5.100). Then iW[J] can be evaluated using 
the Feynman diagram shown in Fig. 5.12. 

= ~)f-' --~)( + 
X 

Fig. 5.12 

5.3.3 Two-point function 

Using the expansion Eq. (5.92), we can calculate the connected n-point 
functions. We first consider the connected two-point function. 

5.3.3.1 Terms up to O(g) 

Using Eq. (5.97), we can obtain the expansion up to terms linear in the 
coupling strength. 

1 ()2W I 

Gc(Xl, X2) = i 6J(x!)6J(x2) J=O 

= -i ()2Wo I - i ()2Wl I + O(g2) 
6J(x!)6J(x2) J=O 6J(x!)6J(x2) J=O 

= i~p(x1 - x2) + i~ 12i I d4x~p(x- x)~p(x- xi) 
4. 

x ~p(x- x2) + O(g2) 

= i~p(x1- x2)- ~I d4x~p(x2- x) 

x ~p(x- x)~p(x- xi)+ O(g2
). (5.103) 

The first term in Eq. (5.103) is the term of O(g0
), which is the Feynman 

propagator for a free field. 

(5.104) 
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We can also evaluate the two-point function in the momentum space by 
the Fourier transformation 

(27r)464(Pl + P2)Gc(Pl, P2) 

= J d4Xl J d4X2e-i(pl-xl +P2"X2)Gc(Xl, X2)· (5.105) 

For a free field, we have 

(27r )464(Pl + P2)Gc(Pl, P2) 

= J d4Xl J d4x2e-i(p1·X1 +p2·x2) 

X [! d4q e-iq·(xl -x2) i l 
(27r)4 q2- m2 + iE 

4 4 ) i = (27r) 6 (Pl + P2 2 2 .. 
Pl- m +'lE 

(5.106) 

Thus we have the momentum representation of the two-point function 

Gco(p, -p) = Go(p, -p) = 2 \ + . = iilp(p). 
p -m 'lf. 

(5.107) 

The second term in Eq. (5.103) is the term of O(g). Its fourier transform 
is given by 

_gjd4 Jd4 { -i(Pl"Xl+P2"X2)[jd4 J d
4
ql d

4
q2 d

4
q3 

2 Xl X2 e X (27r )4 (27r )4 (27r )4 

e-iq2 ·(x2-x) e-iql·(x-xl) 

X (qr- m 2 + iE)(q~- m 2 + iE)(q~- m 2 + iE)]} 
4 4 g 1 = -(27r) 6 (Pl + P2)-

2 2 2 + . 
P1 -m 'lf. 

J d
4q 1 1 

X (27r)4 q2 - m 2 + iEp~- m 2 + iE. (5.108) 

Thus we have the expansion in the momentum representation 
. . 
'l 'l 

G c (p, -p) = 2 2 · + 2 2 · 
p - m + 'lf. p - m + 'lf. 

X [ -ig 12 J d4

q i l i (5.109) 
4! (21r)4 q2 - m 2 + iE p2 - m 2 + iE · 

Similar to the coordinate space representation, we can use the momen­
tum space Feynman rules to construct the expansion in the momentum 
representation. The Feynman rules in the momentum space are given by 

(1) Each free propagator line corresponds to a factor 2 i 2 + .. q -m ~E 
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(2) Each vertex is associated with a factor - ¥t. 
(3) The sum of all momenta flowing into a vertex should be zero. 

( 4) Each internal line is associated with an integration J (;:54 • 

(5) There is a symmetry factor for each diagram. 
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We use :E to denote the integral in the second term of Eq. (5.109) 

L =[!_I d4q i . 
2 (27r)4 q2 - m 2 + iE 

Then the expansion for the two-point function can be rewrtten as 

'L 
Gc(P, -p) =Go+ Go-:-Go 

z 
'L 

= Go(1 +-:-Go) 
z 

Go 1 
~ Go(1 -:E-. )-

z 

p2 - m 2 - 'L + iE · 

1 

(5.110) 

(5.111) 

From this equation, it can be seen that 'L is the modification to the mass 
due to the self-interaction and thus is called the self-energy. 

5.3.3.2 Terms up to O(g2 ) 

From Eq. (5.94), we can see that there are two different terms in the O(g2 ) 

contribution. One is iW2 [ J] which is the genuine term of the second order 
in V and the other is - ~ ( iW1 [ J] )2 , which can be considered as the iteration 
of the first order term. We draw the corresponding Feynman diagram in 
Fig. 5.13. 

The first graph in Fig. 5.13 is the Feynman diagram constructed by an 
iteration of the first order tadpole diagram. It is the square of the two first­
order terms. As shown in Fig. 5.13, this graph consists two parts of the first 
order in V connected by an internal line. Such a graph can be split into two 
unconnected parts when one internal line is cut. We call this kind of graphs 
one-particle reducible. Otherwise, it is called one-particle-irreducible (1PI). 

In order to describe the 1PI graphs, we introduce a vertex function 
r~~p(Pl, P2, · · · , Pn). It is also called connected proper vertex function. The 
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I 

0 1 0 0 
Fig. 5.13 

n-point vertex function is defined as 

f~~p(Pl,P2, · · · ,Pn) 

= G;; 1 (Pl, -pl)G;; 1 (P2, -p2) · · · G;; 1 (Pn, -pn)Gc(Pl,P2, · · · ,pn)· (5.112) 

r~~p(Pl,P2, · · · ,Pn) is also called the amputated Green's function because 
it is the connected n-point function with external lines truncated, which is 
the reason we add subscript 'amp'. To simplify the notation, we usually 
omit the subscript 'amp'. 

The free 1PI two-point function is given by 

(5.113) 

The 1PI part of the first order term is given by 

r~2\p, -p) = c- 1 (p, -p)G- 1 (-p,p)Gcl(P, -p) 

= 12 -ig J d4q i 
4! (21r)4 q2 - m 2 + iE' 

(5.114) 

where Gc1 (p, -p) is the second term in Eq. (5.109) contributed by the first 
order tadpole diagram in the first graph of Fig. 5.13. The factor 12 in 
Eq. (5.114) comes from the symmetry factor. 

For the 1PI graph of the second order in V shown as the second graph 
in Fig. 5.13, we have 

(5.115) 
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Another 1PI graph of the second order in V shown as the third graph in 
Fig. 5.13 contributes to the vertex function a term 

(2) ( ) r 2b p, -p 

= 4. 4! ( ~;19 ) 
2 

j (~~)4 (~~)24 (~~)34 04
(p- (q, + q2 + q3)) 

i i i 

X qf - m2 + iE q~ - m 2 + iE q~ - m 2 + iE. 
(5.116) 

5.3.4 Four-point function 

The three-point function is zero. Now we discuss the four-point function. 

5.3.4.1 Terms up to O(g) 

The expansion of the four-point function up to terms of O(g) is given by 

Since W0 depends on J only quadratically, the first term in Eq. (5.117) 
vanishes. Only the second term contributes. Using Eq. (5.99), we have 

Gc(Xl, X2, X3, X4) 

= -ig J d4xD.p(x- xl)D.p(x- x2)D.p(x- x3)D.p(x- x4). (5.118) 

The momentum representation is given by 

(5.119) 

5.3.4.2 Terms up to O(g2 ) 

The Feynman diagrams for the terms of O(g2 ) is shown in Fig. 5.14. The 
four diagrams on the first line are the vertices with self-energy insertion on 
each of the external legs. The diagrams on the second line are the genuine 
contributions. 
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xxxx 

Fig. 5.14 

The contribution from the diagrams on the first line of Fig. 5.14 is given 
by 

c ( ) - 4, rr4 i 12 ( -ig) 2 J d4 q 
2a P1,P2,P3,P4 - · k=l p~ _ m2 4! (27T)4 q2 _ m2 

4 0 

X L 2 ~ 2. (5.120) 
l=l Pz -m 

From the diagrams on the second line of Fig. 5.14, the contribution has the 
form 

( 4!)
2 rr

4 
i ( -ig) 

2 

1 d
4 q1 d

4q2 i 
G2b(P1,P2,P3,P4) = - 2- k=l p~ _ m2 4! (27T)4 (27T)4 qr _ m2 

x 2 i 2 (27T) 4 L 84 (q1 + q2- (Pk + pz)), (5.121) 
q2- m kl 

where the sum over (kl) runs over the pairs of number (1,2),(1,3), and (1,4). 

5.4 Divergency in n-point functions 

5.4.1 Divergency in integrations 

One of the difficulties in the quantum field theory is the divergence prob­
lem. Many integrals in the two and four-point functions diverge. The 
divergence problem can be solved by the renormalization procedure. The 
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renormalization procedure gives the effective field. The reason behind the 
renormalization procedure is that only physical interaction terms exist. Al­
though we can add any forms of the mass and interaction terms into the 
Lagrangian of matter without changing the total Lagrangian, the actual 
forms of the mass and interaction terms are those achieving the lowest en­
ergy for the ground state. The physical mass and other quantities should 
be finite. Actually we have only a particular form of mass and interaction 
terms to give physical results. 

Now we discuss the divergence problem. Let us consider the two-point 
function Eq. (5.111) 

i 
Gc(P, -p) = 2 2 I:+ . p - m - 'lE 

(5.122) 

with 

(5.123) 

To perform the integration over q, we rewrite the expression of the self­
energy I: in Eq. (5.123) as 

I:=[!_ J d4
q i 

2 (21r) 4 q2 - m 2 + iE 

g j d3qdqo i 
= 2 (27r )4 q5 - q 2 - m 2 + iE 

g j d3
qdq0 i ( 1 1 ) 

= 2 (21r) 4 2wq q0 - Wq + i8 - qo + wq- i8 
(5.124) 

with wq = J q 2 + m 2 . There are two poles located at ±wq =t= i8. According 
to Cauchy's theorem, the integral over q0 can be evaluated by closing the 
integral route to enclose the poles and giving each pole a value of 27ri x the 
residue x the sign of the direction of the integral route. 

The self-energy I: becomes 

(5.125) 

The integration is divergent. By introducing an upper bound A for the 
integral over lql, the integral diverges as A2 when A--too. It is called the 
quadratic divergence. 
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5.4.2 Power counting 

We can use power-counting to determine the degree of divergence of an 
integration. When an integration diverges as AD, we say the degree of 
divergence is D. When D > 0, the integration diverges. D = 0 corresponds 
to a logarithmic divergence. D < 0 is the case of convergence. For example, 
the integration of I; in Eq. (5.123) has D = 2 because d4 q gives 4 power of 
q and the denominator in the integrand gives two powers of q. 

For an interaction/"'..) cj;P inn dimensional spacetime, when the Feynman 
diagram has L loop and I internal lines, we have 

D = nL- 2I (5.126) 

because each loop contributes an integral J dnq and each internal propaga­
tor gives a power q-2 . 

When a diagram has V interaction vertices, there are p V lines in total 
because each vertex contributes p lines. We denote the number of the 
external line as E. One internal line originates and terminates at a vertex, 
consuming two legs of vertex. There are I internal lines. Thus we have 

pV=E+2I. (5.127) 

Each internal line carries an integral J dnq. In the mean time, each vertex 
contributes a delta-function associated with the conservation of momentum. 
Each delta-function, except the one associated with the overall momentum 
conservation, decreases the actual integration number by one. Thus we 
have also the following relation between the number of loops L and the 
number of vertices V 

L=I-(V-1). (5.128) 

Using Eqs. (5.127) and (5.128) to eliminate Land I in Eq. (5.126), we have 

(
n(p-2) ) (n ) D = n + 

2 
- p V- "2 -1 E. (5.129) 

In a perturbation expansion, we increase the number of vertices V to 
get the high orders of perturbation expansion. When the factor of V in 
Eq. (5.129) is positive, the degree of divergence becomes larger with the in­
creasing order of perturbation. We denote the factor before V in Eq. (5.129) 
by v 

n(p- 2) 
V= -p 2 . (5.130) 

When v > 0, we have an infinite number of divergent terms. For four­
dimensional spacetime ( n = 4), if p > 4 ( ¢5 , ¢6 , · · · ) , the expansion terms 
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are more and more divergent. p = 4 is the special case with v = 0. When 
v = 0, the degree of divergence D = 4- E is independent of V. All are 
divergent in the same manner, which makes the divergent parts cancel out 
possible. We will show that the renormalization procedure can remove the 
divergent part. Since D = 4 - E, there are only two types of divergent 
functions, the four-point function with E = 4 and the two-point function 
withE= 2. 

When n > 4, there is no even integer p which gives v ~ 0. This poses a 
strong limitation on the dimension of spacetime in which the particles can 
have interactions that are renormalizable. 

5.5 Dimensional regularization 

In order to separate the divergent parts from the convergent parts, we need 
introduce a parameter that could measure and remove the divergence. This 
is called regularization. There are two important types of regularizations, 
one is the Pauli- Villars regularization and the other the dimensional reg­
ularization. The Pauli-Villars regularization uses the parameter A - the 
upper bound for integral over lql. The dimensional regularization uses the 
parameter c = 4- n. Both regularizations are equivalent. In the following, 
we will use the dimensional regularization. 

Now we consider the action S in n-dimensional spacetime. 

(5.131) 

Since Sis a dimensionless quantity. £ must have the dimension 1-n with l 
as length dimension. Thus we have [¢] = zl-n/2, [g] = z-(n+v(l-n/2)) and 

[m] = z- 1 . In the renormalization procedure, we hope to keep the coupling 
constant g to be dimensionless. We add a mass factor to the ¢4 and rewrite 
the interaction vertex term as follows 

£ = £ _ !!_ 4-n~4 
0 4!/-L <.p ' 

(5.132) 

where J-L is an arbitrary mass. 

5.5.1 Two-point function 

For the two point function, the divergent integration is contained in the 
self-energy term. We consider the lowest order term of the self-energy ~' 
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which is given by the tadpole diagram. Similar to Eq. (5.123), which gives 
the corresponding ~ in four-dimensional spacetime, we have 

~ = !}_J-l4-n J dnq i . 
2 (21r)n q2 - m 2 + iE 

(5.133) 

The integral in Eq. (5.133) can be evaluated using Eq. (F.9) in the Appendix 
F. We have 

"- g 4-n 1 n-2 l!.r (1 n) ~--J-L --m 1f2 --. 
2 (21r)n 2 

(5.134) 

The f-functions with negative integers as variable have poles at 0. Thus 
the expression of~ is divergent at n = 4. In order to separate the divergent 
terms, we expand r around the pole. We have 

(5.135) 

where 1 ~ 0.577 is the Euler-Mascheroni constant. Inserting the expansion 
of r into Eq. (5.134), we have 

(5.136) 

Using 

(5.137) 

(5.138) 

The self-energy ~ diverges as ~. This divergent term has been separated 
from the rest convergent terms. 
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5.5.2 Four-point function 

Now we consider the regularization of the four-point function. The diver­
gent term of O(g2 ) comes from the 1PI vertex Feynman diagrams in the 
second line of Fig. 5.14. The three contributions can be evaluated similarly. 
We take the middle graph on the second line of Fig. 5.14 as an example. 
We evaluate the connected vertex function using Eq. (5.121) 

(4) ( ig 4-n) 2 ( 4!)2 
~r (P1,P2,P3,P4) = -

4
! J.L -

2
-

J dnq i i 
X ----:----------

(27r)n q2 _ m2 (p _ q)2 _ m2 (5.139) 

with p = P1 + P3 = P2 + P4 · 
The integration can be evaluated using several mathematical tricks. Us­

ing the integration identity 

1 [ 1 dz 
ab = } 0 [az + b(1- z)J2' (5.140) 

we transform the integrand in Eq. (5.139) into the following form 

1 1 
q2 _ m2 (p _ q)2 _ m2 

{
1 dz 

- Jo {(q2- m2)z + [(p- q)2- m2](1- z)}2 

[
1 dz 

- } 0 [q2 - 2pq(1- z) + p2(1- z)- m2J2 · 
(5.141) 

Changing the variable q by q' = q-p(1-z) in the integration ofEq. (5.139), 
we have 

(5.142) 

with s = p2 = (P1 + P3) 2
. 

We interchange the order of the integration over q' with that over z. 
The integration over q' can be evaluated in a similar way with that used 
for Eq. (5.133). We have 

J 
dnq' 1 

(27r)n [q'2 - m2 + sz(1- z)J2 

i n-4 n f(2- !!: ) 
= --[m2 - sz(1- z)]-2 7r2 2 . (5.143) 

(27r )n r(2) 
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The four-point function becomes 

~f(4) (p1, P2, P3, P4) 

= ~92/L2(4-n) i7r~f(2- ~) {1 dz[m2- sz(1- z)(24 
2 (27r)n Jo 

= . 2 E_1_r (~) {
1 

d [m
2

- sz(1- z)l-~ 
zg fL 3211"2 2 Jo z 47rJ-L2 (5.144) 

The integral in Eq. (5.144) is convergent. The divergent part is con­
tained in f(~). Using Eq. (5.137) and f(~) = ~- r + O(E), we have 

~f(4) (p1, P2, P3,P4) 

= g2~ [~- r + O(E)l [1- ~ {1 dz (m2- sz(1- z))] 
3211"2 E 2 }0 47rJ-L2 

= 2 iJ-LE ~- 2 iJ-LE [ 11 d (m2- sz(1- z))] 0( ) (5.145) 9 16 2 9 32 2 1 + z 4 2 + E · 11" E 11" 0 11"/-L 

In Eq. (5.145), We have separated the four-point function into a divergent 
part and convergent part. The integral is a function of p2, m 2 and J-L2, 
which will be denoted as r(s, m, J-L), 

1

1 
(m

2
-sz(1-z)) r ( s' m' 1-L) = dz 2 . 

0 411"/-L 
(5.146) 

The results for the middle graph on the second line in Fig. 5.14 can be 
used for the other two graphs on the second line in Fig. 5.14 with appro­
priate replacement of the momentums at external vertices. We introduce 
three Lorentz invariant Mandelstam variables s, t,and u 

s = (P1 + P3) 2 = P2, 

t = (P1 + P2)2, 

u = (P1 + P4)2. 

(5.147a) 

(5.147b) 

(5.147c) 

These variables are responsible to the variable change in the last summation 
of Eq. (5.121). Thus the summation of all the three diagrams in the second 
line of Fig. 5.14 is given by 

r (4)( ) 
1 P1,P2,P3,P4 

3ig2 ME 1 ig2 /-LE 
= 1611"2 ; - 3211"2 [3r + r(s, m, J-L) + r(t, m, J-L) + r(u, m, J-L)]. (5.148) 

In Eq. (5.148), the vertex correction r~4) has been split up into a divergent 
and a convergent part. 
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Summing with the zeroth order term, the total 1PI four-point function 
is given by 

f(4)(Pl,P2,P3,P4) = -igJ-LE + fl
4
)(pl,P2,P3,P4) 

. E 3ig2 J-LE 1 ig2 J-LE 
= -~gJ-L + 167r2 ~ - 327r2 [3r 

+ r(s, m, J-L) + r(t, m, J-L) + r(u, m, J-L)] 

= -igJ-LE{1-g[-3-~- -
1
-[3r+f(s,m,J-L) 

167r2 E 327r2 

+ r(t, m, J-L) + r(u, m, J-L)J] }· (5.149) 

We can define an effective coupling constant g by 

( 

r(4
)) 

g 1--.-1- -+g. 
~gJ-LE 

In terms of g, we can express the vertex function as 

5.6 Renormalization 

(5.150) 

(5.151) 

The arbitrary mass and interaction terms in Eq. (5.81) generally do not 
give convergent results. We need change the parameters in the mass and 
interaction terms to obtain a physical convergent results. This process is 
called the renormalization procedure. In order to eliminate the divergence, 
we add the counter terms 

Lcounter = -~8m2q}- g~E (Zg- Z 2 )q}. (5.152) 

We also make a transformation 

(5.153) 

Eq. (5.153) is equivalent to an counter term ~(Z -1)[(8¢)2- m2¢2] for the 
kinetic and mass terms. Eqs. (5.152) and (5.153) together are equivalent 
to a counter Lagrangian 

where Z, 8m2 and Z9 are the renormalization parameters determined in 
the following way. 
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The general form of the two-point function for the original Lagrangian 
is given by 

1 
G c (p, -p) = 2 2 ~ + . . p - m - ~E 

(5.155) 

The self-energy ~ is a function of the momentum p and can be expanded 
around the on-shell point p2 = m 2 . m is the physical observable mass. 

(5.156) 

where 

(5.157) 

In Eq. (5.156), we have written up the first two terms of the expansion 
around p2 = m 2 explicitly. The remainder of the expansion is put into the 
~2(P2 ) term with ~2(m2 ) = 0. 

We define 

and 

z=_1_ 
- 1- ~1· 

In terms of r~4) determined by Eq. (5.148), we define 

with 

( 
(4))-1 

z = 1 - .;l_ = ( 1 - g8r) - 1 

g ~gjJ/· T" 

T" 

rC4) 
8r = -:---21 , 

~g J-lf. 

where r denotes the so-called symmetric point. 

Pi . P; = m
2 

Goij - D 

(5.158) 

(5.159) 

(5.160) 

(5.161) 

(5.162) 

with i, j = 1, · · · , 4 denoting the external lines. At the point r, all particles 
are on shell with s = t = u =4m2 /3. 

From the self-energy expansion up to the one-loop diagram, 
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we have 

2 m
2 

1 m
2 

[ (47rJ-l2)] ~(m) = -g167r2~ -g327r2 1-r+ln m2 +O(E), 

~1 = ~2 = 0. 
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(5.164a) 

(5.164b) 

We can see that the divergent term is contained in the ~(m2 ) term. In the 
one-loop expansion, we have ~ 1 = 0 and thus Z = 1. But in the two-loop 
approximation, it can be shown that ~1 # 0 because the graph for the 
two-loop approximation is p-dependent. Thus in general Z-=/=- 1. 

Using the renormalized Lagrangian, we have the two-point function 

G(p, -p) 

(5.165) 

Since ~2 (m2 ) = 0, G(p, -p) has the pole at the physical mass m with 
residue i. G(p, -p) has no those divergent quantities contained in ~(m2 ) 

and ~1 . The new effective coupling g defined by Eq. (5.150) is given by 

g = gZ9 [1- gZ9 6f(s, t, u)] 

= 1-:0r(r) [1-1-:0r(r)Or(s,t,u)] 

= g {1- g [6f(s, t, u)- 6f(r)]} + O(g2
). (5.166) 

Since the divergent term rv ~ does not depend on the variables s, t, u, 
the substraction 6f(s, t, u) - 6f(r) removes the divergent parts. g does 
not contain the divergent term rv ~ and is thus finite. We obtain the 
renormalized 1 PI four-point function as 

f(
4) (P1, P2, P3, P4) 

= -ig{ 1-
3
!}"2 [ G(s, m2

) + G(t, m2
) + G(u, m2

) 

- 3G Gm2
, m2

)]} + O(g2
) (5.167) 

with 

G(s, m2
) = 11 

ln(m2 
- sz(1- z ))dz. 

r ( 4) (Pb P2, P3, P4) does not contain the divergent term. 

(5.168) 
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We can introduce the bare field ¢0 , bare mass m0 and bare coupling 
constant go to simplify the expression of the renormalized Lagrangian. We 
define 

¢o = v'z¢, 

m6 = m 2 +8m2
, 

- EZg 
go= gj.L z2· 

(5.169a) 

(5.169b) 

(5.169c) 

Then we can express the complete Lagrangian in terms of the bare quanti­
ties by 

(5.170) 

This bare Lagrangian has the same form as the original one and leads to 
the finite physical quantities. 

5. 7 Effective potential 

Due to the renormalization, the emergent values or the measured values 
of physical quantities are different with the bare values in the original 
Lagrangian. Although the relation between the measured values and the 
bare values are complicated. We can use the effective potential to simplify 
the relation. 

As an example, we consider the case of a scalar boson field. The un­
derlining principle is the same and can be applied for all other fields. For 
a scalar boson field, the Lagrangian is given by 

c = ~a/L¢o~L¢- V(¢) (5.171) 

with 

(5.172) 

We consider the calculations of the corresponding classical field. Since 
the loop expansion is an expansion in n, we consider the loop expansion. 
The physical classical quantities are related to the renormalized quantities. 
The renormalized mass m is given by 

m 2 = -ir(2) (0) 
amp (5.173) 

and the renormalized coupling constant g is related to the vertex function 
f(4) by 

- ·r(4) ( . - o) g- Z amp P~- · (5.174) 
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The classical field ¢c is defined as expectation value (¢). We will show 
that ¢c obeys the Euler-Lagrange equation with the Lagrangian whose pa­
rameters are the renormalized ones. The connected generating functional 
W is given by 

iW[JJ - (o+ jo-) J 

e - (O+IO-)o. (5.175) 

Thus the classic field ¢c is related to the connected generating functional 
by 

.-1-. ( ) = (o+l¢(x)IO-)J 
'PC x (O+Io-)J 

8W[J] 
8J(x) · 

(5.176) 

¢c depends on the source J(x). The vacuum expectation value (¢) 0 is given 
by 

(¢)o = lim ¢c· 
J---+0 

(5.177) 

We introduce a vertex function r[¢c] which is related to the connected 
generating functional by 

Eq. (5.178) gives 

r[¢,] = W[J] ~ j d4xJ(x)¢,(x). 

8r[¢c] = -J(x). 
8¢c(X) 

(5.178) 

(5.179) 

When J(x) -t 0, ¢c is a constant. According to Eq. (5.178), ¢c becomes 
the solution of the equation 

dr[¢]1 = o. 
dc/Jc ¢c 

(5.180) 

For a classical system, the vacuum state IO) should be replaced by a state 
which has the expectation value of constant in microscopic scale and depend 
on position in macroscopic scale. The dependence of ¢c on the coordinates 
can be resulted from the boundary condition for a finite system. Then 
Eq. (5.179) has the form 

(5.181) 
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r[¢c] can be expanded in ¢c as 

After Fourier transformation, we have 

(5.183) 

We can also expand r [ ¢c] in the Lagrangian form in terms of ¢c and its 
derivatives as follows: 

r[¢,] =I d4x [ -U(¢c(x)) + ~(8~r/>c) 2 + .. ·] 

=I d4
XLc, (5.184) 

where U(¢c(x)) is called the effective potential and f[¢c] is thus also called 
the effective action. Inserting Eq. (5.184) into Eq. (5.181), we have 

(5.185) 

which is called the Euler-Lagrange equation. 
Now we discuss the relation of f(n) in Eq. (5.183) with the amputated 

Green's function r~~P· According to Eq. (5.112), the amputated Green's 
function is defined by 

f~~p(Pl,P2, · · · ,Pn) 

= [G;;- 1(pl, -pl)G;;- 1 (p2, -p2) · · · G;;- 1 (Pn, -pn)Gc(Pl,P2, · · · ,Pn)· (5.186) 

In terms of the spacetime coordinates, we have 

fi~p(Xl, X2, · · · , Xn) 

=I d•y, I d4Y2 ... I d4ynG~nl(y,,y2, ... ,yn) 

X [G~2)(Yl- xl)r 1 [G~2\Y2- X2)r 1 
... [G~2)(Yn,Xn)r 1 . (5.187) 

To simply the notation, we rewrite Eq. (5.187) in a compact form 

r(n) = c(n) (G(2))-n 
amp c c · (5.188) 
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The generating functional r amv[JJ of the amputated Green's function 
is defined by 

or 

famp[J] = L ~r~~PJn n. 
n 

= """"'.!_G(n) (G(2))-n Jn 
L....t n! c c 

n 

(5.189) 

(5.190) 

Thus W[J] is also the generating functional for the amputated Green's 
function. 

Using Eq. (5.183), we have 

(n) - 6nf(¢) I 

f (xl, X2, · · · , Xn) - 6¢(xl) ... 6¢(xn) ¢=¢c 

According to Eq. (5.175), W[O] = 0. Then we have 

r(o) = o. 
Using Eq. (5.181), we have 

r(l) = ~ = o. 
6¢c 

Using the identity relation ~~ = 1, we have 

6J 6¢c 62f 62W 
6¢c Y.J = - 6¢~ 6J2 = 1. 

Taking J = 0, we have 

or 

(5.191) 

(5.192) 

(5.193) 

(5.194) 

(5.195) 

r(2) = i(G(2))(-l) = if(2) (5.196) 
c amp· 

Taking the functional derivative 8t over Eq. (5.194), we have 

63f 62W 62f 63W 62f 
6¢2 6J2 - 6¢~ 6J3 6¢~ = 0. (5.197) 

Multiplying Eq. (5.197) with ~~~ and using Eq. (5.194), we have 

63r _ 6
3
W (62r) 3 

6¢2 - - 6J3 6¢~ (5.198) 
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Taking J = 0, we have 

r(3) = -iG(3) (G(2)) ( - 3) = -ir(3) 
c c amp· (5.199) 

Similarly, we can obtain the following relation by further taking the func­
tional derivative 8;c . 

64r = 64w ( 62r)4 _ (<53W)2 ( 62r)s 
<5¢~ 6J4 <5¢~ 3 6J3 6¢~ (5.200) 

Taking J = 0, we have 

r(4) = -ir(4) - i3r(3) r(3) 
amp amp amp· (5.201) 

For the case of ¢4 potential, we have 

r (4) = _,;r(4) 
~ amp· (5.202) 

Since r(n) has only minor difference with ri~p, we often do not distinguish 
them and use the same name to call them. 

When ¢c =a is a constant in case of J(x) = 0, using Eq. (5.184), we 
have 

r[a] = -nu(a), (5.203) 

where n is the total volume of the spacetime. Comparing with Eq. (5.183), 
we have 

The relations to the renormalized quantities now read 

d
2
U(¢c) I = m2, 

dcj;~ 1>c 

d
4
U(¢c) I _ 

d~4 -g. 
'Yc ¢c 

Eq. (5.180) for the vacuum expectation value becomes 

dU(¢c) I = O. 
d¢c 1>c 

Inserting Eq. (5.205) into Eq. (5.184), we have 

r[¢,] = j d4x [~(iJ~¢,)2- m2¢~- f,¢~ ]· 

(5.204) 

(5.205a) 

(5.205b) 

(5.206) 

(5.207) 
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Using the Euler-Lagrange equation Eq. (5.185) and neglecting the interac­
tion term, we have the classical Klein-Gordon field equation with renormal­
ized mass 

(5.208) 

We can also construct the classical Lagrangian density £ directly using 
the renormalized quantities. 

Cc = ~8~¢8~¢- V(¢) (5.209) 
2 

with 

V(¢) = ~m2¢2 + !!_¢4 
2 4! . (5.210) 

The classical action is given by 

Sc[¢] = J d4x£c. (5.211) 

We choose a constant source function J to give a constant average field. 
Now we calculate W[J] by the saddle-point approximation of path integral, 
which is also called the stationary phase approximation or the classical 
approximation. 

W[J] is calculated by 

e-kW[J] = J D¢e*Sc[¢,Jl, (5.212) 

where 

S,[¢, J] = j d4x[.C, + ¢(x)J(x)]. (5.213) 

We have used Planck constant n explicitly because we will use approxima­
tion for the calculations of the classical case. The saddle-point position is 
determined by 

8Sc[¢, J]l = -J(x). 
8¢(x) <Po 

Expanding the action around ¢o gives 

S,[¢, J] = S,[¢o, J] + j d4x[¢(x) - ¢o] 8~~~) I¢, 

(5.214) 

+ ~ j d4
xd

4
y[¢(x)- ¢o][¢(y)- ¢o] D¢(~~:;(y) l¢o + · · · 

= Sc[¢o]- j d4x¢(x)J(x) 

1 J 4 4 [ ] 82Sc I + 2" d xd y ¢(x)- ¢o <5¢(x)r5¢(y) <Po [¢(y)- ¢o] + · · · · 

(5.215) 
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Performing the functional differentiation of the action gives 

J¢(~~:¢(y) I¢, = -[D + V"(¢o)]J(x- y). (5.216) 

Substituting Eq. (5.215) into Eq. (5.212) and performing the functional 
integration, we have 

e*W[J] = e*Sc[¢o,J]{det[D + V"(¢o)]}-~ · (5.217) 

Using the relation 

detA = eTrlnA, (5.218) 

we have 

J ·n 
W[J] = Sc[¢o] + d4x¢o(x)J(x) + z

2 
Trln[D + V"(¢o)]. (5.219) 

We express ¢o in terms of ¢c· Denoting ¢1 = <Pc- ¢o, we have 

Sc[¢o] = Sc[¢c- ¢1] 

= S,[¢,]-J d4
x¢,(x) J~~~) I¢,+ ... 

= Sc[¢c] + J d4x¢1(x)J(x) + · · ·. (5.220) 

Using Eqs. (5.219) and (5.220), we calculate f[¢c] in Eq. (5.178). 

J 
·n 

f[c/Jc] = Bc[cPo] + d4xc/Jo(x)J(x) + z
2 

Tr ln[D + V"(c/Jo)] 

-J d4xJ(x)¢,(x) 

J ·n 
= Sc[¢o]- d4x¢1(x)J(x) + z

2 
Trln[D + V"(¢o)] 

in 
= Sc[¢c] + 2Tr ln[D + V"(¢o)]. (5.221) 

When the source field is a constant, which is valid in microscopic scale, we 
have 

<Pc(x) =a. (5.222) 

Thus we have 

Sc[a] = -OV(a), (5.223) 

which gives 

in 
U(a) = V(a)-

2
n- 1Trln[D + V"(a)]. (5.224) 
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In the classical limit, n ---t 0, which corresponds to the tree approximation. 
Eqs. (5.221) and (5.224) show that the effective action r[a] becomes the 
same as the classical action and the effective potential U (a) becomes the 
same as the classical potential. Eq. (5.181) with the f[¢c] expanded in 
the Lagrangian form in Eq. (5.184) is equivalent to the Euler-Lagrange 
equation. Since the effective action is the same as the classical action, we 
can use the classical Lagrangian density in the Euler-Lagrangian equation. 

Since the divergence comes from the large k, the renomalization pro­
cedure can remove the integration over large k, which gives an effective 
field and effective Lagrangian with effective potential in low energy. The 
effective Lagrangian in low energy is applicable in quantum mechanics. 

For the non-vacuum case, we shall use the Riemann spacetime. We 
can first carry out the renormalization procedure in the local flat metric 
approximately, which is feasible because the divergence comes from the 
large k which is effective locally. The renomalization procedure gives the 
effective field for the effective potential. Then we use the effective field and 
effective potential in the action in the Riemann spacetime. Thus we have 
the effective total action for the effective field in the Riemann spacetime, 
which is invariant under an infinitesimal spacetime translation. Similar 
to the procedure leading to Eq. (3.26), we obtain the classical Einstein 
equations. 





Chapter 6 

From Quantum Field Theory to 
Quantum Mechanics 

We are now ready to deduce some approximate formalisms of physics which 
are important for the applications. One is the formalism of quantum me­
chanics which is applicable in microscopic scale and low energy. The other 
is the formalism of classical fields, which is applicable in macroscopic scale 
where the fluctuation and correlation are small. First we consider the sys­
tems with low energy where the quantum mechanics is used. When we 
say something is small or low, we should have a reference point. Here the 
reference energy is the mass m of particles. When the energy variation is 
much smaller than the mass of particles, the energy is said to be small. 
This is also called the non-relativistic limit. In this case, the number of 
particles is conserved because the loss of one particle costs an energy of 
m, which is much larger than the available energy. We only use quantum 
mechanics to describe the massive particles. For massless field, we do not 
have the mass of particle as a gauge energy and the conservation of particle 
number. Massless field is related directly to the classics massless field, such 
as electromagnetic field in the case of photons. In the following, we will not 
use the natural units so that we can write out the Planck constant n and 
the speed of light c explicitly in the discussions of the non-relativistic and 
classical limits. 

6.1 Non-relativistic limit of the Klein-Gordon equation 

First we consider the scalar boson field described by the Klein-Gordon 
equation. 

(6.1) 
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In order to derive the non-relativistic limit of the free Klein-Gordon equa­
tion, we make an ansatz 

¢(x, t) = <f(x, t) exp ( -~mc"t). (6.2) 

We have split the time dependence of ¢ into two terms: the fast oscillating 
term exp ( -*mc2t) and the slow changing term cp(x, t). 

In the non-relativistic limit, the difference of the energy E of the particle 
and the mass m is small. We define 

E' = E- mc2
. (6.3) 

In the non-relativistic limit, E' << E ~ mc2 . Thus 

( ilt ~~ ) "" ( E' <P) « ( mc
2 

<P) . (6.4) 

Using the ansatz Eq. (6.2), we have 

a¢ ( acp . mc
2 A) ( i 2 ) at = at- z-;;;-<p exp --nmc t 

(6.5) 

and 

a2
¢ a [ ( acp . mc

2 A) ( i 2 ) ] at2 = at at- z-;;;-<p exp --nmc t 

( 
0 mc

2 acp • mc
2 acp m

2
c

4 A) ( i 2 ) 
~ -z-;;;- at - z-;;;-at- ----,;:2<p exp --nmc t 

=- i---- + --cp exp --mc2 t ( 
2mc

2 acp m
2
c

4 
) ( i ) 

n at n2 n · (6.6) 

Inserting Eq. (6.6) into Eq. (6.1), we have 

(6.7) 

Eliminating the fast oscillating term exp ( -*mc2t), Eq. (6.7) becomes 

. acp n2 
2 A znat =-2m \7 <p. (6.8) 

Eq. (6.8) is the Schrodinger equation in the operator form for scalar bosons. 
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6.2 Non-relativistic limit of the Dirac equation 

Now we consider the non-relativistic limit of the Dirac equation Eq. (2.218) 

( in/yf18J.l - mc){jJ = 0. (6.9) 

or 

(6.10) 

The coupling of the Dirac fermion field with the photon field should 
maintain the gauge invariance. We introduce the covariant derivative Df.l = 
8/1 - i ;c Af.l to replace the or~linary derivative 8/1 to include this interaction 
term. In the classical limit, Af.l is replaced by its classical value and becomes 
the electromagnetic four-potential 

Af.l = {Ao(x), A(x)}. (6.11) 

Then the Dirac equation in the electromagnetic potentials is given by 

ill:= [co· (-ihD) + eAo + /3mc2].,j,. (6.12) 

Since particle-antiparticle creation and annihilation are negligible in low 
energy, we can consider particles and antiparticles separately. Thus the 
four-component spinor {jJ is decomposed into two-component spinors 

(6.13) 

Then the Dirac equation Eq. (6.12) reads 

in~(~) = (cu · ( -iliD)~) + eA0 (~) + mc2 ( ~A). at x cu · ( -iliD)<P x -x (6.14) 

In the derivation of Eq. (6.14), we have used the explicit representation of 
Dirac's matrices 

(6.15) 

where ai are Pauli's 2 x 2 matrices given by Eq. (2.226) and I is the 2 x 2 

unit matrix. 
Similar to the case of the non-relativistic limit of the Klein-Gordon 

equation, we use the ansatz 

(~) (rp) ( i mc
2 

) X = X exp --li-t . (6.16) 
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Inserting Eq. (6.16) into Eq. (6.14), we have 

. a (<P) (cu · ( -inD)x) (<P) 2 ( o ) ~nat x = cu. (-inD)I{J + eAo x - 2mc -x . ( 6.17) 

When the kinetic energy and potential energy are much smaller than 
the rest energy mc2

, i.e. 

and 

(eAox) << ( mc2x), 

we have from the lower component of Eq. (6.17) 

A u. ( -inD) A 

X= cp. 
2mc 

(6.18) 

(6.19) 

(6.20) 

This means that x is the small component of the field operator {/; and <jJ is 
the large component of the field operator {/;. Inserting Eq. (6.20) into the 
upper equation of Eq. (6.17), we have 

·t; ai{J _ [u. ( -inD)] [u · ( -inD)] A A A 

~nat - 2m cp + e Q!.p. (6.21) 

Using the relation 

(u · A)(u ·B)= A· B + iu ·(Ax B), (6.22) 

we have 

[u. ( -inD)] [u. ( -inD)] 

= ( ~V - ~A r + io- · [ ( -iliV - ~A) x ( -iliV - ~A)] 
= (~v- ~A)

2

- ~nu · (V x A) 
~ c c 

= (~v- ~A)
2

- en u ·B. (6.23) 
~ c c 

Thus, Eq. (6.21) becomes 

. ai{J [ 1 ( . e ) 2 en ] A ~n-= - -~nV--A --u·B+eA0 cp. 
at 2m c 2mc 

(6.24) 

This is the Pauli equation in operator version. The two components of r:p 

describe the spin degrees of freedom. 
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In the case of a homogeneous magnetic field B 0 , 

1 
A= 2Bo x x. 

When the magnetic field is weak, we have 

( -inV - ~A) 
2 

= ( -inV - ;c B 0 x x) 2 

~ ( -inV)2 
- ~ (Bo x x) · ( -inV) 

c 

= ( -inV) 2
- ~(Bo · L), 

c 

where 

L =X X (-inV) 
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(6.25) 

(6.26) 

(6.27) 

is defined as the operator of orbital angular momentum. In the derivation 
of Eq. (6.26), we have neglected the quadratic terms of A. We define 

1 s = 2fin (6.28) 

as spin operator. Then we obtain the Schrodinger equation in the operator 

form 

. ar:p [ 1 ( . )2 e ( ) A l A zn- = - -znV - - L + 2S · Bo + e o r..p. 
at 2m 2mc 

(6.29) 

The factor 2 before S is the g factor for spin. When the relativistic effect 
is considered, the g factor for spin has a little deviation from 2. Since the 
spin degeneracy 9s for spin-~ fermions is 2, we often use the same notation 

9s for them. 

6.3 Spin-orbital coupling 

In the derivation of Eq. (6.20), we have neglected the term in~ and eA0x 
in the lower equation of Eq. ( 6.17). We can maintain the first order terms of 
in~ and eA0x and obtain a more accurate equation. The lower equation 
of Eq. (6.17) has the form 

·t:; a A A A 2 2 A ( ·t;n) A znatX- e oX+ me x = cu · -zn r..p. (6.30) 

We consider the field A0 as time independent. We can write the solution 
of Eq. (6.30) in the following form 

X= [inat- eAo + 2mc2r 1cu. ( -inD)cp. (6.31) 
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Inserting Eq. (6.31) into the upper equation of Eq. (6.17), we have 

(in8t- eAo)cp- CO'. ( -inD) ·na 1 2 2CO'. ( -inD)cp = 0. (6.32) 
~ t- e o + me 

We expand the operator [in8t - eA0 + 2mc2]-1 and keep the first order 
terms of inft and eAo. 

1 1 ( i n8t - eA0 ) -l 
--------:- = -- 1 + ----
in8t - eA0 + 2mc2 2mc2 2mc2 

= _1_ ( 1 - in8t- eA0 ) 

2mc2 2mc2 

1 in8t- eAo 
(6.33) 

Then Eq. (6.32) becomes 

( 
. t;a A ) A _ [ u . (- inD) ]2 

A 

~n t - e o 'P - 2m 'P 

_ u · ( -inD)(in8t- eAo)u · ( -inD) cp (
6

.
34

) 
4m2c4 · 

In the following, we will neglect the A term for the first order correction. 
Keeping the lowest order terms, the second term on the right hand side can 
be rewritten as 

u · (-inD)(in8t- eAo)u · ( -inD)cp 

= u · ( -inD )u · ( -inD) ( in8t - eAo )cp 

+ u · ( -inD) [in8t- eA0 , u · ( -inD)]cp 

= [u · ( -inD)]
4 

cp + u · ( -inD)[u · ( -inD), eAo]cp. (6.35) 
2m 

Now we evaluate the commutator in Eq. (6.35) 

Then 

[u · ( -inD), eAo] = u · ( -inV)eA0 - eAou · ( -inV) 

= -ienu · V Ao 

= ienu ·E. 

u · ( -inV)[u · ( -inD), eA0 ] 

= u. ( -inV)(ienu ·E) 

(6.36) 

= en2 (V. E +E. V) + enu. (inV X E- inE XV). (6.37) 
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In the case of the static electromagnetic field, V x E 
Eq. (6.32) becomes 

[ 
1 2 e 

-(-inV) - -(L + 28) · Bo + eA0 2m 2me 

( -inV) 4 en2 

8 3 2 - -4 2 2 (V . E + E . V) me me 
ienS · (E x V) J A 

+ 2m2e2 'P· 
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0. Thus 

(6.38) 

In the above equation, the ( ~::;:t term is the relativistic kinetic correction. 

4~~
2

c2 (V · E + E · V) is the Darwin term. Since it contains a non-hermitian 
term E · V, a further transformation is usually performed to make the 
Darwin term hermitian when the Darwin term is used in a Hamiltonian. 
The last term is the spin-orbital coupling term which we denoted as H 80 • 

For a spherical potential A0 , the last term in Eq. (6.38) becomes 

-e 
Hso = -

2 2 2 S ·[Ex (-inV)] 
me 

e 1 8Ao . 
= 2m2e2 ~ Br S. [r x ( -'lnV)] 

= _e_~ 8Ao (S. L) 
2m2e2 r Br ' (6.39) 

which shows clearly that it describes the spin-orbital interaction. 

6.4 The operator of time translation in quantum mechanics 

When we inspect the Schrodinger equation, we can see that the left hand 
side is in8trp and the right hand side contains no time derivative. 

Since ir = i~t, according to Eqs. (2.64) and (2.65), we have 

{rpa(x, t), rp1(x', t)} = 8a138(x- x'), 

{rpa(x,t),rp13(x',t)} = {rp~(x,t),rp1(x',t)} = 0. 

(6.40a) 

(6.40b) 

Thus rp(x, t) and r.pt (x, t) behave similarly as annihilation and creation op­
erators. It should be noted that we have used the complex field operator for 
the Dirac fermions and thus we have the complex r.p and r.p t. The operators 
rp(x, t) and r.pt(x, t) can be considered as complex annihilation and creation 
operators. We often use a and at to denote r.p and r.pt, respectively, as an 
indication of their properties. 
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The Schrodinger equation Eq. (6.29) in the operator form can be written 
as 

(6.41) 

with 

fi = j d3 x{ 2~ (inVcj)). ( -inVcp) 

+ [-
2
:c (L + 2S) · Bo + eAo J cpt cp }, (6.42) 

When we use the notation of annihilation and creation operators, Eq. (6.42) 
becomes 

il= j d3x{ 2~(ilfVal(x,t))·(-iiLVit(x,t)) 
+ [-

2
:c (L + 28) · Bo + eA0] at (x, t)it(x, t) }, (6.43) 

Since cp and cpt obey the same equation of motion, we have also 

a At 
in~ = [cpt,k]. (6.44) 

Using the notation of annihilation and creation operators, we have 

. aat _ At A 2n at -[a ,H], (6.45a) 

aa A 

in at =[a, H]. (6.45b) 

His then the generator of time translation. Thus, according to Eq. (2.288), 
H is the Hamiltonian of the system. 

The Hamiltonian can be written as 

(6.46) 

with 

(6.47) 

and 

(J = j d3xU(x)at (x, t)&(x, t). (6.48) 

T is the kinetic energy operator and U is the potential operator. (J in 
Eq. (6.48) is the local one-body potential operator. In the later sections, 
we will show that U can be many-body potential operator. 
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6.5 Transformation of basis 

We consider a system of N-particles. We denote HN the Hilbert space of 
states for a system of N identical particles. 

The creation and annihilation operators can operate in different bases. 
Of particular important are the state vectors fx) = fx, t). The meaning of 
fx) =at (x, t) fO) is that there is a particle at position x. 

Creation and annihilation operators in another basis can be derived as 
follows: Inserting the completeness relation, we obtain a transformation 
which transforms the orthonormal basis {fa:)} into another basis {f&)} 

f&) = L fa) (ala). (6.49) 

By the definition of the creation operators al and al, we have 

alf&1, &2, ... &n) = f&, &1, &2, ... &n) 

= L (o:f&) fa:, &1' &2, · · · &n) 

(6.50) 

Since Eq. (6.50) is valid for any state f&1, &2, · · · &n), we obtain the operator 
relation 

(6.51) 

The annihilation operators satisfy the adjoint equation 

(6.52) 

The commutation and anticommutation for the al and flex' can be ob­
tained straightforwardly from Eqs. (6.51) and (6.52), 

a a' 

= (&'f&) 

(6.53) 
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Thus we can get the expansion of the operators a,t (x, t) and a(x, t) on other 
basis {Ia)} 

(6.54a) 

(6.54b) 

where 'f?a(x) = (x, tla, t) = (xla) is called the wave function in the coor­
dinate representation of the state Ia). In quantum mechanics, we usually 
use another definition for wave functions 

'f?a(x, t) = (x, Ola, t). (6.55) 

which contains the time evolution information of the state. 

Since any operator can be expressed as a linear combination of the set 
of all product of the operators (at, &a), we can discuss the properties of 
any operator in terms of creation and annihilation operators. 

If {I a)} is an orthonormal basis of 1{ describing single-particle states, 
the canonical orthonormal basis of HN is the tensor products 

la1 ···aN)= la1) ®la2) 0 ···®iaN)· 

These basis states have the wave functions: 

= (x1, · · · xNia1, ···aN) 

= ((x1l® (x2l® · · · 0 (xNI)(Ial) ®la2) 0 ···®iaN)) 

= 'Pa 1 (xl)(f?a2 (x2) ···'PaN (xN ). 

The overlap of two basis states is given by 

(a1, a2, ···aN Ia~, a;,··· a~) 
= ((a1l® (a2l® · · · 0 (aNI)(Ia~) ®Ia;) 0 · · · ®Ia~)) 

= (a1la~)(a2la;) · · · (aNia~). 

The completeness of the basis is given by 

2..::: la1, a2, · · · aN)(al, a2, ···aNI= 1. 

The wave function of N bosons is symmetric and satisfies 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

'f?(Xp1 , Xp2 , • • • XpN) = 'f?(Xl, X2, · · · XN ), (6.60) 

where (P1 , P2 , · · · , PN) is a permutation of the set (1, 2, · · · , N). The wave 
function of N fermions is antisymmetric under the exchange of any pair of 

particles and satisfies 

'f?(Xp1 ,Xp2 ,···XpN) = (-1) 8P(f?(Xl,X2,···XN), (6.61) 
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where ( -1) 8
P denotes the sign or parity of the permutation P. Sp is 

the number of exchanges of two numbers which bring the permutation 
( P1 , P2 , • · · , PN) to the original form ( 1, 2, · · · , N). For convenience, we 
adopt a unified notation for both bosons and fermions 

r.p(Xpi'Xp2, · · ·XpN) = ~Spr.p(x1,X2, · · ·XN), (6.62) 

where ~ = 1 or -1 for bosons or fermions respectively. These symme­
tries pose the restrictions on the Hilbert space of identical particle systems. 
When a wave function r.p(x1,x2, · · ·XN) is symmetric under a permutation 
of particles, it belongs to the Hilbert space of N bosons B N. When a 
wave function r.p(x1, x 2, · · · XN) is antisymmetric under the permutations, 
it belongs to the Hilbert space of N fermions FN. 

We use the symmetrization operator PB and the anti-symmetrization 
operator Pp in 1-iN to obtain the symmetrized wave functions 

P 0 r.p(x1,X2,···XN) = ~! L~8Pr.p(Xp1 ,Xp2 ,···XpN), 
p 

where a= B, F. For any wave function r.p, we have 

P~r.p(x1, x2, · · · XN) 

1 1 ~~ SIS 
= N! N! L......tL......t~ p ~ Pr.p(Xptpl,Xptp2, .. ·XptpN) 

p P' 

1 
= Nl L Par.p(xl, X2, · · · XN )) 

. p 

= Par.p(x!, X2, · · · XN )). 

(6.63) 

(6.64) 

The symmetrized wave functions correspond to the symmetrized state 
with one particle in state a 1 , one particle in state a 2 , · · · , and one particle 
in state aN defined by 

Pa[a1,a2, ···aN)=~! L~8P[ap1 ) 0[apJ 0 · · · 0[apN) 
p 

1 
= JN![a1la2, ... aN)s. (6.65) 

Since Pa[a1, a 2, ···aN) is the basis of BN or FN, the completeness relation 
in BN or FN is given by 

L Pa[al, a2, · · · aN)(al, a2, · · · aN[Pa 

1 

N! 
(6.66) 
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Similar to Eq. (2.32), we have 

s (a~, a;,··· a~ la1, a2, ···aN) s = IJ na!. 

The orthonormal basis for the Hilbert space BN or FN has the form 

la1, a2,'' 'aN)SN 
1 

---;::;;::::::=~1 la1, a2,. ··aN) S 
Jfla na. 

1 """"' s = . IN! I1 I~~ PlapJ 0lap2) 0 ... 0lapN). 
V . ana. P 

(6.67) 

(6.68) 

The over lap of a state I fJ1, fJ2, · · · jJ N) constructed from an orthonormal 
basis I !3) and the state I a 1, a2, · · · aN) s N reads 

(fJ1, fJ2,''. fJNia1, a2,' '' aN)SN 

1 """"' s = J N! fla na! ./p' ~ P (!J1Iap1) (!J2Iap2) .. · (fJN lapN) 

1 
J N! fla na! S( (tJi lai) ), (6.69) 

where S(Mij) is the permanent for bosons 

Per{Mij} = LM1p1 M2P2 • • ·MNPN 
p 

and the determinant for fermions 

(6. 70) 

det(Mij) = L( -1)8
P M1p1 M2p2 • • • MNPN' (6.71) 

p 

In the coordinate representation, we have a basis of the permanents of 
wave functions for bosons 

'Pa 1 a2 ···aN (x1,'' 'XN) = (x1, ... XNia1,'' 'aN)SN 
1 

Per(rn . (x ·)) (6 72) 
JN! fla na! ra, ~ . 

and a basis of the Slater determinants for fermions 

'Pa1a 2 • .. aN(X1,···XN) = (x1,···XNia1,···aN)SN 
1 

= JNT det('Pai(xi)). (6.73) 

The overlap of two normalized bosons or fermions reads 

1 
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Inserting Eq. (6.68) into Eq. (6.66), we have the completeness relation for 
the states Jo:1, 0:2, · · · O:N) SN 

ITa na! J )( )J N! o:l,o:2,···0:N 0:1,0:2,···0:N = 1. 

By the definition of creation operator, we have 

a~jo:1, ·. · O:N) = Jo:, 0:1, ... O:N) 

= Ia:) 010:1, · ·. O:N). 

Thus we can also write 

al = Ia:) 0. 

Since a a is the adjoint of the creation operator a~, we can write 

(6. 75) 

(6.76) 

(6.77) 

(6. 78) 

The creation operator a~ does not operate within one space B N or F N. 

They transform states in the space BN or FN to those in BN+l or FN+l 
and thus operate within the Fock space B or F, which is defined as the 
direct sum of the boson or fermion spaces. 

B = Bo 0B10B2 0 · ·· = 0::;:=oBn, 

F = Fo ~ F1 0 F2 0 · · · = 0::::=oFn 

(6.79a) 

(6.79b) 

with Bo = Fo = IO) and B1 = F1 = 1i1. JO), Ia:), lo:1, o:2),· · · form the basis 
for the Fock space. The completeness relation in the Fock space is 

= 1 
IO)(OI+ L N! L lo:l,o:2,···o:N)ss(o:l,o:2,···o:NI 

N=l a1,a2,···aN 

= 1 
= IO)(OI + L N! L (IJ na!) 

N=l a1,a2,···aN a 

X lo:l' 0:2, ... O:N) SN SN (o:l' 0:2, ... O:N I 

=1. (6.80) 

6.6 One-body operators 

A convenient technique is to use the basis in which an operator is diagonal. 
An operator (; is diagonal when the operator (;is expressed as 

0 = L:aluaaa. (6.81) 
a 
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Eq. (6.81) can also be expressed as 

(; = L la)Ua(al. 

When we calculate (a I U I a), we have 

(aiUia) = L(ala')Ua'(a'la) = Ua. 
a' 

Using Eq. (6.65), we have 

s(a~, a~,··· a~IUia1, a2, · · · aN)s 
N 

= L ~SpLIT (a~k lak) (a~i IUiai) 
p i=l k:f.i 

(6.82) 

(6.83) 

= (t, Ua,) s(a~, a~,··· a~la1, a2, · · · aN)s. (6.84) 

Using Eqs. (6.51) and (6.52), we may transform the diagonal represen­
tation of (; to a representation with a general basis 

(; = L Ua(.Aia)(aiJL)a1 all 

= L\-AIUIJL)a1aw 
AIL 

where 

= j d3xd3 y L(.Aix)(xla)U(aly)(YIM) 
a 

= j d3xd3 y<p~(x)(x1Uiy)<p~t(Y) 
with <p~(x) = (.Aix) and 'P~t(Y) = (YIJL). 

In the { x} representation, the kinetic energy operator T reads 

T = _!f_ j d3xat (x)V2Et(x) 
2m 

fi2 J =-
2
m d3xlx)V2 (xl. 

A local one-body operator (; can be written as 

(; = j d3xU(x)at (x)a(x) 

= j d3xU(x)n(x) 

= J d3xU(x)lx)(xl. 

(6.85) 

(6.86) 

(6.87) 

(6.88) 
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6. 7 Schrodinger equation 

Since fi is the generator of time translation, for a state lx1 , x2, · · · XN), the 
time evolution is given by 

(6.89) 

or 

(6.90) 

Now we consider the wave functions in the x representation. We use 
the definition Eq. (6.55) of the wave functions for quantum mechanics. 

<j)o:t,o:z,···o:N (xl, X2, ... XN, t) = (xl, X2, ... XNic}:l, a2, ... CXN, t)sN 

= (xl,x2,···XN,tlal,a2,···aN)sN 

( I -ifltl ) = Xl,X2,···XN e al,a2,···CXN SN· 

(6.91) 
When we express fi as diagonal in the bases lx), we have 

(6.92) 

In the derivation of Eq. (6.92), we have used P~ = Pa. Thus 

(6.93) 
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Using Eq. (6.84), we have 

in :t 'Pa1 ,a2, ... a_N (x1, x2, · · · XN, t) 

N 

Jd
31d3' d3' l""'H ( I' I ') = xl X2··· XNN!~ x~SXl,x2,···XNXl,x2,···XNS 

i=l 
'Pa1 ,a2, .. ·aN (x~, x;, · · · x~, t) 

N 

= J d3x~ d3x; · · · d3x~ L Hx~6(xl- x~)6(x2- x;) · · · 6(xN- x~) 
i=l 

'Pa1 ,a2, .. ·aN(x~, x;, ···X~, t) 
N 

= :LHxi'Pal,a2, ... aN(xl,X2,···XN,t). 
i=l 

where 

(6.94) 

Eq. (6.94) is called the Schrodinger equation. We introduce the total 
Hamiltonian 

N [-n2 ] 
H = 8 2m \7~i + U(xi) . (6.96) 

Then Eq. (6.94) becomes 

ill! rp(x1, x2, · · · XN, t) = H ( { ~'V x,} , { x,}) rp(x1, x2, · · · XN, t), (6.97) 

which is the Schrodinger equation for an N-particle system. In Eq. (6.97), 
for simplicity, we have omitted the subscript a 1 , a 2 , ···aN, which is im­
portant only when the initial configuration matters. <p( x 1 , x 2 , · · · XN, t) is 
called the wave function for N-particles non-relativistic quantum system. 
It should be noted that in a system of quantum mechanics, the particle 
number N is conserved. 

We can introduce the operators for the physical observables of particles 
in quantum mechanics. jx) = at(x)IO) has the meaning that there is a 
particle at position x. When an operator A for the physical observable A 
of particles acts on the state lx), it should give the value of the physical 
observable A of the particle at position x. 

Ajx) = A(x)lx). (6.98) 
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In particular, the position operator :X acts on lx) to give the value of the 
position x of the particle. 

:XIx) = xlx). (6.99) 

Thus lx) is also the eigenstate of the position operator. For any function 
of position operator f(x), we have f(x) lx) = f(x) lx). j(x) is the value of 
f(x) at x. 

We define the Hamiltonian operator H(p, q) in quantum mechanics as 

(6.100) 

with 

(6.101) 

and 

(6.102) 

Pi = -ih\7 xi is called the momentum operator in quantum mechanics. The 
momentum operator p and position operator q obey the following commu­
tation relation 

[q, fJ] = [q, -ih\7 4] = in. (6.103) 

Similar to lx), IP) = abiO) is a state that there is a quanta with mo­
mentum p. When the momentum operator p of a quanta acts on lp), it 
gives the value of the momentum p of the quanta. 

:PIP) =PIP). (6.104) 

IP) is thus also the eigenstate of the momentum operator. 
The Schrodinger equation Eq. (6.97) for an N-particle system can be 

expressed as the operator form of quantum mechanics 

ih:tla1,a2, · · ·aN)sN = H(p,q)la1,a2, · · ·aN)SN· (6.105) 

Composite fermions can behave as bosons. When two fermions are 
strongly bound, they can be considered as one identity and a pair of fermion 
field operators are used as one operator. The operators composed of a pair 
of anti-commuted operators obeys the commutation relations of bosons. 
Therefore, a pair of bound fermions can be considered as a boson. In this 
case, the Schrodinger equation Eq. (6.97) can also be used for the composite 
Dirac fermions that behave as bosons. 





Chapter 7 

Electromagnetic Field 

7.1 Current density 

We consider the photon field (also called the electromagnetic field in the 
classical limit) coupled to a spinor fermion field (also called Dirac fermion 
field). The Lagrangian of the photon field coupled with the spinor fermion 
field is given by Eq. (2.530) with the form 

[, = [,Dirac + £photon + [,int 

- 1 -
= 'lj;(ir~L8JL- m)'I/J- 4FJLvFJLV- e'I/JriL'I/JAw (7.1) 

The coupling term in Eq. (7.1) is j~ AIL with 

(7.2) 

j~ is called the Dirac current. In terms of j~, the Lagrangian of the massless 
vector boson field with the coupling term can be expressed as 

[, - 1 F p~Lv ·JL A - [, £. --4 /LV -Je JL- o+ znt· (7.3) 

As the coupled field, the field operator ?j; of the spinor fermion field 
satisfies the Dirac equation Eq. (2.218), 

with 

(

?j;l (x, t)l 
?j; = ~2(x, t) . 

'lj;3(x, t) 
?j;4(x, t) 

187 

(7.4) 

(7.5) 
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Now we construct the four-current and the equation of continuity. Mul-
. • At At At At At 

tiplymg Eq. (7.4) from the left by 1/J = (1j;1 (x, t), 1j;2(x, t), 1j;3 (x, t), 1j;4 (x, t)), 
we obtain 

AaA nc 3 A aA A A 
in'lj;t at 1/J = i I: 1/Jt ak axk 1/J + mc21j;t /31/J. 

k=l 

(7.6) 

We further use the hermitian conjugate of Eq. (7.4) 

At 3 At 
-in a'lj; = -fie """""' a'lj; at + mc2;j) /3t. 

at i 6 axk k 
k=l 

(7.7) 

Multiplying the equation from the right by (/; and taking into consideration 
the hermiticity of Dirac's matrices (a!= ai, f3J = f3i), we have 

A 3 A 

0 a'lj; t A nc """""' a'lj; t A 2 At A 
-zn-1/J = ---:- 6 -ak1/J +moe 1/J /31/J. at 'l axk 

k=l 

(7.8) 

Subtracting Eq. (7.8) from Eq. (7.6), we obtain 

aAA nc 3 a A A 
inat(1/Jt1/J) = i 2: axk(1/Jtak1/J). 

k=l 

(7.9) 

We define a positive definite density operator of the form 

A - At A - At At At At 1/J2 - """""' At A • (~
1) 4 

p(x) = 1/J (x),P(x) - ( 1/11 ,1/12 ,1/13 , 1/14 ) ~: - {={ 1/J, (x),P,(x). (7.10) 

and the current density operator j 

j=:c(/;ta(/;. (7.11) 

Then Eq. (7.9) becomes the equation of continuity 

ap A 

at + v · j = o. ( 7.12) 

We obtain the conservation law directly from Eq. (7.12) 

:t fv d3x,j}(x).}(x) =- fv V · .]d3x = -/,.J· ds = 0, (7.13) 

where V denotes the volume of the system and s is the surface of the volume 
V. cp and j form a four-vector, which reads 
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or 

(7.15) 

According to Eq. (2.266), )1-L(x) transforms under the Lorentz transforma­
tion as a four-vector. 

Since )1-L(x) is a four-vector, we can write the equation of continuity in 
the Lorentz cnvariant form 

8)1-L 
8xJ-L =O. (7.16) 

Comparing with Eq. (7.2), we have 

(7.17) 

7.2 Classical limit 

Now we consider the photon field. It is easy to deduce the classical limit 
using the path integral formalism 

Z =I DAexp [~I d4
xC(A)l (7.18) 

where £ is given by Eq. (7.3). In the classical limit, the action is much 
larger than fi, we can calculate the path integral using the stationary phase 
approximation. In the limit fi--+ 0, the path integral is given by the value of 
the integrand at the extremum of S = J d4x£(Ac), where Ac is determined 
by the Euler-Lagrange equation. The Euler-Lagrange variational procedure 
is often called the principle of least action. 

In the electromagnetic unit, the action has the form 

s - 1 IF FJ-lV d4 1 I 'J-l A d4 - -167rc J-LV x- c2 Je J-l x. (7.19) 

The variation of the action gives 

~ s - I 1 ( 1 . J-l ~A 1 J-LV ~ ) 4 -u - - ~ ~Je u J-l + S1r F uFJ-lv d X - 0. (7.20) 

I t . F - Q&. ~ h nser 1ng J-LV - Bx~-' - Bx"' , we ave 

(7.21) 
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Integrating by parts and using Gauss's theorem, we have 

8S =- - -Jp, + --- 8A d X J 1 ( 1 . 1 app,v) 4 
c c e 47!' axv p, 

-
4
:C J pp,v 8aAp,dSv. (7.22) 

Neglecting the surface integration, we obtain 

- -jJ-t + --- 8A d4 x = 0. J (1 1 app,v) 
c e 471' axv p, (7.23) 

Since the variations 8Ap, are arbitrary, the coefficients of 8Ap, should be 
zero, which gives 

(7.24) 

7.3 Maxwell equations 

Expressing Eq. (7.24) in terms of E and B, and also using j~ = { cpe,je}, 
we have 

V x B = ~ aE + 47Tj (7.25a) 
c at c e' 

V · E = 41TPe· (7.25b) 

According to the definition of E and B given by Eqs. (2.511) and (2.512), 
B = V x A and E = - ~ ~~ - V A0 . Taking the divergence of both sides 
of the equation B = V x A, we have 

V·B=O. 

Evaluating V x E gives 
1 a 

v X E =-~at v X A- v X VAo 

1 aB 
cat· 

Altogether we have the following four equations 

V · E = 41Tpe, 

V·B=O, 

(7.26) 

(7.27) 

(7.28a) 

(7.28b) 

1 aB 
V x E = --- (7.28c) 

c at' 

v X B = ~ aE + 47Tj (7.28d) 
c at c e' 

which are called the Maxwell equations. When j~ is replaced by its classical 
values, Eq. (7.28) is the classical Maxwell equations. 
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7.4 Gauge invariance 

Usually we denote A 0 as <p. A and <p are also called the vector potential and 
scalar potential, respectively. The Lagrangian for photon field is invariant 
under the gauge transformation 

A -+ A' = A + \7 A, 

I 1 aA 
<p-+<p =<p---. 

c at 

(7.29a) 

(7.29b) 

The electric field E and magnetic field B are also invariant under the gauge 
transformation Eq. (7.29). 

v X A'= v X A= B, 

1 aA' I 1 aA 
-~fit- V<p =-~at- V<p =E. 

Thus E and B are independent of the gauge type. 

7.5 Radiation of electromagnetic waves 

(7.30a) 

(7.30b) 

Inserting B = V x A and E = -~ ~~ - V<p into Eq. (7.25), we have 

1 a2 A 1 a 4n 
v X (V X A) =- c2 at2 -~at V<p + -zje, (7.31a) 

1 a 2 ---a V ·A- \7 <p = 4npe. (7.31b) 
c t 

Eq. (7.31) can be reformulated into the form 

2 1 a2 
A ( 1 ar.p) 4n . 

\7 A - c2 at2 - V V . A + ~at = - -z Je' 

2 1 a 
\7 rn+ --V ·A= -47rp. 

r cat e 

We introduce the Lorentz gauge 

1 ar.p 
V·A+--=0 

c at ' 

(7.32a) 

(7.32b) 

(7.33) 

which can be satisfied by appropriate selection of the gauge transformation 
Eq. (7.29). Using the Lorentz gauge Eq. (7.33), Eq. (7.32) becomes 

(7.34a) 

(7.34b) 
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Eqs. (7.34a) and (7.34b) are the d' ALembert equations for A and cp, re­
spectively. They are wave equations. The solutions of the inhomogeneous 
wave equations Eq. (7.34) can be obtained in the following way. 

First we consider the solution of the equation 

2 1 82cp 3 
\7 cp- c2 at2 = Q(t)6 (r), (7.35) 

which is the wave equation Eq. (7.34b) for a source of a point-like charge 
at the origin of coordinates. 

Outside the origin r = 0, we have 

2 1 82cp 
\lcp-2-82 =0. c t 

(7.36) 

The source Q(t)6(r) is spherically symmetric. We formulate the Laplacian 
operator in the spherical coordinates. Eq. (7.36) becomes 

1 a ( 2 acp) 1 82 cp 
r 2 8r r 8r - c2 8t2 = O. 

We introduce 

u(r, t) = cp(r, t)r. 

Inserting Eq. (7.38) into Eq. (7.37), we have 

82u 1 82u 
----=0 
8r2 c2 8t2 · 

(7.37) 

(7.38) 

(7.39) 

Eq. (7.39) is a one-dimensional wave equation, which has the solution of 
the form 

u(r, t) = h (t- ~) + h (t + ~). (7.40) 

We choose only h ( t - ~) because the solution h ( t + ~) does not satisfy 
the causality principle. Thus the solution of Eq. (7.36) has the form 

( t) = h (t- ~) cp r, . 
r 

(7.41) 

When r ---+ 0, the potential Q(t)63 (r) approaches to infinity and thus the 
spatial derivatives become much larger than the time derivative. The second 
term in Eq. (7.35) can be neglected when r---+ 0. Using the formula 

6 G) = -4rr03 (r), (7.42) 

we obtain the solution of Eq. (7.35) 

Q (t- !:.) 
cp(r, t) = c . 

r 
(7.43) 
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For an arbitrary distribution Pe(x', t), we replace Q(t) by Ped3x' and 
integrate over the whole space, which gives the solution of Eq. (7.34b) 

cp{x, t) = j p, (x' ~~- ~) d3x' {7.44) 

with r = lx'- xl. Similarly we have the solution of Eq. (7.34a) 

A(x,t) = ~~je (x',t- ~) d3x'. (7.45) 
c r 

In the region outside the source, we have 

1 82A 
\72 A - c2 8t2 = 0, 

2 1 82r..p 
\7 'P- c2 8t2 = 0. 

The solutions of Eq. (7.46) are the superpositions of plane waves 

A = Aoei(k-x-wt)' 

'P = r..poe i(k-x-wt) 

with 

k= ~-
c 

Using the Lorentz gauge, we have 
c 

'Po= -k · Ao. 
w 

Eq. (7.47) shows that the propagation speed of the wave is c. 

7.6 Poisson equation 

For an static electric field, the Maxwell equations have the form 

V · E = 47T"Pe 1 

v X E = 0. 

The electric field E is expressed by the relation 

E = -Vr..p. 

Substituting Eq. (7.51) into Eq. (7.50a), we have 

/l.r..p = -47r Pe · 

Eq. (7.52) is called the Poisson equation. 

(7.46a) 

(7.46b) 

(7.47a) 

(7.47b) 

(7.48) 

(7.49) 

(7.50a) 

(7.50b) 

(7.51) 

(7.52) 
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In vacuum, Pe = 0, the scalar potential <p satisfies the Laplace equation. 

D.r.p = 0. (7.53) 

We define the Green's function G(x- x') of the Laplace equation by 

D.G(x- x') = <5
3 (x- x'). (7.54) 

G(x- x') has the form 

( ' 1 1 
G x - x ) = - 471" lx - x' I . 

(7.55) 

Using Eq. (7.42), one can easily check that the function G(x- x') given 
by Eq. (7.55) is the solution of Eq. (7.54). Thus the scalar potential <p 

determined by Eq. (7.52) takes the form 

<p = J ~e dV. (7.56) 

7. 7 Electrostatic energy of charges 

Now we calculate the energy of the electromagnetic field coupled with the 
source j J.L ( x). The canonical energy-momentum tensor 8J.Lv reads 

e J.LV = 8£ 8vA J.LV r (7.57) 
8( 8J.LAO") 0" -

71 J.--, 

where£ is given by Eq. (7.3). Using the relation 

(7.58) 

we have 

SJ.LV = -1-r~J.LV F pa.fJ - __!__ FJ.LO" 8v A + ~rJJ.LVJ·O" A . 1671" ., a.fJ 471" o- C 't e o- (7.59) 

We introduce the symmetric energy-momentum tensor 

TJ.LV = eJ.LV + 8"'x"'J.LV (7.60) 

with 

(7.61) 

Using Eq. (7.24), we find 

TJ.LV = _1_'nj.LV F pa.fJ + __!__ FJ.LO" F v 
1671" '/ a.fJ 471" 0" 

1 1 + -7]J.Lvj~Ao-- -j~Av. 
c c 

(7.62) 
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Then the energy is given by 

H =I d3xToo 

= ld3x (-1-F paf1 + _!_pocrp o + ~jcr A _ ~joAo) 167r a{1 47r cr C e cr C e 

I 3 [ 1 2 2) 1. l = d X S1r (E + B - ~Je · A . 
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(7.63) 

Now we determine the electrostatic energy of a system with charges. In 
this case, je = 0 and B = 0. The electrostatic energy of charges is given by 

u =~I E 2dV. (7.64) 
87r 

Using E = -Vcp, we obtain 

u = _ _!___IE. VcpdV 
87r 

=-~I v · (cpE)dV + ~ lcpv. EdV. 
87r 87r 

(7.65) 

Using Gauss's theorem, the first term in Eq. (7.65) can be changed into 
a surface integration. Neglecting the surface integration, we have 

u =~I Pe<PdV 

_ ~I Pe(x)pe(x') d3 d3 , 
- X X, 

2 r 
(7.66) 

which is called the Coulomb energy. U can be considered as an effective 
interaction term for Dirac fermions and is added to the Lagrangian for 
Dirac fermions when we study the Dirac fermion field. 

7.8 Many-body operators 

When we use the operator form Pe = e{/;t;j; for Pe, we obtain the interaction 
term of the Coulomb type in the Hamiltonian operator 

U = ~I d3xd3 x' I e
2 

'I ,j,t (x),Z,l (x');b(x'),Z,(x), (7.67) 
2 X-X 

U is a two-body operator. A two-body operator U can be expressed in 
the following form using the basis in which U is diagonal 

U = ~ L Uaf1laJ3)(aJ3l = ~ L Uaf1a~a1af1aa (7.68) 
a{1 a{1 
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with 

(7.69) 

We can evaluate a general matrix element similar to the case for an 
one-body operator (see Eq. (6.84)) 

' ' ' A s(a1, a2, · · · aNIUia1, a2, · · · aN)s 
N 

= L ~Sp L IT (a'pk lak) (a'pi a'pj IUiaiaj) 
p if. j kf.i,j 

N 

= (~ L UaiaJ )s(a~, a~, .. · a~la1, a2, .. · aN)s. (7.70) 
if.j 

The factor ~ 'l:~j Uaiaj is the sum over all distinct pairs of particles in 
the state la1, a2, ···aN)· If Ia) and 1,8) are different, the number of pairs 
is nanf3. If Ia) = 1,8), the number of pairs is na(na -1). To help counting, 
we define an operator Paf3 which counts the number of the particle pairs in 
the states I a) and I ,8). 

Pa13 = nan13 - 6a13 na, (7.71) 

Paf3 can be expressed in terms of the creation and annihilation operators 
-n -At A AtA ~ At A 
.r af3 - aaaaa(3af3 - Uaf3aaaa 

= al~abaaa13 
- AtAtA A 
- aaa(3af3aa. 

Using the operator Paf3, Eq. (7.70) becomes 

s(a~, a~,··· a~IUia1, a2, · · · aN)s 

Jf' '11"' A ) = S\a1, a2, ···aN 2 L Uaf3Paf3lab a2, ···aN S· 

af3 

U can also be expressed in terms of the operator Paf3 by 

A 1"' A 

U = 2 L Uaf3Paf3 
af3 

- 1 "'I Q I UA I R) At At A A - 2 L\a~ a~ aaa(3af3aa. 
af3 

(7. 72) 

(7. 73) 

(7. 7 4) 

We can transform the diagonal representation to that of an arbitrary 
basis, which gives the general expression for a two-body potential 

UA- 1 "'/' IUAI )AtAtA A - 2 L v'IL vp aA.aJ.Lapav. (7. 75) 
AJ.LVP 
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Using symmetrized states, Eq. (7.75) becomes 

() = ~ L (AtLIU(Ivp) + ~lpv) )al a1apav 
A.p,vp 

1"' (' IUAI ) AtAtA A = "4 ~ s Ali vp saA.ap,apav. (7. 76) 
A.p,vp 

The Coulomb interaction U in Eq. (7.67) is an interaction that is diagonal 
in the { x} representation. 

Generally, for a two-body interaction U diagonal in the { x} representa­
tion, we can express U in the following form 

U = ~I d3xd3 yv(x- y)~t (x)~t (y)~(y)~(x). (7.77) 

We can generalize the two-body interaction to the n-body interaction 
described by ann-body operator 

A 1 "' "' A Un = 1 ~ ~ (-\1 · · · AniUnltLl ···tin) 
n. A.1···An J-tl···J-tn 

x at ... at a ... a (7. 78) 
Al An /-tl 1-tn • 

In the expression of Eq. (7.78), the normal ordered form is used, in which 
all the creation operators are in the left of all the annihilation operators. 

7.9 Potentials of charge particles in the classical limit 

In a classical system, the distances between the particles are large and thus 
the particles can be considered as point-like particles, we have 

p = ~iei8(x- xi), (7.79) 

where the sum is over all the charges. Xi is the position of the particles 
with charge ei. Then we have 

I p "' ei A0 ( x) = -dV = ~ I 
1

. 
r . X- Xi 

t 

and 
U = ~ L eiej 

2 i=fij I xi - Xj 1· 

In particular, the interaction potential of two charges is 
U= e1e2 . 

lx1- x2l 

(7.80) 

(7.81) 

(7.82) 

Eq. (7.82) is called the Coulomb interaction for the point-like charged 
particles. 





Chapter 8 

Quantum Mechanics 

8.1 Equations of motion for operators in quantum 
mechanics 

Now we consider an operator A diagonal in the { x} representation. We 
define the mean value of the operator as 

A= (aiAia) =I d3x I d3 x' (alx)(xiAix')(x'la) =I cp* Acpd3 x=:A. (8.1) 

Let us calculate the temporal variation of A. 
d - I dA I ( d * d ) dt A= cp* dtcpd

3
x + : Acp + cp* Ad~ d

3
x. (8.2) 

The second integral can be simplified with the aid of the Schrodinger 
equation 

and 

acp i 
- = --Hr,p 
at n 

acp* i H* * i H * -=- 'P =- 'P 
at n n 

(8.3) 

(8.4) 

We have used the hermiticity of H in the derivation of Eq. (8.4). Then we 
have 

!A= I <p*~~tpd3x+~~ <p*[H,A[tpd
3
x 

aA i-A--A 
=at+ fi[H,A]. (8.5) 

If w_e define the mean value of ~1 as the temporal derivative of the mean 

value A 
dA dA 
dt = dt' 

(8.6) 

we have 

dA = aA. !._[ii A]. 
dt at + n ' 

(8.7) 

199 
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8.1.1 Ehrenfest's theorem 

We use a Hamiltonian of a particle in a potential U(x). According to 
Eq. ( 8. 7), the time derivatives of the position and momentum operators are 
given by 

(8.8a) 

(8.8b) 

We evaluate the commutators. 

[il, x] = [-
1 

f>2
, x] = ~ f>. 

2m ~ m 
(8.9) 

and 

[il, f>l = [U(x), f>l = -~ aa~. 
~ X 

(8.10) 

Thus Eqs. (8.8) becomes 

dx f> -
' dt m 

(8.11a) 

df> au 
dt -ax· (8.11b) 

Taking the mean values of Eqs. (8.11), we have 

- dx -
f> = m dt = mv, (8.12a) 

df> au 
dt -ax· (8.12b) 

where v = ~~ is called the velocity operator. This is Ehrenfest's theorem. 

Since the mean values are equal to the most probable values in the clas­
sical limit, Eqs. (8.12) are the quantum version of the Newton equations 

(Newton's second law) written as 

dx 
p = mv = m dt, 

dp aU(x) 
di -~. 

(8.13a) 

(8.13b) 
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8.1.2 Constants of motion 

When an operator A commutes with the Hamiltonian operator and is not 
time dependent explicitly, we have 

dA aA i ~ ~ 
dt =at+ h[H,A] = 0. (8.14) 

Thus A is a constant of motion. The Hamiltonian operator fi apparently 
commutes with itself. It is a constant of motion, which is the law of the 
conservation of energy. When ~~ = 0, we have p =const. In the classical 
limit, it is Newton's first law. 

8.1.3 Conservation of angular momentum 

For a central potential, the potential is only a function of the radius r. 
There is a constant of motion related with the angular momentum operator 
defined as 

:L = x x :P = -i!ix x v. (8.15) 

In the Cartesian coordinates, the components of L read 

L~ ~~ ~~ ·t;(~[) ~[)) 
x = YPz - Zpy = -zn Y 82 - z By ' (8.16a) 

L~ ~~ ~~ ·t;(~a ~a) y = ZPx - XPz = -zn z ax -X 82 ' (8.16b) 

L~ ~~ ~~ ·t;(~a ~a) z = XPy - YPx = -Zn X By - y ax . (8.16c) 

Using Eqs. (8.16), we obtain the following commutation relations of the 
angular momentum components by straightforward calculations 

For example, 

[Ly, Lz] = LyLz- iziy = iliLx, 

[Lz, ix] = izix- ixiz = iliLy, 

[Lx, Ly] = ixiy- LyLx = iliLz. 

[Lx, Ly] = [Yfiz - 2py, 2fix - xfiz] 

= [Yfiz, 2fix] + [2py, xfiz] 

= YPx[Pz, 2] + Pyx[2,fJz] 

= i!i(xpy- YPx) 

= iliLz. 

(8.17a) 

(8.17b) 

(8.17c) 

(8.18) 
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Eq. (8.17) can be written in a compact form 

(8.19) 

where sijk is the antisymmetric Levi-Civita symbol in three dimensions de­
fined by Eq. (F.3) in the Appendix F. The commutation relation Eq. (8.19) 
is equivalent with the operator relation 

(8.20) 

For the spin operator, we have the similar commutation relations. Using 
the relation for Pauli's matrices 

(8.21) 

we have 

[
ai O'j] _ . ijk ak 
2 ' 2 - ~c 2 · (8.22) 

Using Eq. (6.28), we find 

(8.23) 

or 

s X s = i'liS. (8.24) 

The spin operator obeys the same commutation relations as the orbital 
angular momentum operator. 

The square of angular momentum operator is given by 

(8.25) 

L2 commutes with all components of the angular momentum operator 

(8.26) 

Eq. (8.26) can be verified by straightforward calculations. For example, 

[L, ix] = [ixix + iyiy + iziz, ix] 

= iy[Ly, ix] + [iy, ix]iy 

+ iz[iz, ix] + [iz, ix]iz 

= Ly( -iniz) + ( -iniz)Ly 

+ iz(iniy) + (iniy)iz 

= 0. (8.27) 
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In a system with spherical symmetry, it is convenient to write the an­
gular momentum in the spherical coordinates 

or 

z 
cos()= -, 

r 
tan cp = ¥__, 

X 

x = r sin () cos cp, y = r sin () sin cp, z = r cos (). 

In the spherical coordinates, Eq. (8.16) becomes 

Lx = ih (sin<p :o +cot Ocos<p :'P), 
Ly = ih (- cos<p :o +cot Osin<p :'P), 

a 
Lz=-inacp· 

Inserting Eq. (8.30) into Eq. (8.25), we have 

2 2 { 1 a ( . a ) 1 a
2 

} _ 2 
L = -n sin() ae sm () ae + sin ()2 acp2 = -n 6 B,<.p· 

The operator L2 commutes with U(f). 
Since Hamiltonian operator can be written as 

A2 
A A L A 

H = Tr + -
2 

A 2 + U(f) 
mr 

with 

we have 

(8.28) 

(8.29) 

(8.30a) 

(8.30b) 

(8.30c) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

This is the law of conservation of angular momentum (Kepler's second 
law). Because [£2 , Lz] = 0 and thus [H, Lz] = 0, the z component of 
angular momentum is also conserved. 

8.2 Elementary aspects of the Schrodinger equation 

We consider a system of N-particles with Hamiltonian operator given by 

(8.35) 
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where "Vi (xi, t) is the external potential, which is the so-called one particle 
potential. "Oij (xi, Xj) is the interaction potential between two particles i 
and j, which is the two particle potential, such as Coulomb potential. 

The Schrodinger equation reads 

·t<8<.p H 
~nat= <.p, (8.36) 

where <.p is the wave function. 
Let us derive the equation of continuity for the wave function. First 

we consider one particle case. The wave function is a function in three­
dimensional space. We define W = <.p*<.p = I'PJ 2

. Since 

'P:'Pa = (xja, t)(a, tjx) = (xja~(t)aa(t)jx) = (xlna(t)jx), (8.37) 

the meaning of 

W(x; t)dV = <.p*<.pdV (8.38) 

can be interpreted as the probability of the particle occurring in the volume 
element dV at the position x and timet for the state Ja, t). 

For anN-particle system, the wave function is a function in 3N dimen­
sional space, which is called the configuration space of the system. We 
denote an infinitesimal small volume element in the configuration space as 
dV 

(8.39) 

Then 

(8.40) 

is the probability of the particle 1 occurring in the volume element dV1 at 
x 1 ,· · · and Nth particle occurring in dVN at XN at timet. 

Integrating Eq. (8.40) with respect to the coordinates of all particles, 
excluding the particle k, we obtain 

W(xk)dVk = dVk J <.p*<.pdnk, (8.41) 

where dnk is defined by dV = dVkdnk. W(xk)dVk is the probability of a 
particle occurring in dVk at Xk. 

Using the Schrodinger equation, we can obtain the equation of continu­
ity for the probability W in the configuration space. Multiplying Eq. (8.36) 
by <.p* and then subtracting the corresponding complex-conjugated equa­
tion, we have 

(8.42) 
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We define 

. in ( n * * 2 ) Ji=-
2

-lpVilp -tp\7itp, 
mi 

(8.43) 

which is called the current density of the particle i. Eq. (8.42) becomes 

aw N 

at+ LV ·ji(x1,x2,· ·· ,xN;t) = 0. 
i=l 

Eq. (8.44) is the equation of continuity for the probability W. 
integrate Eq. (8.44), we have 

f a a 
at W(xl, X2, ... 'XN; t)dfli = at W(xi, t). 

The second term in Eq. ( 8.44) becomes 

(8.44) 

When we 

(8.45) 

N N 

L J vi'· ji'dni = J vi· jidni + L J vi'· ji'dni. (8.46) 
i'=l i'=j:.i 

The integral J Vi' · ji' dfli for i' =/=- i is zero because it can be transformed 
into surface integrals. Thus we obtain the equation of continuity for each 
particle 

aw(xi, t) V . . ·( . ) _ 0 at + J ~ xt' t - . (8.47) 

8.3 Newton's law 

The total momentum operator p of the N-particle system is given by 

N N 

:P= LPi = -ihLVi· (8.48) 
i=l i=l 

Let us consider the time derivative of the momentum operator p. 

dp - i (H~ ~ ~ H~ ) 
dt - h, p- p . (8.49) 

Inserting fi in Eq. (8.35) into Eq. (8.49), we have 

d~ N N N 

d~ = [(2:vk+ Lvkj)(2:vi) 
k=l k=j:.j i=l 

N N N 

- (2:vi) (2:vk + 2:vkj)]. (8.50) 
i=l k=l k=j:.j 



206 Principles of Physics 

We use the following formula to simplify Eq. (8.50), 
N N 

vk(L:vi)- (L:vi)vk = -vkvk(x). (8.51) 
i=l i=l 

When VkJ is only a function of the distance between particles, we have 

~ A dVkj ~ A dVkj rkj 
vkvkj = -dA Vkrkj = -dA -A-, (8.52a) 

rkj rkj rkj 

~ A dVkj ~ A dVkj rkj 
vjvkj = -dA vjrkj = --dA -A-, (8.52b) 

rkj rkj rkj 
which gives 

(8.53) 

We define 

(8.54) 

F kj is called the force exerted by the particle j at Xj on the particle k at 
Xk. Then Eq. (8.53) becomes 

FkJ = -FJk· (8.55) 
Eq. (8.56) is the so-called Newton's third law of classical mechanics, which 
states that the action is equal to the minus reaction. 

Using Eqs. (8.51) and (8.53), we find 
dA N 

d~ =- L:vi"Ci(xi, t). 
i=l 

Using Eq. (8.12), we have in the classical limit 

dp = ""'m dvi = ""'F· 
dt L dt L ~, 

i i 

(8.56) 

(8.57) 

which is Newton's second law for the whole system. When Vi = 0, we have 
dp 
dt = 0, (8.58) 

which is the law of momentum conservation. If we consider Pi, we have 
dA N N 

!i =- L:vi"Ci(xi, t)- L:vi"Cij(rij)· 
k=l j-f.i 

(8.59) 

Using Eq. (8.12), we have in the classical limit 

d 
N N 

Vi ""' ""' mdt =- L ViVi(xi, t)- L ViViJ(riJ)· 
k=l jf.i 

(8.60) 

which is Newton's second law for the particle i. When there are no forces 
(Vi = 0, ViJ = 0), we get ~ = 0. This is Newton's first law, which states 
that the velocity of particle remains constant if there is no force acting on 
it. 
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8.4 Lorentz force 

We use the Hamiltonian operator Eq. (6.43) for a particle in the electro­
magnetic field. The corresponding Hamiltonian operator of one particle in 
quantum mechanics is given by 

A2 

fi = E_- _e_(L + 2S) · Bo + eAo 
2m 2mc 

(8.61) 

with L =:X x p. Using Eq. (8.8) and mathematical relation a· (b x c) = 
b · ( c x a) = c · (a x b), we have 

and 

~~ = ~[fi,x] 
p i e A 

= m + r/-in) 2mc(x x B 0 ) 

p e A 

=-+-(:X x B 0 ) 
m 2mc 

~~ = ~[ii,:PJ 
e A A 

= -(p x B 0 ) + eE. 
2mc 

Eq. (8.62) can be rewritten as 

A dx e (A BA ) p = m--- X X 0. 
dt 2c 

Inserting Eq. (8.64) into Eq. (8.63), we have 

d
2 

:X e ( dx A ) e ( dx A ) A m- - - - x Bo = - - x B 0 + eE. 
dt2 2c dt 2c dt 

Expressing in terms of v = ~~, Eq. (8.65) becomes 

with 

dv e A A 

mdi = ~(v x B 0 ) + eE 

= f£. 

e 
fL = eE+ -(v x Bo). 

c 

(8.62) 

(8.63) 

(8.64) 

(8.65) 

(8.66) 

(8.67) 

fL is called the Lorentz force, which is the force that an electromagnetic 
field exerts on a particle with a charge e. 
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8.5 Path integral formalism for quantum mechanics 

8.5.1 Feymann's path integral for one-particle systems 

The observable operator A is a function of momentum operator p and 
position operator q. Let us describe the dynamics of non-relativistic system 
in path integral formalism, as we did in the quantum field theory. First 
we consider the simplest case of a particle moving in a potential in one­
dimensional space. The commutation relation of the momentum operator 
p and position operator {j is given by 

[fi, fJ] = in. (8.68) 

The eigenstates of these operators span the Hilbert space. Their eigen­

equations are 

filq) = qlq)' 

PIP)= PIP)· 

The state vectors are normalized by 

( q' I q) = 8 ( q' - q) , 

(p'lp) = 8(p'- p) 

and obey the completeness relations 

J dq[q)(q[ = 1, 

J dplp) (PI = 1. 

(8.69a) 

(8.69b) 

(8. 70a) 

(8. 70b) 

(8. 71a) 

(8.71b) 

According to Eq. (6.101), p = -inddq_· We apply p to the eigenstate IP) and 
then project it onto (ql. We obtain 

(qlfJIP) = p(qlp) = -in :q (qlp). 

Solving the differential equation, we have 

1 i 

(qlp) = 27rn e~tPq. 

(8.72) 

(8.73) 

Thus the coordinate representation of the momentum eigenstate is a plane 

wave. 
Using the relation of the wave function of particle <p a ( q, t) with the 

quantum state Ia, t) 

'Pa(q, t) = (qla, t), (8.74) 
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we can expand the quantum state Ia, t) of the system by 

I a, t) = j dq' cpa ( q', t) I q') . 

209 

(8.75) 

The wave function of one particle satisfies the Schrodinger equation in 
the non-relativistic limit. 

. a 
lti at cp 0: ( q, t) = H (P, q) cp 0: ( q, t) . (8.76) 

The formal solution of this equation is 

'Po:(q, t) = e-*Ht'Po:(q, 0). (8.77) 

In Eq. (8.74), lq) forms a basis in the Hilbert space. Since lq) does not 
change with the time, lq) is considered as a rest basis in the Hilbert space. 
We can also define a time dependent basis lq, t)b by 

(8.78) 

lq, t)b plays the role of a moving basis in the Hilbert space. For simplicity 
of notation, we usually omit the subscript 'b'. Since 

Ia, t) = j dqcpo:( q, t) lq) 

= f dqe-*Ht'Po:(q,O)Iq), (8. 79) 

we have 

'Po:(q, t) = (qla, t) 

= j dq' (qle- ftHt'Po:(q', 0) lq') 

= f dq' (q, tlcpa(q', O)lq') 

= (q, tla, 0) 

= (q, tla)H, (8.80) 

where Ia) H = Ia, 0) is called the Heisenberg state vector. Meanwhile Ia) s = 
Ia, t) is called the Schrodinger state vector. 

Since Eq. (8. 78) is a unitary transformation, the orthonormality and 
completeness relations remain valid for the time-dependent states. We have 

lq, t) 

(q', tlq, t) = (q'le_*flte*iltlq) 

= (q'lq) 

= 8(q'- q) (8.81) 
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J dqlq, t)(q, tl = J dqe*Htlq)(qie_*ftt 

= e*Hte-*Ht 

=1. (8.82) 

According to Eq. (8.8a), the time evolution of the coordinate operator is 
given by 

q(t) = e{Htqe- *Ht. 

lq, t) = e{Htiq) is the eigenstates of q(t) because 

q(t)iq, t) = e*Htqe_*ftte{Htlq) 

= e{Htqlq) 

= qlq, t). 

Now we consider the transition amplitude 

(q', t'lq, t) = (q'ie--kH(t'-t)lq). 

(8.83) 

(8.84) 

(8.85) 

(q', t'lq, t) is also called the Feynman kernel in quantum mechanics, which 
is similar to the Feynman kernel in quantum field theory. The Feynman 
kernel contains all the information one can get by solving the Schrodinger 
equation Eq. (8.76). We can obtain the time development of the wave 
function at arbitrary t' by the integration 

cpa(q', t') = (q', t'ia)H 

= j dq ( q', t'l q, t) ( q, t I a) H 

= j dq(q', t'iq, t)cpa(q, t). (8.86) 

In order to construct the path integral formalism, we divide the time 
interval (t, t') into many small slices with equal length. 

with 
t'- t 

E=~· 

(8.87) 

(8.88) 

We insert a complete set of basis states lqn, tn) at each of the grid points 
tn (n = 1, · · · , N- 1) in the Feynman kernel 

(q', t'lq, t) = J dqN-1 · · · J dq2 J dq1 

X (q', t'iqN-1, tN-1) · · · (q2, t2lq1, t1)(q1, t1lq, t). (8.89) 
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Using Eq. (8.78), each of the kernel elements under the integral can be 
written as 

(8.90) 

This kernel element is also called the transfer matrix, which is denoted as 
T(qn+ 1, Qn)· When E is small, the time-evolution operator can be approxi­
mated by a Taylor expansion 

(qn+I, tn+IIqn, In)= (qn+II [1- ~Jl(ji, Q)]lqn) + 0(<2
). (8.91) 

Since the Hamiltonian depends on p and q, we also insert a complete 
set of the momentum eigenstates 

(qn+1JH(p, q) Jqn) = J dpn (qn+11Pn) (Pn JH(p, q) Jqn). (8.92) 

The operators p and q can act to the left or to the right on their eigenstates, 
we have 

(8.93) 

One can also use a more symmetric prescription, the so-called Weyl's 
operator ordering. (Pnlqn)H(pn, Qn) in Eq. (8.93) can be replaced by 

(Pnlqn)H(pn, ~(Qn+1 + Qn)). We will use the notation H(pnJin) in the 
following so that we can choose fin = Qn or fin = ~(qn+1 + Qn) in the 
derivations. Using Eq. (8.73), we have 

J dpn ( i ) (qn+1, tn+11Qn, tn) = 
2

7ffi exp y;,Pn(Qn+1- Qn) 

[ 
iE _ l 2 

X 1 -hH(pn, Qn) + O(E ). (8.94) 

Taking the limit E ----t 0 or N ----too, we have 

( 
I 'J ) l" J NII-1 d NII-1 dpn (iE Qn+1- Qn) 

q 't q, t = N~= n=1 Qn n=O 27rn exp J;Pn E 

X JI [ 1- ~H(pn, i/n)]. (8.95) 

We can rewrite Eq. (8.95) using the representation of the exponential 
function 

(8.96) 
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Then Eq. (8.95) becomes 

N-1 N-1 

(q', t'[q, t) = lim J IT dqn IT dp: 
N-+= 27rn 

n=1 n=O 

( 
iE ~

1 

[ Qn+ 1 - Qn _ l ) 
X exp h t:o Pn E - H(pn, Qn) . (8.97) 

In the limit N -+ oo, the sample values become continuous. The inte­
gral becomes the functional integral, which is also called the path integral 
physically. We introduce the notation of path integral. 

N-1 J IJ dqn -+ J Dq and 
n=1 

(8.98) 

In the limit E -+ 0, 

Qn+1- Qn "(t ) -----+q n, 
E 

N-1 t' 

E L f(tn)-+ 1 drf(r). 
n=O t 

(8.99) 

Then we obtain the path integral expression for the Feynman kernel 

(q',t'lq,t) = j DqDp
2
!n exp ( * [' dr[pq- H(p,q)])- (8.100) 

The path integral is over all function p(t) in the momentum space and q(t) 
in the position space with the boundary conditions 

q(t) = q and q(t') = q'. (8.101) 

8.5.2 Lagrangian function in quantum mechanics 

The Hamiltonian of an one-dimensional non-relativistic system of one par­
ticle has the following standard form 

(8.102) 

The first term is called the kinetic energy term and the second term is 
called the potential term. Since the dependence on p is quadratic form, 
the integration over p can be carried out explicitly. We use the Gaussian 
integral formula 

(8.103) 
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The path integral expression for the Feynman kernel Eq. (8.100) becomes 

(q', t'lq, t) = j DqDp 2:, exp ( i l dr [P<i- 2~p2 - V(q)]) 

= N j Dqexp ( * l dr [; <i2 - V(q)l} (8.104) 

where N is the normalization constant. We introduce 
t' 

S = /. drL(q, q) (8.105) 

with 

L(q, q) = ; q2
- V(q). (8.106) 

S is called the action functional and L is the Lagrangian function in quan­
tum mechanics. Eq. (8.104) becomes 

(q', t'lq, t) = N j Dqexp (*s[q, <il). (8.107) 

8.5.3 Hamilton's equations 

For a classical system, the action is much larger than the Planck constant n. 
We can use stationary phase approximation. The path integral is approxi­
mated with the extreme value of the integrand. The extreme condition of 
the action is given by 

!JS = 0, 

which leads to the Euler-Lagrange equation 

!!_ 8L _ 8L = O. 
dt 8q 8q 

(8.108) 

(8.109) 

Inserting the Lagrangian function in Eq. (8.106) into the Euler-Lagrange 
equation Eq. (8.109), we have 

.. av 
mq =- 8q' (8.110) 

which is the Newton's equation of motion. ij is called the acceleration of 
particle. 

The momentum can be obtained by 

8L 
p= 8q' (8.111) 
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We use p as an independent variable to replace q in the Lagrangian and 
call it the canonically conjugate momentum here. Instead of the variables 
q and q, we express the Lagrangian in terms of q and p. The Hamiltonian 
is then obtained from the Lagrangian as a Legendre transformation 

H(q,p) = pq(p)- L(q, q(p)). (8.112) 

the equation of motion (Euler-Lagrange equation) is equivalent to the fol­
lowing equations 

. 8H 
p = -aq, (8.113a) 

. 8H 
q = 8p. (8.113b) 

Eq. (8.113) is called Hamilton's equations and is equivalent to Newton's 
equation. 

We introduce a notation for the following derivatives of two functions 
A and B. 

{ A B} = 8A8B _ 8A8B 
' p B 8q 8p 8p 8q ' 

(8.114) 

which is called the Poisson bracket. With the help of the Poisson bracket, 
the time evolution of a physical quantity A can be evaluated with the 
following formula 

dA 8A 8A. 8A. 
dt = 8t + 8p p + 8q q 

8A 8A8H 8A8H 
=-----+---

at ap aq aq ap 
8A 

=at+{A,H}PB· 

In particular, when H does not depend on time explicitly, we have 

dH 8H 
dt =at+ {H,H}PB = 0. 

(8.115) 

(8.116) 

Thus H is a constant of motion for a classical system, which means that 
the energy is conserved. 

8.5.4 Path integral formalism for multi-particle systems 

We can easily extend the path integral formalism of one particle in one­
dimensional space to general systems of multi-particles in three dimensional 
space. We use the simplified notation. (q1, q 2, · · · , QN) is denoted as (q) 
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and (p1 , P2, · · · , PN) as (p). The path integral for the transition amplitude 
(Feynman kernel) is given by 

(q~, q~, · · · , q~, t'lql, q2, · · · , qN, t) 

I
N N l 

= II Dqa II Dpf3 (27rn)3 
a=1 (3=1 

X exp { ~ { dr [~ Pa · 4a- H(p,q)]} (8.117) 

The integration is over all functions p( t) in the momentum space and over 
q(t) in the position space with the boundary conditions q(t) = q and 
q'(t) = q'. 

We use the general Hamiltonian form 

(8.118) 

The path integral Eq. (8.117) can be derived from the amplitude 
(ql+1, t1+1lqt, tt) in a similar way as for the one particle system. 

(q'' t'lq, t) 
N L-1 

=}~moo I II II d3qal(q', t'lqL-b tL-1) · · · (q2, t2lq1, t1)(q1, t1lq, t). 
a=1 l=1 

(8.119) 

Inserting the completeness relation of the momentum eigenstates IPt), sim­
ilar to Eq. (8.94), we have 

(q'l+1l t't+1lqt, tt) 

I N d (. ) II Pal ZE T. 
= a=

1 
(21rn)3 exp n[pt qt-H(pt,qt)] 

I IIN dpal ( iE [ 1 T -1 T . l ) 
= a=

1 

(21rn)3 exp n -2Pt M Pt + Pt ql- V(qt) , (8.120) 

which leads to Eq. (8.117). 
Using the Gaussian integration formula 

I ddxexp ( -~xT Ax +xTy) 

= (2rr)~ exp ( -~TrlnA) exp GYT A-1 y), (8.121) 
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We obtain 

(qf+1' tf+1lqz, tz) 

= (21rW3 (21r) ~ exp [ -~ Th ln ( ~ M-
1
)] 

[
1 (iE ·T) (iE 1)-1 (iE. )] [iE ( ))] x exp 2 fiql fi M- fiql exp fi (-V qz 

= (21rW3 (21r)~ exp [ -~Th ln (~I)] exp ( -~Th lnM- 1
) 

x exp G~<if M<it) exp [ ~( -V(qt))l 

= (21ri/k)-~ exp Gn lnM) exp [ ~ G<if Mq,- V(q,)) l (8.122) 

We define the Lagrangian function by 
1 

L(qz, qz) = 2qT Mqz- V(qz). (8.123) 

Then the Feynman kernel can be written as 

(q',t'lq,t) = }~=(21rilk)-"~N I g IT d3 qa,exp G'frlnM) 

x exp [~I: L(q,, q,)]. 
l=1 

(8.124) 

We absorb the extra factor exp ( ~ Tr ln M) into the normalization constant 
N. The Feynman kernel becomes 

(q', t'lq, t) = N I Dq exp [~I dT L(q, <i) l (8.125) 

8.6 Three representations 

In the calculations of quantum mechanics, there are three types of for­
malisms. We call them Schrodinger, Heisenberg and interaction represen­
tations, which will be discussed in the following. 

8.6.1 Schrodinger representation 

The elementary equation of quantum mechanics is the Schrodinger equation 

in :t 'Pa(t) = H 'Pa(t), (8.126) 
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which has the formal solution 

'Pa(t) = e-*Ht'Pa(O). (8.127) 

The operators f> = !!: V x and x do not contain the time t as an explicit 
t A 

variable. The average value of an operator O(f>, x) is given by 

6 = (a16(:f>, x) Ia) 

= j <p~O Ov,x) 'l'nd3 x. (8.128) 

This is the formalism of the so-called Schrodinger representation. In the 
Schrodinger representation, we have time dependent wave function 'Pa(t) 
and time independent operators. 

8.6.2 Heisenberg representation 

Since the experimental measured properties of quantum system are mani­
fested in the average values of the operators given by Eq. (8.128), we can 
transform the average value formula Eq. (8.128) into the following form 

6 = s(a, tl6sla, t)s 

(8.129) 

We have used the subscript S to denote the Schrodinger representation. 
We now define a new representation of operators and state vectors 

la)H = Ia, O)s (8.130) 

and 

(8.131) 

This representation denoted by the subscript H is called the Heisenberg 
representation. In the Heisenberg representation, we have the same formula 
to calculate the average value of operators 

6 = s(al6sla)s 

= s(a, Ole*Ht6s(O)e-jJftla, 0) s 

= H(ai6Hia)H· (8.132) 

Therefore, the Schrodinger representation formalism, in which the wave 
function <p(t) is time dependent and operators are time independent, can 
be transformed into an equivalent formalism, in which the wave function is 
time independent and operators are time dependent. 
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In the Heisenberg representation, operators are time dependent. The 
equation of motion which has the solution of Eq. (8.131) can be easily found 
to have the form 

a A A A in
8

tO(t) = [O(t),H]. (8.133) 

This equation has the same form as the Heisenberg's equations of motion 
in quantum field theory (for example Eq. (2.163)). In quantum field theory, 
the operators are the field operators. Heisenberg's equations of motion are 
the physical time evolution equation for quantum field. Here Eq. (8.133) is 
an artificial equation defined to facilitate the calculations. 

8.6.3 Interaction representation 

Many-body Schrodinger equations are often difficult to be solved. The 
usual approach is the perturbation expansion method, which can be dealt 
more easily in the interaction representation. We divide the Hamiltonian 
operator into two parts 

(8.134) 

where flo is a Hamiltonian that can be solved exactly. Generally flo is 
taken to the Hamiltonian without interactions. In some cases, flo is chosen 
to be a solvable Hamiltonian including some specific interactions. The term 
V is the remaining parts of fl. The principle of choosing flo and V is to 
make the effect of V small while maintaining flo solvable. 

In the interaction representation, both operators and state vectors are 
time dependent. They are defined by the following formulas: 

and 

Ia, t)I = e*flote-*fltla, O)I 

= e-kHote-*fltla)H 

= e*flotla, t)s, 

(8.135) 

(8.136) 

where we have used subscript I to denote the interaction representation. In 
the interaction representation, the average value of the operator 6 is given 
by 

6 = s(al6sla)s 

= s(ale_*flot6Ie*flotla)s 

= I(ai6IIa)I. (8.137) 
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We have the same formula in the interaction representation to calculate 
the average values of operators as in the other representations. The time 
dependence of the operators is governed by the unperturbed Hamiltonian 

Ho 
a A A A 

in at 0 I ( t) = [ 0 I ( t), H o ]. 

Differentiating Eq. (8.136), we have 

a i iii t A A i fit 
at io:, t)I = fieri o (Ho- H)e-n lo:, O)I 

i i A A i A 

= -fienHotve-nHtlo:,O)I 

= -~etiiatve-iiiot [etiiote-iiitlo:,O)I] 

i A 

= -fiVI(t)!o:,t)I· 

(8.138) 

(8.139) 

The time dependence of the state vectors is governed by the interaction V. 
We introduce an operator U(t) defined by 

(8.140) 

which has the meaning of the operator of time translation for states in the 
interaction representation. From Eq. (8.136), we have 

lo:, t)I = U(t) lo:, O)I 

with U(O) = 1. The time derivative of U(t) reads 

~U(t) = ~e1iHot(fio- H)e-iiit 
at n 

i i A A i A 

= --enHatve-nHt 
n 

= -~e1iHatve-1iiiot [etiiote-iiit] 

i A A 

= -fiVI(t)U(t). 

(8.141) 

(8.142) 

We can solve this equation in the following way. Integrating both sides 
of the equation, we obtain 

O(t)- OW) = -~ [ dt, V,(t)O(t). (8.143) 

Since U(O) = 1, we have 

0(t) = 1- ~ l dt, VI(t)O(t). (8.144) 
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(8.145) 

Using the time-ordering operator T, we can reform Eq. (8.145) into the 
following form 

00 

1 ( ·) n 1t 1t 1t U(t) = L n! ~z dt1 dt2 · · · dtn 
n=O 0 0 0 

X T[VI(t!)V1(t2) · · · VI(tn)] 

= Texp [ -i l dt1 VI(tt)]. (8.146) 

The interaction representation formalism can be used to do perturbation 
calculations. 

8.7 S Matrix 

In terms of the operator U(t), we introduce another important operator S 
(often called S matrix) 

s(t, t') = U(t)ut(t'). (8.147) 

We can also express the time evolution of the states in the interaction 
representation in terms of S matrix. 

[a, t)I = U(t)[a, O)I 

= S(t, t')U(t')[a, O)I 

= S(t, t')[a, t')I. (8.148) 

Thus the S matrix changes the wave function 'P 1 ( t) at time t into the wave 
function 'PI(t') at time t'. One can easily check that S operator has the 
following properties: 

S(t, t) = 1, 

st(t, t') = u(t')ut(t) = s(t', t), 

s(t, t')S(t', t") = S(t, t"). 

(8.149a) 

(8.149b) 

(8.149c) 
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8.8 de Broglie waves 

Although we start from the constituent principle of identical particles, all 
the equations of motion are wave equations, we have the particle-wave 
duality naturally. When there is no interaction between particles, a particle 
state with momentum p is a plane wave state with wave function given by 

'P(x, t) = Aexp [i(k · x- wkt)]. (8.150) 

where A is an amplitude factor. k and Wk are the wave number and fre­
quency respectively (as an example, see Eq. (2.353) for Dirac fermions). 
The momentum p is given by 

h k 
P = nk = ~lkl· 

The energy of the state is given by 

E = hwk. 

Eqs. (8.151) and (8.152) are called the De Broglie relations. 
For massless photons, 

E = hwk = nke. 

For massive particles, 

(8.151) 

(8.152) 

(8.153) 

E = hwk = Vm2e4 + n2k2e2 = )m2e4 + p2e2. (8.154) 

In the nonrelativistic limit, expanding Eq. (8.154) gives 

2 p2 . p2 2 
E =me + - + .. · = - +me . (8.155) 

2m 2m 

When the constant factor me2 is subtracted, the energy becomes 

p2 
E' = E- me2 = - (8.156) 

2m 

For a plane wave, we have two types of velocities. One is the phase 
velocity Vp defined by 

- Wk E Jm2e4 + p2e2 
v - - - - - -'------=---p-k_p_ p (8.157) 

Another is the group velocity Vg defined by 

_ dwk dE pe2 

Vg=-=-= . 
dk dp Jm2e4 + p2e2 

(8.158) 
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The phase velocity is larger than the speed of light in vacuum, while 
the group velocity is smaller than the speed of light. A plane wave is not 
a local state. The state extends the whole space. Therefore, the phase 
velocity can not be assigned as a velocity of the particle. When we talk 
about motion of a particle, we actually talk about the energy transport and 
thus the particle should be in a localized state. We can show that the group 
velocity corresponds to the velocity of the energy transport. A free particle 
in a localized state is described by a finite wave packet. For simplicity, we 
assign the direction of the wave vector as x direction. A group of waves 
propagating in the x direction can be described by the following localized 
wave packet state. 

1
ko+l::,.k 

<p(x, t) = c(k) exp [i(kx- w(k)t)]dk, 
ko-l::,.k 

(8.159) 

where ko = ~: is the mean wave number of the group and Lk measures 
the extension of the wave packet. We consider a localized wave packet with 
Lk << k0 . We can expand the frequency win a Taylor series around k0 . 

w(k) = w(ko) + ( ~) k=ko (k- ko) 

+ ! ( d2 ~ ) ( k - ko) 2 + . . . . 
2 dk k=ko 

(8.160) 

Inserting the expansion Eq. (8.160) into Eq. (8.159) and taking k' = k- ko 
as the new integration variable, we obtain 

<p(x, t) = exp [i(kox- w(ko)t)] 

j
l::,.k 

x exp [i(x- v9 t)k']C(k0 + k')dk'. 
-l::,.k 

(8.161) 

Since k' << k0 , we have C(ko + k') ~ C(k0 ). Then Eq. (8.161) becomes 

<p(x, t) = exp [i(kox- w(ko)t)]C(k0) jt::,.k exp [i(x- v9t)k']dk' 
-l::,.k 

with 

= 2C(ko) sin[Lk(x- vgt)] exp [i(kox- w(ko)t)] 
X- Vgt 

= C(x, t) exp [i(kox- w(k0 )t)] (8.162) 

C(x, t) = 2C(k) sin[Lk(x- v9 t)]_ 
X- Vgt 

(8.163) 
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C(x, t) is the amplitude of the wave packet. C(x, t) has its maximum at 

v9t- X= 0, (8.164) 

which means that the maximum of the amplitude moves with a velocity 

dx 
V = dt = Vg. (8.165) 

The velocity of the wave packet is the one that amplitude maximum 
of the wave packet propagates with. Thus the velocity of a particle is the 
group velocity, with can only be smaller than the speed of light in vacuum. 
For massless photons, its group velocity is given by 

dw d(ck) 
Vc = dk = ----;n;;- = c, (8.166) 

which is the reason we call cas the speed of light in vacuum. Any massless 
particles have the velocity of c. Since in vacuum, only photons are massless, 
photons have the maximum velocity in nature. 

8.9 Statistical interpretation of wave functions 

As for the meaning of the wave function cp(x, t), according to Eq. (8.37), 
cp*(x, t)<p(x, t) = (xlnalx) is the probability that there is the particle at 
x. This is the statistical interpretation given by Max Born. However, 
one may ask why there is only a probability of finding a particle at a 
position x instead of finding it definitely. A particle should be in one 
position at a time. If a particle is in one place, how does it manage to 
move to another place in distance simultaneously. This will give a nonlocal 
existence for a particle. The interpretation is that a particle can be in a 
state which is nonlocal. This state could be characterized by some guiding 
fields as termed by Born. The guiding field could be energy, momentum, 
or spin. These quantities are generally conserved due to the symmetry and 
the corresponding states are stable. However, the particles themselves are 
local. We can only find a particle when the particle is at x. The particles 
are always created and annihilated everywhere with a probability. Due to 
the conservation of energy, the number of particles is conserved. For a 
single-particle state, although particles create and annihilate everywhere 
for all time. there is only one particle in total at any moment, which occurs 
in someplace. If we make a measurement, we could pick up the particle 
only when it is created. The probability of creating a particle at x is I'PI 2 . 

Thus we have only a probability of 1'1'1 2 to pick up the particle at x. After 
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we pick up the particle, the particle can not be annihilated back as usual. 
This is the irreversibility of the measurement, which leads to the quantum 
collapse to the state that the measurement selects. A path of a particle in a 
classical limit is only the path of the localized state guided by the equations 
of motion and conservation laws. 

8.10 Heisenberg uncertainty principle 

In the microscopic scale, we are not able to measure the exact position 
and momentum of a particle simultaneously, which is called the Heisenberg 
uncertainty principle. We will show in the following that the Heisenberg 
uncertainty principle is just a property of the position and momentum 
operators. 

First let us make a qualitative analysis, we consider a one-dimensional 
wave packet. From Eq. (8.163), we can see that the distance D.x of the 
first minimum at x = Xm of the wave packet amplitude from the maximum 
at x = 0 is determined by the factor sin ( D.k · Xm) = sin ( D.k · D.x). This 
distance can be characterized as the extension of the wave packet. We 
obtain 

D.kD.x = 1r. (8.167) 

Using de Broglie relations, the momentum extension is determined by nD.k. 
We have 

(8.168) 

This relation shows that the position and momentum of a particle state can 
not be determined exactly at the same time. 

Now we derive the uncertainty principle. The average values of the 
momentum and position operators are given by 

Px = J <p*(x) (-iii :x) <p(x)dx, 

x = J <p*(x)x<p(x)dx. 

(8.169a) 

(8.169b) 

The deviation from the average value is characterized by the mean­
square deviations (D.px) 2 and (D.x) 2 defined by 

(D. )2 - ( - )2 - 2 -2 Px = Px- Px - Px- Px, 

(D.x) 2 = (x- x) 2 = x2 - x2
. 

(8.170a) 

(8.170b) 
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Pi and x2 can be evaluated by 

p~ = j IO*(x) ( -h2 
::2 ) 10(x)dx. (8.171a) 

x2 = j 'P*(x)x2 'P(x)dx. (8.171b) 

To establish the connection between t6p'i and t6.x2 , we consider the integral 

(8.172) 

Since the integrand is positive, we have 

I(a) ~ 0. (8.173) 

Expanding the integrand, we have 

I(a) = a 2I: ~x2 !10(xWdx 

+a I: ~x [ G~Px\O*(x)) 10(x) + \O*(x) G~Px\O(X))] dx 

+I: G~Px\O*(x)) G~Px\O(X)) dx. (8.174) 

The second term on the right hand side of Eq. (8.174) can be simplified 
using integration by parts. 

I: ~x [ G~px\O*(x)) 10(x) + \O*(x) G~Px\O(x))] dx 

j_oo A [d'P*(x) ( ) *( ) d'P(x) l = Ll.X --'P X +'P X--
_00 dx dx 

-2I: ~X [ ~fix\O*(x)\O(X)] dx 

j_
oo d 

= -oo .6.x dx ['P* (x )'P(X )]dx 

= ~x\O*(x)IO(x{,, -I: 10*(x)10(x)dx 

= -1. (8.175) 
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The third term can be evaluated as follows: 1: Gf>Px~D*(x)) Gf>Px\O(x)) dx 

_ !oo d<.p*(x) d<.p(x) d 1 _2 - _d ____ d_ X- '1;;2Px -oo X X n 

= *( ) d<.p(x) loo - !oo *( ) d2<.p(x) d - ~ -2 
i.p X dx -oo -oo i.p X dx2 X n2Px 

1 ! 00 

* ( 2 d
2 

) 1 -2 = n2 -oo <.p (x) -n dx2 <.p(x)dx- n2Px 

= ~2 (~Px) 2 . (8.176) 

Then we have 

(8.177) 

Since a can be any real number, the minimum of I (a) should be larger 
than or equal to zero. The minimum !(am) of J(a) is given by 

which gives 

1 1 
I(a ) - -(~p )2 - > 0 

m - n2 X 4(~x)2 - ' 

n2 
~p2~x2 > -. 

X - 4 

(8.178) 

(8.179) 

Eq. (8.179) is called the Heisenberg uncertainty relation for momentum and 
position. The Heisenberg uncertainty principle is not limited to the posi­
tion and momentum operators. We can derive the Heisenberg uncertainty 
relations for arbitrary observables. 

Let us consider two hermitian operators A and B. The commutator of 
the two operators has the form 

[A,fJ] = i6. (8.180) 

6 is called the remainder of commutation (or commutation rest). When 
A and B commute, 6 is zero. It is easy to see that 6 is also a hermitian 
operator. The deviation of the operators from the mean values is defined 
by 

~A= A-A, 

~B=B-B. 

(8.181a) 

(8.181b) 
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It is easy to prove that ~A and ~B obey the same commutation rela­
tions as A and B 

[~A, ~BJ = iC. 

Similar to the discussions for Px and x, we define an integral 

I(n) = J l(n~A- i~B)'Pi 2 
dx ~ 0 n E IR. 

We can evaluate I(n) in the following way 

I(n) = J (n~A- i~B)*'P*(n~A- i~B)'fJdX 

= J 'P*(n~A + i~B)(n~A- i~B)'fJdx 

= J 'P* [n2 (~A) 2 + in(~B~A- ~A~B) + (~B) 2] 'fJdx 

= J 'P* [n2 (~A)2 + nC + (~B) 2 ] 'fJdx 

= n2 (~A) 2 + a6 + (~B)2 

~ 0. 

(8.182) 

(8.183) 

(8.184) 

Since I(n) ~ 0 for any real number, the minimum I(nm) of I(n) should 
also be larger than or equal to zero. 

-2 

I(nm) = (~B) 2 - C A ~ 0, 
4(~A) 2 

(8.185) 

which leads to 
-2 

(~A)2(tli'1)2 2: ~ . (8.186) 

Eq. (8.186) is the Heisenberg uncertainty principle in its most general form. 
In particular, the energy operator E in quantum mechanics is defined as 
E = in ff£. For the quantum system governed by the Schrodinger equation, 
the energy operator is equal to Hamiltonian operator. The commutation 
relation between energy and time operators is given by 

[E, ~=in. 

Thus the uncertainty relation between energy and time reads 

(~E)2(~£)2 ~ ~2. 

(8.187) 

(8.188) 
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This relation means a particle state with short life time will experience large 
energy change. This phenomenon is related to the conservation of energy. 
If one wants to transform a state with a definite energy (an eigenstate of 
Hamiltonian) to a state with a different energy, one needs apply external 
disturbance. Otherwise, it would not change. The change can be achieved 
either in a short time by applying a large external disturbance or in a long 
time by a small disturbance. A state which does not change with the time in 
average is called the stationary state. We will show that it is the eigenstate 
of Hamiltonian. 

8.11 Stationary states 

When the Hamiltonian operator fi is not time-dependent explicitly, we 
have 

dH A A 

dt = [H,H] = 0. (8.189) 

The energy is a constant of motion. In this case, we can separate the 
variables x and t of the time-dependent Schrodinger equation 

in :t <p(x, t) = H <p(x, t) 

with the separated form of solutions 

<p(x, t) = <p(x)f(t). 

We have 

in<p(x) :tf(t) = H<p(x)f(t). 

After separating the variables, we have 

inj(t) = H<p(x) = const = E, 
j(t) <p(x) 

which gives the time dependent part as 

( .Et) j(t) = fo exp -zr; . 

(8.190) 

(8.191) 

(8.192) 

(8.193) 

(8.194) 

The function with the spatial argument obeys the stationary 

Schrodinger equation 

H <p(x) = E<p(x). (8.195) 
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This equation is also called the Schrodinger equation and is used mostly 
because H does not depends on time explicitly in most applications. Math­
ematically, Eq. (8.195) is an eigenvalue equation of Hamiltonian. E is the 
energy eigenvalue, which is real because the Hamiltonian is a hermitian op­
erator. Generally the eigenvalue equation Eq. (8.195) has a set of solutions 
'Pn(x) characterized by n. n is called the quantum number. The energy 
eigenvalues En is also numbered using n. The solution <t?n(x, t) then has 
the form 

( .Et) <t?n(x, t) = <t?n(x) exp -z--,; , (8.196) 

which is an oscillatory function in time, with the phase factor exp ( -i ~t). 
We generally normalize the solutions with 

J <t?n(x, t)*<pn(x, t)dV = J <t?n(x)*<pn(x)dV = 1. (8.197) 

This normalization condition means that a state contains one particle. It 

can be shown that <t?n(x) are orthonormal, i.e. (<t?n l<t?m) = 8nm· The general 
solution of the time-dependent Schrodinger equation is a superposition of 

all <t?n(x, t). 

<p(x, t) = 2: Cn(O)<pn(x)e-iwnt 

n 

= L [/ :p(x', O)cp~ (x')d3x'] 'Pn(x)e-iwn'. 
n 

(8.198) 





Chapter 9 

Applications of Quantum Mechanics 

9.1 Harmonic oscillator 

9.1.1 Classical solution 

We consider a one-dimensional system. When the interaction potential 
V ( x) has a local minimum at x0 , we can expand the potential V ( x) in a 
Taylor series about the minimum 

V(x) = V(xo) + V'(xo)(x- xo) + ~V"(xo)(x- xo) 2 + · · · 
1 2 = V(xo) + 2k(x- xo) + · · · (9.1) 

with 

k = V"(xo). (9.2) 
When energy is small, we can neglected the higher order term. V(x0 ) is a 
constant term and can be dropped since it only affects the reference energy. 
Thus the potential in Eq. ( 9.1) can be written as 

1 
V(x) = -mw2x2

. (9.3) 
2 

with 

(9.4) 

where m is the mass of particle. 
For a potential given by Eq. (9.3), Newton's equation is 

m d2x = F =- oV(x) = -kx. 
dt 2 OX 

(9.5) 

Eq. (9.5) is also called Hooke's law. The solution of Eq. (9.5) is 

x(t) =A sin(wt) + B cos(wt), (9.6) 
which consists of the harmonic functions. This is the reason we call this 
system the harmonic oscillator. 

231 
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9.1.2 Hamiltonian operator in terms of at and a 
The Hamiltonian of the harmonic oscillator is given by 

n2 1 
H = --\72 + -mw2x 2 (9.7) 

2m 2 
The Schrodinger equation for the harmonic oscillator has the form 

n2 d2 cp 1 
--- + -mw2 x 2 cp = Ecp. (9.8) 

2m dx2 2 
Instead of expressing the Hamiltonian operator in terms of the mo-

mentum operator p and position operator i:, we define two non-hermitian 
operators 

A f£w (A if>) a= - x+- , 
2n mw 

(9.9a) 

rh: f£ (x~ ;!) . (9.9b) 

We will show that they have the same properties as the annihilation and 
creation operators we introduced previously in the quantum field theory. 
Historically, physicists first introduced the hermitian operators p and i:, and 
found that p and i; satisfied the canonical commutation relation [i:, f>] = in. 
Then using Eq. ( 9. 9) to introduce the annihilation and creation operators a 
and at. The second procedure is thus called the second quantization. In this 
book, we use the annihilation and creation operators to derive the canon­
ical commutation relations in the quantum field theory. The procedure is 
reversed in the quantum field theory. 

Using the commutation relation of p and i:, we have 
1 

[a, at]= 
2
n(-i[x,f>J +i[P,x]) = 1. (9.10) 

Eq. (9.10) shows that a and at have the same commutation relation as 
the annihilation and creation operators. Similarly, we can also define the 
number operator 

iV =at a. (9.11) 

Using the definition of a and at in Eq. (9.9), we have 

AtA _ mw (A 2 L) _!_[A A] 
a a - 2n x + m2w2 + 2n x, P 

fi 1 

tiw 2 
(9.12) 

Thus we can express the Hamiltonian operator in terms of a and at as 

fi = llw (at a+ D = llw ( N +D. (9.13) 
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9.1.3 Eigenvalues and eigenstates 

Since the Hamiltonian operator ii commutes with N, ii and N can be 
diagonalized simultaneously. We introduce In) to denote the eigenstate of 
N with the eigenvalue n. 

Nln) = nln). 

Using Eq. (9.13), we have 

Hin) = llw ( n + D In). 

Thus the energy eigenvalues are given by 

En = llw ( n + D . 
Now we show that n is a nonnegative integer. First we note that 

flat In) = ([N, at]+ at N)ln) 

and 

= (at [a, at] +at N) In) 

= (n + l)atln). 

Naln) = ([N, a]+ aN) In) 

= (at[a,a] + [at,a]a+&N)In) 

= (n- l)aln). 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

Thus at In) and aln) are also the eigenstates of N with eigenvalue n + 1 
(increased by one) and n - 1 (decreased by one), respectively. This is the 
reason we call at and a the creation (or raising) operator and annihilation 
(or lowering) operator. 

Since aln) is the eigenstate of N with eigenvalue n- 1, we have 

&In) = cln- 1), 

where cis the normalized constant, which can be determined by 

(nlataln) = lcl 2 (n -lin -1) = lcl 2
. 

Thus 

(9.19) 

(9.20) 

n = lcl 2 2: 0. (9.21) 

Eq. (9.21) shows that n is a nonnegative number. Thus we can write 
Eq. (9.19) in the following form 

aln) = ei8 vnln- 1), (9.22) 
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where 6 is a phase parameter. Similarly, we have 

atln) = e-i8vn +lin+ 1). (9.23) 

Applying the annihilation operator a to Eq. (9.22) consecutively, we 
have 

akin)= eik8 y'n(n- 1) ... (n- k + l)ln- k). (9.24) 

If n is not an integer, we will have an eigenstate In') = In-k) with n' a 
negative number for k > n, which contradicts with Eq. (9.21) demanding 
that n' has to be a nonnegative number. Thus n can only be a nonnegative 
integer. When n is an integer, the sequence In) terminates at n = 0. 

Since the smallest value of n is zero, the ground state IO) of the harmonic 
oscillator has the energy 

1 
Eo= -liw 

2 ' 
(9.25) 

which is called the zero-point energy. Other eigenstates can be obtained by 
applying the creation operator at successively 

In) = (at)n IO). (9.26) 
Vn1 

Thus ii has the eigenstate In) (n = 0, 1, 2, · · ·) with the eigenvalue 

En = llw ( n + D . (9.27) 

The orthonormality requires 

(n'laln) = ei8 vn(n'ln- 1) 
i8 r::: 

= e vn<Sn',n-1 

and 

(n'latln) = e-i8vn + l(n'ln + 1) 

= e-i8v'n+T6n',n+1· 

Expressing x and p in terms of a and at. 

x= ~Yt(a+at), v~ 
A 0 ~( A At) p=2V2_2_ -a+a . 

We have the matrix elements of the operators x and p 

(n'l±ln) = {zf (e'0 fo8n',n-l + e-"v'n+TDn',n+l), 

( 'I A I ) ~ ( i8 r::: ~ ' i8 ~ ~ ) n p n = iV 2- 2
- -e vnun',n-1 + e- vn + lun',n+1 . 

(9.28) 

(9.29) 

(9.30a) 

(9.30b) 

(9.31a) 

(9.31b) 
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9.1.4 Wave functions 

Now let us derive the energy eigenstate in the x representation. For the 
ground state, we have 

afO) = o. (9.32) 

Multiplying Eq. (9.32) with (x[, we have 

(xliiiO) = .fi(xl (X+ ! ) IO) 

= fi (x+ ~wd~) (xiO) 

= 0. (9.33) 
Eq. (9.33) is the differential equation for the wave function 'Po(x) = (x[O) 

of the ground state, which has the following solution 

'Po(x) = (x[O) = ~ exp [--2

1 (~)
2

] , (9.34) 
7r4 .JXo xo 

where 

xo = /it_ (9.35) y;;;; 
In the normalization of the wave function, we have taken the irrelevant 
phase parameter 8 to be zero. 

The wave functions of other states read 

'Pn(x) = (x[n) 

= (xl [ (~]10) 

1ri~ X~~! (X- X~d~ r exp [ -~ (:J] · 
Using the Hermite polynomials defined by the Rodriguez formula 

Hn(EJ = (-l)ne<' (:€) n e-<', 

we can rewrite Eq. (9.36) as 

( ) ( 
mw ) ~ 1 ( x ) _ 1 ( 2.__) 

2 

'Pn X = - ~Hn - e 2 xo 1rn v 2nn! xo 

(9.36) 

(9.37) 

(9.38) 

Eq. (9.38) can be derived from Eq. (9.36) using the following recursion 
relations for the Hermite polynomials 

Hn+I(~) = 2~Hn(~)- 2nHn-I(~) (9.39) 
and 

(9.40) 



236 Principles of Physics 

9.2 Schrodinger equation for a central potential 

9.2.1 Schrodinger equation in the spherical coordinates 

In order to treat the problem of central potential, we express the 
Schrodinger equation in the spherical coordinates. The Schrodinger equa­
tion for a particle in a central potential V ( r) reads 

(9.41) 

In Eq. (9.41), we have used 'lj;, instead of cp, to represent the wave function 
in order to avoid the confusion with the angular coordinate cp used in the 
spherical coordinates. 

In the spherical coordinates, the Laplacian operator \72 has the form 

\72 = ~~ (r2 ~) + -1-~ (sine~)+ 1 
_!!___. (9.42) 

r 2 ar ar r 2 sin e ae ae r2 sin 2 e 8cp2 

The Schrodinger equation Eq. (9.41) becomes 

_!f_ [~~ (r2a'lj;) + _1_~ (sinea'lj;) + 1 a2'1j;J 
2m r 2 ar ar r 2 sine ae ae r2 sin2 e 8cp2 

+ V(r)'lj; = E'lj;. (9.43) 

9.2.2 Separation of variables 

Using the following separation of variables 

'!j;(r, e, cp) = R(r)Y(e, cp), (9.44) 

we can separate Eq. (9.43) into a radial and an angular part. Inserting 
Eq. (9.44) into Eq. (9.43), we have 

_!f_ [y !£ (r 2 dR) + _R_~ (sin Bay)+ R 8
2
Y] 

2m r 2 dr dr r 2 sin e ae ae r2 sin 2 e 8cp2 

+ V(r)RY = ERY. (9.45) 

Eq. (9.45) can be rewritten as 

{ ~!£ (r2dR)- 2mr2 [V(r)- E]} 
R dr dr !i2 

1 { 1 a ( aY) 1 a
2
Y } 

+ y sine ae sin 88ii + sin2 e 8cp2 = o. (9.46) 

The terms in the first curly bracket depend only on r and the remaining 
terms depend only one and cp. Thus, each must be a constant. We write 
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the separation constant in the form of l(l + 1). Then Eq. (9.46) becomes 
two equations 

~~ (r2dR) - 2mr2 [V(r)- E] = l(l + 1), 
R dr dr n2 

(9.47a) 

1 { 1 a ( aY) 1 a2
Y } y sine ae sine ae + sin2 e acp2 = -l(l + 1). (9.47b) 

Eq. (9.47b) for the eigenvalues and eigenstates of the angular part can 
be written as 

2 { 1 a ( . aY) 1 a2Y} 2 - n sin e ae sm e ae + sin 2 e acp2 = l ( l + 1) n y (9.48) 

or 

(9.49) 

Thus Y is the eigenstate of L 2 and l(l + 1)n2 is the eigenvalue of L 2
. 

9.2.3 Angular momentum operators 

Now we derive the eigenstates and eigenvalues of the angular momentum 
operator. For the applications to more generalized cases, we consider the 
total angular momentum operator 

(9.50) 

A2 
J is given by 

A 2 A2 A2 A2 
J = Jx + Jy + Jz · (9.51) 

It commutes with each component Ji of j 

(9.52) 

A2 A 
Thus J and Jz can be diagonalized simultaneously. We denote the eigen-

A2 A 
values of J and Jz by a and b, respectively. We have 

A2 
J Ia, b) =ala, b), 

Jz Ia, b) = bla, b). 

We introduce two non-hermitian operators 

j± = Jx ± iJy. 

(9.53a) 

(9.53b) 

(9.54) 
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J± are called the ladder operators. They satisfy the following commutation 
relations 

[J+, ]_] = 2nJz, 

[Jz, J±] = ±nJ±, 
A 2 A 

[J ,J±] = 0. 

Using above commutation relations, we have 

Jz(J±Ia,b)) = ([Jz,J±] + J±Jz)la,b) 

= (b± n)(J±Ia,b)). 

(9.55a) 

(9.55b) 

(9.55c) 

(9.56) 

Eq. (9.56) shows that J± Ia, b) are the eigenstates of Jz with the eigenvalues 
b ± n. When we apply J+(J-) to an eigenstate Ia, b) of Jz, we obtain an 
eigenstate of jz with its eigenvalue increased (decreased) by one unit of n. 
This is the reason why J± are called the ladder operators. 

A2 A 
Applying J to J±la, b), we have 

A2 A A A2 A 
J ( J± Ia, b)) = J±J Ia, b) = aJ± Ia, b). (9.57) 

A A 2 
Eq. (9.57) shows that J± Ia, b) are also the eigenstates of J with the eigen-
value a. Thus 

(9.58) 

where C± are the normalization constant. 

9.2.4 Eigenvalues of J2 and Jz 
First we prove that the eigenvalue b of Jz has an upper limit for a given 

A2 
eigenvalue a of J . We use the following formula 

A 2 A2 1 A A A A 
J - Jz = 2(J+J- + J_J+) 

- 1 A At At A 
- 2(J+J+ + J+J+)· (9.59) 

Thus 
A 2 A2 1 A At At A 

(a,bi(J - Jz)la,b) = 2(a,bi(J+J+ + J+J+)Ia,b) 

= ~(IC+I 2 + IC-1 2
) ~ 0, (9.60) 

which means that 

(9.61) 
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Eq. (9.61) is equivalent to 
1 1 

-a2 ::;b::;a2. (9.62) 

Therefore, b has an upper limit for a given a. When we apply J+ succes-
A2 A 

sively to Ja, b), we could obtain the eigenstate of J and Jz with increased 
eigenvalue of Jz until the upper limit of the eigenvalue of Jz is reached. We 
denote the maximum eigenvalue of Jz as bmax· Then 

(9.63) 

Otherwise J+ Ja, bmax) would be the eigenstate of Jz with the eigenvalue 
bmax + fi, which contradicts with the statement that bmax is the maximum 
eigenvalue. Applying Eq. (9.63) with }_ gives 

j_}+Ja, bmax) = 0. (9.64) 

J _ J + can be rewritten as 
A A A2 A2 

0 
A A A A 

J_J+ = Jx + Jy- z(JyJx- JxJy) 
A 2 A2 A 

= J - Jz - fiJz. 

Inserting Eq. (9.65) into Eq. (9.64), we have 

A 2 A2 A 2 
(J - Jz - fiJz)Ja, bmax) =(a- bmax- fibmax)Ja, bmax) 

= 0. 

Since Ja, bmax) is not a null state, we have 

a- b~ax- fibmax = 0. 

Solving a gives 

(9.65) 

(9.66) 

(9.67) 

a= bmax(bmax + n). (9.68) 

Eq. (9.62) also shows that there is a lower limit of the eigenvalue b. We 
denote the minimum value of bas bmin· Then 

}_Ja, bmin) = 0. 

Similarly, we have 
A A A 2 A2 A 

J+J-Ja,bmin) = (J - Jz +fiJz)Ja,bmin) 

Then we obtain 

=(a- b~in + fibmin)Ja, bmin) 

= 0. 

a= bmin(bmin - n). 

(9.69) 

(9. 70) 

(9.71) 
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Comparing Eq. (9.68) with Eq. (9. 71) gives 

(9.72) 

The allowed values of bare limited within 

- bmax ::; b ::; bmax · (9. 73) 

Applying J+ successively to [a, bmin), we will be able to reach [a, bmax)· 
Suppose that we obtain [a, bmax) after n time operating J+, we have 

bmax = bmin + nn = -bmax + nn, 
which gives 

nn 
bmax = 2· 

We introduce a quantum number j defined by 

. n 
J =­- 2" 

(9.74) 

(9.75) 

(9.76) 

Since n is nonnegative integer, j is either an nonnegative integer or a half­
integer. Using Eq. (9.68), we have 

(9.77) 

We also introduce m = bjn as another quantum number. Thus 

b=mn. (9.78) 

m takes the following 2j + 1 value for a given j. 

m = 0,±1,±2,··· ,±j. (9.79) 

A2 A 
We usually use [j, m) to denote the eigenstates of J and Jz instead of 

[a, b). We have 

A2 2 
J [j, m) = j(j + 1)n [j, m) (9.80) 

and 

(9.81) 

A2 
Since the eigenvalues of L is l(l + 1), Eq. (9.49) is the usual form of 

A2 
the eigenvalue equation for L , which is the reason we use l(l + 1) as the 
separation constant in Eq. (9.47). 
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9.2.5 Matrix elements of angular momentum operators 

Now let us evaluate the matrix elements of the angular momentum opera­
tors. From Eqs. (9.80) and (9.81), we have 

(j', m'IJ
2 1J, m) = j (j + 1 )n2 bj' jbm'm (9.82) 

and 

(9.83) 

The matrix elements of J± can be determined using the following 

equation 

(9.84) 

Eq. (9.84) is just Eq. (9.58) rewritten in terms of j and m. Using the 

relation 
0 

At A 
0 0 

A 2 A2 A ' 
(J, m!J±J±!J, m) = (J, miJ - Jz ~ nJz!J, m) 

= [j(j + 1)- m2 ~ m]n2
, (9.85) 

we obtain 

IC.tnl 2 = [j(j + 1)- m(m ± l)]n2 

= (j ~ m) (j ± m + 1 )n2
. 

Thus the matrix elements of J± are given by 

(9.86) 

(j', m'iJ±iJ, m) = )(j ~ m)(j ± m + l)nbj'jbm'm±j· (9.87) 

9.2.6 Spherical harmonics 

In Eq. ( 9.48), Y ( B, 'P) is the wave function of the angular part in the spher­
ical coordinate representation. We have shown that there are two quantum 
number l and m. For the spherical coordinate representation, we introduce 
the direction eigenstate In). Then 

(niJ, m) = Yzm(n.) = Yzm(e, 'P)· 

Since lj, m) is the eigenstate of Jz, we have 

-in :'P Y,m(e, 'P) = mnY,m(e, 'P ). 

Thus 

(9.88) 

(9.89) 

(9.90) 
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In order to fulfill the requirement that the wave function is single valued, 
we impose 

which demands m to be an integer. According to Eq. ( 9. 79), 

m = 0,±1,±2,· ·· ,±l. 

(9.91) 

(9.92) 

Thus l should be integer. To obtain the 8-dependence of Yzm(e, <p), we start 
with the case of m = l. According to Eq. (9.63), we have 

or equivalently 

-ill£'"' (i :e- cote :'1' )-v,=(e, 'P) 

= -ill£'"' ( i :e - cot e :'1') e""' q,f( e) 
=0. 

The solution of Eq. (9.94) is given by 

¢i(8) = Cz sinl 8, 

(9.93) 

(9.94) 

(9.95) 

where cz is the normalization constant. The normalization condition is 

(9.96) 

From the normalization condition, we can only determine the modula 
of cz. There is an undetermined phase factor ei8• Generally we take <5 to be 
zero. The undetermined phase factor comes from the complex wave func­
tion of the Dirac fermions. We have shown in the chapter of quantum field 
theory that the Dirac fermions are composite in order to fulfill the causal­
ity and covariance principles. The doublet field operators are needed and 
thus the Dirac fermion field operators are complex. Although the doublet 
field operators are not independent, there is an constant phase factor un­
determined because the composite can not be broken into two independent 
particles due to the causality and covariance principles. The phase factor 
can be important in some periodic systems and adiabatic evolution where 
the phase factor is called Berry phase or geometric phase. 

Inserting Eq. (9.95) into Eq. (9.96), we have 

(-l)z (2Z+1)(2l)! 
cz = ~ 

4
7r (9.97) 
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Starting from ll, l), we can apply L_ successively to ll, l) to obtain all 
other ll, m) with l fixed. We use the following formula 

e-i~ (i :e +cot 0 :,J [f(O)eim~] 
--. i(m-l)'P . 1-m ed(f(e) sin= e) 
- ze sm d( cos e) . (9.98) 

We define the term on the right hand side ofEq. (9.98) as JI(e)ei(m-l)'P 

and apply e-i'P ( i g
8 

+cote :'P) repeatedly, we obtain 

[ 
. ( a a )]z-m 

-ine-t'P i ae +cote acp Y/(e, cp) 

[ 
. ( a a )]z-m . 

= -ine -tip i ae +COte acp ( Czetlip sin1 e) 

dl-m ( · 2l e) 
- (- to:)l-m imip . -me sm 
- Cz n e sm ( d cos e)l-m . 

Using the relation 

L_ll, m + 1) = y'(l- m)(l + m + 1)Jil, m) 

and Eq. (9.99), we obtain 

(2l + 1)(l + m)! 1 d1-m(sin21 e) 
47r(l- m)! 2ll!sinme (dcose)t-m 

(2l + 1)(l- m)!Pm( e) imip 
(l )' 1 cos e , 

47r + m. 

where Pzm is the associated Legendre function defined by 

El (d) 1=1 
Pzm(x) = (1- x2

) 2 dx Pz(x) 

(9.99) 

(9.100) 

(9.101) 

(9.102) 

and Pz is the lth Legendre polynomial defined by the Rodriguez formula 

- 1 d 2 l 
( )

l 

Pz(x) = 2ll! dx (x - 1) . 

Eq. (9.101) is form~ 0. Form< 0, we use the definition 

1{-m ( e' cp) = ( -1) m [}/m ( e' cp) J * . 

(9.103) 

(9.104) 

Then the complete expression of the spherical harmonics for all the values 
of m is 

(2l + 1)(l- lml)! plml ( e) imip 
47r(l + lml)! l cos e . (9.105) 
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9. 2. 7 Radial equation 

Now let us consider the radial part of the wave function R(r). 
mined by Eq. (9.47a), which can be rewritten as 

d ( 2 dR) 2mr
2 

dr r dr - ---;r-[V(r)- E]R = l(l + 1)R. 

We define 

u(r) = rR(r). 

Then 

dR = ~ (r du _ u) 
dr r 2 dr ' 

d ( 2 dR) d
2
u 

dr r dr = r dr2 • 

Substituting u for R, Eq. (9.106) becomes 

_!f._ d2
u [v !f._ l(l + 1)] _ 

2 d 2 + + 2 2 u - Eu, m r m r 

R is deter-

(9.106) 

(9.107) 

(9.108a) 

(9.108b) 

(9.109) 

which is called the radial equation. It can be considered as one-dimensional 
Schrodinger equation with an effective potential 

v: -v !f_Z(l+1) 
eff- + 2 2 • m r 

(9.110) 

The term ;~ l(lr~l) is called the centrifugal term. The normalization con­
dition for u is 

(9.111) 

9.2.8 Hydrogen atom 

9.2.8.1 Reduction to one-body problem 

An electron with negative charge -e and a proton with positive charge e 
can form a composite particle, which is called hydrogen atom. The positive 
charge particle has a much larger mass than the electron and is localized 
in an atom. Thus we call it the nucleus. Since a hydrogen atom consists of 
two particles, the proton and electron, it is a two-body problem. However, 
it can be reduced to one-body problem. The Schrodinger equation of the 
electron and nucleus is given by 

in Zt w(xe, Xp, t) 

= (-~\7~ -~\7~ +U) W(xe,Xp,t). 
2me e 2mp p 

(9.112) 
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where Xe and Xp are the coordinates of the electron and nucleus respectively. 
me and mp are the masses of the electron and nucleus respectively. U is 
the Coulomb potential between the nucleus and electron. According to 
Eq. (7.67) 

(9.113) 

We introduce two coordinates, the relative coordinate and the mass cen­
ter coordinate to replace the coordinates Xe and Xp. The relative coordinate 
x is defined as 

X:= Xe- Xp 

and the mass center coordinate X is defined as 

X = meXe + mpXp. 

me+mp 

(9.114) 

(9.115) 

We can express the differentials in terms of the relative and mass center 
coordinates 

a axi a axi a me a a 
axi = axi aXi + axi axi = m + m axi + axi ' e e e e p 

(9.116) 

(9.117) 

and 

a axi a axi a mp a a 
axi = axi aXi + axi axi = m + m aXi axi' p p p e p 

(9.118) 

a2 
( mp a a ) ( mp a a ) 

(axb) 2 = me+ mp aXi - axi me+ mp aXi - axi · (9·119) 

Inserting the above equations into the Schrodinger equation Eq. (9.112), 
we have 

. aw ( n2 2 n2 2 ) zn- = --\7x- -\7 + U(x) w. at 2M 2m x 
(9.120) 

where M = me+ mp is the total mass of a hydrogen atom and m = memp 
. me+mp 
Is called the reduced mass. We consider the solution which is separated 
into the product 

(9.121) 
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Then we obtain the stationary Schrodinger equation 

n2 1 n2 1 
---Vi<I>- --\72 1P + U(x) = Et 

2M <I> 2m 1P x · 
(9.122) 

The first term depends only on X. The other two terms depend only 
on x. Therefore, each should be a constant. We have 

(9.123) 

and 

(9.124) 

Eq. (9.124) is the Schrodinger equation for the wave function <I>(X) of 
mass center. It is equivalent to that of a free particle with the energy 
Et- E. Eq. (9.123) is the Schrodinger equation of an electron in a relative 
coordinates. It is equivalent to that of a particle in a central potential 

e2 
U(r) = --, (9.125) 

r 

where r is the distance of the electron to the nucleus. Thus we can consider 
the nucleus as a localized charge. We introduce Z to denote the charge 
number of the localized positive charge so that we can easily generalize 
our results to more applications. For the hydrogen atom, Z = 1. The 
potential energy for an electron in the Coulomb potential field generated 
by a localized charge of Z e is 

Ze2 

U(r) = --. (9.126) 
r 

9.2.8.2 Solution of the radial equation in a central potential 

The radial equation reads 

_!!Z_ d2
u + [- Ze

2 + !!Z_ l(l + 1)] u = Eu. 
2m dr2 r 2m r 2 

To simplify notation, we introduce 

v='2mE r;,=: 
n 

(9.127) 

(9.128) 

We consider the bound states for which E is negative. Thus r;, is real. 
In terms of r;,, we can rewritten Eq. (9.127) as 

~ d2
u = [1 _ 2mZe

2 ~ + l(l + 1)] u. (9.129) 
r;,2 dr2 n2r;, r;,r (r;,r)2 
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we introduce 
2mZe2 2mZe2 

Po=~= n)-2mE (9.130) 

and 

p = Kr. (9.131) 

Then Eq. ( 9.129) becomes 

d
2
u = [1 _Po + l(l + 1)] u. 

dp2 p p2 
(9.132) 

First we consider the asymptotic form of the solutions of Eq. (9.132). 
As p-+ oo, keeping the dominated terms in Eq. (9.132) gives 

(9.133) 

The solution of Eq. (9.133) is 

u(p) = Ae-P + BeP. (9.134) 

The term eP goes to oo as p -+ oo. Thus it should be dropped and then 
Eq. (9.134) becomes 

(9.135) 

On the other hand, asp-+ 0, the dominated terms in Eq. (9.132) gives 

d2u l(l + 1) 
dp2 = p2 u. (9.136) 

The solution of Eq. (9.136) is given by 

u(p) = Cpl+ 1 + Dp-z. (9.137) 

Since p-z -+ oo as p -+ 0, we have 

u(p) = Cpl+l. 

Thus the solution of Eq. (9.132) should have the form 

u(p) = Cp1+1e-Pv(p). 

In terms of v(p), the radial equation becomes 

d2v dv 
P dp2 + 2(l + 1- p) dp +[Po- 2(l + 1)]v = 0. 

To find the solution, we expand v(p) into a power series in p 
00 

v(p) = L Ckpk. 
k=O 

(9.138) 

(9.139) 

(9.140) 

(9.141) 
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Inserting Eq. (9.141) into Eq. (9.140), we have 
CXl CXl 

k=O k=O 
CXl CXl 

k=O k=O 

or 
CXl 

L{k(k + 1)Ck+l + 2(Z + 1)(k + 1)Ck+l 
k=O 

- 2kCk + [po- 2(Z + 1)]Ck}Pk = 0. 

The coefficient of pk should be zero. We have 

which gives 

k(k + 1)Ck+l + 2(Z + 1)(k + 1)Ck+l 

- 2kCk +[Po- 2(Z + 1)]Ck = 0, 

2 ( k + l + 1) - Po 
0

k+l = (k + 1)(k + 2z + 2) 0 k· 

(9.142) 

(9.143) 

(9.144) 

(9.145) 

Eq. (9.145) is a recursion formula which determines the coefficients of the 
expansion Eq. (9.141). 

If2(k+l+1)-p0 -=/= 0, we have infinite terms in the expansion Eq. (9.141). 
Ask-+ oo, we have 

2 
ck+l ~ kck. 

Inserting Eq. (9.146) into Eq. (9.141), we obtain 

( 

CXl 2k ) 
v(p) rv 0 t; k! pk = O(e2P). 

(9.146) 

(9.147) 

Then v(p) -+ oo as p -+ oo, which is not the solution we want. Therefore, 
there should be an integer k = ko fulfilling the relation 

2 ( k + l + 1) - Po = 0. (9.148) 

We introduce 

n = ko + l + 1, (9.149) 

which is the so-called principal quantum number. From Eq. (9.148), we 

have 

Po= 2n. (9.150) 
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Inserting p0 = 2n into Eq. (9.130), we obtain the energy 

n2 K2 mZ2e4 

En = - 2m = - 2n2n 2 · (9.151) 

Eq. (9.151) is the Bohr formula. The smallest n gives the energy of the 
ground state. Since the smallest k0 and l are zero, the smallest n is 1. Thus 
n takes the values n = 1, 2, · · ·. For the ground state, n = 1. The energy 
of the ground state is 

(9.152) 

When Z=1, E1 = -13.3eV. n = 1 yields l = 0 and m = 0. The recursion 
formula Eq. (9.145) gives c1 = 0. So v(p) =co is a constant. Then we have 

co _.!:. 
Rw(r) = -e a (9.153) 

a 

with 
11,2 

a= --. (9.154) 
mZe2 

When Z=1, a = a0 = ~;2 = 0.529 x 10-10 M, which is called the Bohr 
radius. The radial part of the wave function for a hydrogen atom is given 
by 

(9.155) 

where v(p) is a polynomial of the order k = n -l- 1 in p. Inserting p0 = 2n 
into the recursion formula Eq. (9.145), we have 

2(k+l+1-n) 
0

k+
1 = (k + 1)(k + 2z + 2) 0 k· 

(9.156) 

Using the recursion formula Eq. (9.156), we obtain v(p) in an expansion 
form 

n-l-1 

v(p) = L Ckpk 
k=O 

_ [ n-l-1 (n-l-1)(n-l-2) 2 
-co 1 - 1!(2l + 2) (2p) + 2!(2l + 2)(2l + 3) (2p) + ... 

+ 1 n-z- 1 (n -l- 1)(n -l- 2) · · ·1 n-l- 1] 

(-) (n-l-1)!(2l+2)(2l+3)···(n+l)(2p) 

_ (2l + 1)!(n -l -1)! .c2Z+ 1 ( ) 
- -co [(n + l)!)2 n+l 2p ' (9.157) 
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where C~z:/(x) is the associate Laguerre polynomial defined by 

2l+1( ) n~1 ( )n-l-1 [(n + l)!] 2xk 
£n+l X = 6 -1 (n -l-1- k)!(2l + 1 + k)!k!. (9.158) 

From Eq. (9.128), we have 

mZe2 z 
K,=--=-

nn2 nao. 
(9.159) 

Thus Eq. ( 9.155) becomes 

R ( ) _ N - n~ r (2Zr) l r 2l+ 1 (2Zr) 
nl r - nle 0 ,L.,n+l ' 

nao nao 
(9.160) 

where Nnz is the normalization constant. The normalization condition for 
Rnl is 

(9.161) 

which gives Nnl as 

2Z (n- l- 1)! 2 

{ 
3 }

1 

Nnl = ( nao) 2n[(n + !)!]" (9.162) 

Together with the angular part, the wave function for hydrogen is given 
by 

(9.163) 

which is labeled by the three quantum numbers n, l and m. Eigenvalue of 
energy En depends only on n. Thus the energy is degenerate. For a fixed 
n, l takes the values l = 0, 1, 2, · · · , n- 1. For a fixed l, m takes the values 
m = 0, ±1, ±2, · · · , ±l. Thus the degeneracy of energy is 

n-1 

L(2l + 1) = n 2
. (9.164) 

l=O 



Chapter 10 

Statistical Mechanics 

10.1 Equi-probability principle and statistical distributions 

For an isolated system which does not exchange energy and particles with 
external environment, the energy of the system is fixed. The different states 
are the degenerate states of energy. We call these states microscopic states 
in statistic mechanics. One can not tell the differences between these states. 
We have the basic principle that all the states are equally probable to be 
occupied in an isolated system. This is called the Boltzmann equi-probability 
principle, which the standard assumption in statistical physics. A set of 
identical isolated systems is called the micro-canonical ensemble. Thus the 
statistical distribution for a system in micro-canonical ensemble, which is 
called the micro-canonical distribution, is a constant. 

Now we consider a system (denoted as system 1) in contact with a 
larger system (denoted as system 2). The larger system is called the ther­
mal reservoir. The two systems contain large number of particles N ( typ­
ically N rv 1023). We call the systems with large number of particles the 
macroscopic systems. When the two systems are isolated, the states in each 
system are equally probable to being occupied. After the two systems are 
in contact, the two systems will be in thermal equilibrium with each other 
when the thermal quantities of the two systems are not changed. The sys­
tem and the thermal reservoir can be considered to form an isolated system. 
This is valid because we can always include the surroundings in contact into 
the thermal reservoir until the total system is isolated. For a macroscopic 
system, the boundary part can be neglected. Thus the two systems are 
sufficiently weakly interacting that we can write 

Et = E + E', (10.1) 

where E is the energy of the system 1 and E' the energy of the system 2. 

251 
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Et is the total energy of the two systems. According to the equi-probability 
principle, the probability p(En) (also denoted as Pn) that the system 1 in 
a state n with the energy En is directly proportional to the number of the 
possible states of the total system for this situation. 

p(En) ex: 1 · O'(E'), (10.2) 

where O'(E) is the number of the states of the system 2 with energy E'. In 
the derivation ofEq. (10.2), we have used the condition that the two systems 
are not correlated statistically because the two systems are macroscopic 
ones with large number of particles and the contact boundary between 
them is only a minor part of the total system. Eq. ( 10.2) does not hold in 
the microscopic scale. Thus the two systems fulfilling Eq. (10.2) should be 
macroscopic systems. We introduce a macroscopic quantity 

S = k lnO(E), (10.3) 

where O(E) is the number of the states of the system with energy E. S 
is called the entropy of the system. k is a constant defining the unit of 
entropy. Eq. (10.3) is usually called the Boltzmann entropy relation. Using 
Eq. (10.1), we have 

(10.4) 

with 

(10.5) 

When the thermal reservoir is large, we have En << E' ~ Et. We can 
expand S' in a Taylor series: 

as' 1 a2s' 
S'(Et-E )=S'(Et)-E -+-E2-+···. n naE 2 naE2 

We define the temperature of a macroscopic system as 

aE 
T= as· 

(10.6) 

(10. 7) 

For any macroscopic system, we have the lowest energy state as the ground 
state. However, there is no limit to the highest energy generally because we 
have selected the positive sign in the kinetic term for the Hamiltonian. An 
opposite selection would result in an opposite sign of temperature but the 
physics is not changed. When we increase the energy, the increased energy 
allows the particles to occupy the states with higher energy. The number 
of possible microscopic states will increase. 0 represents the number of 
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the microscopic states. Thus the increase of energy leads to the increase of 
entropy. Thus, according to Eq. (10.7), the temperature should be positive. 

T>O. (10.8) 

There are some artificial systems which have only finite energy levels. In 
these systems, negative temperature can be achieved. 

In terms of temperature, Eq. (10.5) becomes 

(10.9) 

Tis the temperature of the thermal reservoir. We usually use j3 to denote 
1 

kT 

1 
j3 = kT. (10.10) 

For a large thermal reservoir, the high order terms in Eq. (10.9) can be 
neglected. Then Eq. (10.4) can be rewritten as 

(10.11) 

with 

(10.12) 
n 

The summation is over all the states in the system 1. The normalization 
factor Z is called the partition function. We usually call a set of the identical 
systems contacted with a thermal reservoir as canonical ensemble. Thus 
p(E) is called the canonical distribution. Using the symbol of the trace Tr 
defined by 

Tr A= L(niAin), (10.13) 
n 

where {in)} is an arbitrary completely orthonormal basis states, we can 
express Z in terms of the Hamiltonian operator, 

Z = L e-f3En = Tr e-f3H. (10.14) 
n 
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10.2 Average of an observable A 

10.2.1 Statistical average 

Now let us consider the mean value of an observable A. When a system is 
in the state 1~), the quantum mean value of the observable A is given by 

(10.15) 

In order to distinguish with the statistical average, we have used the no­

tation (A.), instead of A, to denote the quantum mean value. We denote 
Pi the probability for the state I~) to be occupied. Then the statistical 
average of the observable A reads 

We introduce the density matrix p defined by 

p = LPil~i)(~il 
with 

(10.16) 

(10.17) 

Tr p = LPi = 1. (10.18) 

Eq. (10.18) is the normalization condition for the probability Pi· Using 
Eq. (10.17), Eq. (10.16) becomes 

A= LPi(~iiAI L ln)(nl~i) 
i n 

= L(nl LPil~i)(1/JiiAin). 
n i 

= TrpA. 

10.2.2 Average using canonical distribution 

The canonical density matrix is defined by 

Pc = Lp(En)ln)(nl 
n 

n 

n 

Z-1 - ff = e kT. 

(10.19) 

(10.20) 
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The mean value of the observable A which acts only on the states of the 
system 1 is given by 

A= Tr PeA = z- 1Tr ( e- k~ .A) . (10.21) 

10.2.3 Average using grand canonical distribution 

In Eq. (10.20), the partition function Z depends on the number of particles 
N. There are cases that calculations are made easy if we write the N 
dependence of partition function Z explicitly. We denote N as the average 
number of particles in the system. Since the fluctuation of particle number 
is small for a macroscopic system, we can expand ln Z at N. We have 

ln Z(N) = ln Z(N + ~N) 
- 8lnz; = lnZ(N) + aN (~N) + · · ·, 

y,/3 
(10.22) 

where ~N = N- N. y is the other parameter in the energy of the system, 
such as the volume V of the system. We define the chemical potential f.1 by 

w= 8~ (-~In z) I",~, (10,23) 

Then Eq. (10.11) becomes 

p(En, N) = Z(N)- 1e11 f3LJ.N e-f3En 

(10.24) 

Thus the probability for a system that particle number is changeable is 
given by 

(10.25) 

To simplify the notation, p(En, N) is often denoted as Pn,N· 
We usually call a set of identical systems contacted with particle reser­

voir as grand canonical ensemble. Systems contacted with particle reservoir 
are called the open systems. p( En, N) is thus called the grand canonical 
distribution. 2 is the normalization constant. We have 

N n 

= L Tr e-f3(H-!JN) 

N 

= L Z(N)ef311N. 
N 

(10.26) 
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3 is called the grand partition function. We introduce the density matrix 
of the grand canonical ensemble defined by 

fJc = s-le-f3(H-pfl). (10.27) 

Then the average value of an observable A is given by 

A= Tr(fJcA). (10.28) 

The trace here is to be understood as a double summations EN Tr. The 
first summation Tr is over the state for a fixed particle number N and the 
second is over all the particle numbers N = 0, 1, 2, · · ·. 

10.3 Functional integral representation of partition 
function 

According to the definition of the partition function Eq. (10.12), we have 

Z = L e-f3En = L (nle-f3Hin). (10.29) 
n n 

Similar to the derivation of the functional integral representation of the 
transition amplitude (¢'1e-iiltl¢), we can derive the functional integral rep­
resentation of the partition function as 

z = L (nle-f3H In) = r D¢e- It dT J d3
xL(¢,¢)' (10.30) 

n }p 

where the subscript P denotes the periodic boundary condition which de­
mands that the functional integral should be done over all ¢( x, T) with the 
boundary condition ¢'(x, (3) = ¢(x, 0). In comparison with the transition 
amplitude, Eq. (10.30) can be obtained by simply replacing the time t by 
-if3 in the transition amplitude and summing over 1¢, 0) with the condition 
¢((3) = ¢(0). Thus the functional integral formalism of the partition func­
tion is equivalent to the Euclidean quantum field formalism with 0 < T < f3 
and the periodic boundary condition imposed. 

In Eq. (10.30), we have used the Lagrangian of the boson field. The 
functional representation for the fermion field can be given similarly. One 
can obtain the functional representation for the fermion field by simply 
replacing the Lagrangian of the boson field by that of the fermion field. 
Also, we can use the Hamiltonian of quantum mechanics and obtain the 
partition function when quantum mechanics is applicable. 

Z = Tr e-fif = l Dqe- It drL(q,q). (10.31) 
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In statistical mechanics, we deal with the many-particle systems. We usu­
ally use the field expression Eq. (10.30). 

When temperature approaches zero (!3 --+ oo), we recover the Wick 
rotated quantum field theory in the Euclidean representation, which gives 
the ground state properties as is expected. 

10.4 First law of thermodynamics 

Let us consider the properties of the macroscopic systems. The properties 
of the macroscopic systems are described by a set macroscopic quantities 
such as temperature, entropy, etc. The relations of macroscopic quantities 
are determined by the laws of thermodynamics. We will derive these laws 
of thermodynamics from the principle of statistical mechanics. 

We consider an equilibrium system. We denote the probability for the 
system in the stater as Pr· The average energy of the system is given by 

(10.32) 
r 

The energy can be changed with a small external disturbance. The 
variation of the energy can be written as 

(10.33) 
r r 

The second term comes from the change of Er. Er is the energy of a 
quantum state which can only be changed by applying an external field. 
This way of changing energy is called performing work. The change of 
energy from the first term is caused by the change of Pr· Since Er is not 
changed, there is no work done on the system. In this case, the way of 
changing energy is called heat transfer. We define the heat transfer a Q by 

(10.34) 
r 

The second term in Eq. (10.33) corresponds to the work performed on the 
system. We denote the work performed on the system by aW. Then 

(10.35) 
r 

The small bar is added in the symbols a W and a Q because the work W 
and heat Q are not state functions. a w and a Q depend on the process. 
In terms of aW and aQ, Eq. (10.33) becomes 

dE=aQ+aW. (10.36) 
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Eq. (10.36) is the so-called first law of thermodynamics. It states that for 
any process of a macroscopic system, the variation of the energy is equal 
to the sum of the adsorbed heat and the work performed by the external 
fields. 

The energy Er is a function of the parameters Yi related to the external 
fields. 

(10.37) 

Yi (i = 1, 2, · · · , n) are often called the generalized coordinates in thermo­
dynamics. According to Eq. (10.35), we have 

with 

r 

n 

= LYidYi 
i=l 

y. ="" aEr _ aEr 
~- ~Pr a - a . 

r Yi Yi 

(10.38) 

(10.39) 

Yi is called the generalized force. Eq. (10.38) shows that the work done 
on the system is equal to the generalized force times the variation of the 
generalized coordinate. For example, the general coordinate is the volume 
V for a hydrodynamic system. The work done on a system is equal to force 
times displacement. We define pressure P as the force on a unit area. We 
denote the displacement of area ds by dx. Then work done on the system 
is given by 

aW= I Pds·dx=-PdV. (10.40) 

In the hydrodynamic systems, the generalized force corresponds to the 
negative pressure. 
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10.5 Second law of thermodynamics 

10.5.1 Entropy increase principle 

Let us consider an isolated macroscopic system with the energy E and 
volume V. For a macroscopic system, we can divide the system into small 
parts (macroscopically small, but still microscopically large). We divide 
the system into N parts (we call them subsystems) with the same volume 
v = V / N. We use ni to denote the number of the subsystems taking the 
energy Ei. Each energy Ei has a degeneracy ni. Then the number of the 
microscopic states of the subsystem with the energy Ei is ni. For an isolated 
system, we have the following constrained relations: 

(10.41a) 

(10.41 b) 

We call the distribution { ni} as a macroscopic state of the system with N 
subsystems. 

Now we calculate the number of the microscopic states n{nd for a sys­
tem taking a macroscopic state {ni}· n{ni} is just the number of different 
possible ways to select n 1 subsystems taking energy c1 , n 2 subsystems tak­

ing energy c2 ,· · ·. We first select n1 subsystems to take the energy c1 . 

There are 

(10.42) 

ways of selecting n 1 subsystems. Then we select the remaining N - n 1 

subsystems to take c2 . There are 

cN-nl = (N- nl)! 
n 2 n2!(N- n1 - n2)! 

(10.43) 

selecting ways. We continue the selections in a similar way until all the 
subsystems are consumed. In total, we have W selecting ways. 

W = CN CN-n1 ... 
n1 n2 

N! (N- nl)! (N- n1 - n2)! 
n1!(N- n1)! n2!(N- n1- n2)! n3!(N- n1 - n2- n3)! 

N! -n ,. 
i ni· 

(10.44) 

For each selection, the subsystems with energy Ei can occupy any of the 
ni degenerate states. We have an additional factor fl~i to count the possible 
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ways to arrange ni subsystems with energy ci onto different degenerate 
states. Thus we have 

N l nni 
n __ . rrnni _ 'Il-Hi 
H{ni} - Ili nil . Hi - N. . nil . 

~ ~ 

(10.45) 

Different distribution { ni} gives different number of microscopic states 
O{ni}· There is a maximum value for O{ni}· The macroscopic state {ni} 
with the maximum O{ni} is called the most probable state. In the probabil­
ity interpretation, any initial macroscopic state { ni} has the largest pro b­
ability to evolve into the most probable state. Thus the equilibrium state 
should be the most probable state {ni}m· Since there are two constraint 
conditions given by Eq. (10.41), we use the Lagrange multiplier method to 
determine the most probable state. We introduce two Lagrange multipliers 
a and (3 for the constraint conditions Eqs. (10.41a) and (10.41b), respec­
tively. Then the most probable state { ni}m is determined by the following 
equation 

alnO{ni} a(N- l:i ni) (3a(E- l:i nici) 
0 ---"-----'-- + a + = . 

ani ani ani 
(10.46) 

Since ln O{ni} has the same maximum position with O{ni}, we have equiv­
alently used ln 0 { ni} instead of 0 { ni} in Eq. ( 10.46). To simplify the de­
duction, we consider that the subsystems are so small that they already in 
equilibrium and Oi remains unchanged. From Eq. (10.45), we have 

lnO{ni} =InN!+ 2.::)ni lnOi -lnni!). 

Since ni :» 1, we can use the Stirling formula 

lnxl~x(lnx-1) for x>>l. 

Then Eq. ( 10.48) becomes 

ln O{ni} = ln Nl + 2::)ni ln Oi- ni ln ni + ni) 
i 

=InN!+ 2:.: n, (In~;+ 1). 
~ 

The derivative of O{ni} is given by 

alnO{ni} Oi 
--....::..---'--=ln-. 

ani ni 

Inserting Eq. (10.50) into Eq. (10.46), we have 

(10.47) 

(10.48) 

(10.49) 

(10.50) 

(10.51) 
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Eq. (10.51) is called the Boltzmann distribution. ni is the number of the 
subsystems with the energy fi· Then 

(10.52) 

is the probability that a subsystem, which can be considered as an arbitrary 
macroscopic system contacted with a heat reservoir or an environment, have 
the energy Ei. 

Since the entropy is given by S = k ln n, the most probable state is 
also the state with the maximum entropy. Any state will evolve to a more 
probable state. Thus we have for an isolated system with constant E and 
v 

8S ~ 0. (10.53) 

Eq. (10.53) is the co-called principle of entropy increase or Clausius 
principle, which states that the entropy of any isolated macroscopic system 
always increases. The principle of entropy increase is one of the formulations 
for the second law of thermodynamics. The second law of thermodynamics 
have many equivalent formulations. Any formulation showing the evolving 
direction of an irreversible process can be used as one of the formulations of 
the second law of thermodynamics. We can show that all these formulations 
are equivalent. 

According to Eq. (10.12), 

is the partition function of the subsystem. 
Using the normalization condition 

we have 

From Eq. (10.54), we have 

Then 

a: z 
e = N' 

(10.54) 

(10.55) 

(10.56) 

(10.57) 

(10.58) 
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Each energy Ci has ni equivalent quantum states. Dividing Pi by ni, 

we get the probability Pia (a: = 1, · · · , Oi) for a macroscopic system on a 
microscopic state 

(10.59) 

Pia is the canonical distribution. Pi and Pia in Eqs. (10.58) and (10.59) are 
also called the macroscopic and microscopic distributions for an equilibrium 
state, respectively. 

10.5.2 Extensiveness of ln Z 

From Eq. (10.54), we can show that ln Z is an extensive quantity. For a 
system consisted of two subsystems I and I I, we have 

= ln zU) + ln z(II). (10.60) 

where we have used the relation 

(10.61) 

in the derivation of above equation. Eq. (10.61) means that the two macro­
scopic systems are not correlated statistically. Thus ln Z is an extensive 

quantity. 
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10.5.3 Thermodynamic quantities in terms of partition 
function 

The entropy is defined as S 
(10.57), we have 

kIn n. Using Eqs. (10.49), (10.52)and 

S=klnn{ni} 

= klnN! + k 2::)ndnni- ndnni + ni) 
i 

= kN(InN- 1) + k L ni(a + /3Ei + 1) 

= kN(In Zsub + f3Esub). (10.62) 

In Eq. (10.62), Zsub and Esub are the partition function and average energy 
of one subsystem. N is the number of subsystems. We have shown that 
In Z is an extensive quantity. Thus we have 

S = k(In Z + f3E), (10.63) 

where Z is the partition function of the system and E is the total energy 
of the system. Eq. (10.63) shows that Sis an extensive quantity. 

If we calculate the average of Pi, we have 

ln p = In ( z-1e-,8Ei) = -In z- f3E. 

Thus Eq. (10.63) becomes 

S = -klnp = -kTr(plnp). 

Eq. (10.65) is the Gibbs formulation of entropy. 
Now let us express E in terms of the partition function Z. 

n 

n 

= -z-1az 
8(3 

81nZ 
-fii3. 

Inserting Eq. (10.66) into Eq. (10.63), we have 

s = k (!nZ -l~~z). 

(10.64) 

(10.65) 

(10.66) 

(10.67) 
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Using Eq. (10.39), we obtain the formula to calculate the generalized 
force Yi 

(10.68) 

Eq. (10.68) is also called the equation of state. If Yi is the volume V of the 
system, the corresponding generalized force is - P. Then the equation of 
state for hydrodynamic system is 

p = ~ aln Z (10.69) 
f3 av · 

According to Eq. (10.36), we have 

ilQ = dE-ilW 

=dE- I:YidYi 
i 

_ -dalnZ ~""""' alnZ d . 
- af3 + f3 ~ a . Yt· 

i Yt 
(10.70) 

Using 

d(l Z) = a ln Z d/3 """"' a ln Z d . 
n a(3 + ~ a . Yt, 

i Yt 
(10. 71) 

we can eliminate the summation over i in Eq. (10.70) and obtain 

'ilQ = -daln Z + ~""""' aln Z dyi 
a(3 f3 ~ ayi 

t 

= -d a ln Z + ~ [d(ln Z) _ a ln Z d/3] 
a(3 f3 a(3 

= ~d (ln z- f3aln z) 
f3 a(3 

1 
= f3k dS 

=TdS. (10.72) 

Eq. (10.72) is the Clausius relation. Thus Eq. (10.36) becomes 

dE= TdS +I: YidYi· (10. 73) 
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Eq. (10. 73) is called the fundamental thermodynamic relation. When Yi is 
the volume V, we have 

dE = TdS- PdV. 

We often denote E as E or U to simplify notation. 

10.5.4 Kelvin formulation of the second law of 
thermodynamics 

(10. 7 4) 

The second law of thermodynamics determines the direction of irreversible 
processes. There are infinite kinds of irreversible processes. Thus we can 
have infinite kinds of formulations of the second law of thermodynamics. 
They are all equivalent. We have shown that ~S 2:: 0 for a process in an 
isolated system. Now we will show another formulation of the second law of 
thermodynamics, the Kelvin formulation: There exists no thermodynamic 
transformation whose sole effect is to convert entirely a quantity of heat 
from a heat reservoir into work. We will prove the Kevin formulation from 
the entropy increase principle. 

We consider a heat machine as shown in Fig. 10.1. There are two 
processes supposed to be operated by the heat machine. One is the nor­
mal process. In this process, the work w is transferred into heat q by a 

machine and released into the heat reservoir. The conservation of energy 
demands q = w. The second process is the reverse process. In the reverse 
process, the heat in the heat reservoir is transferred into work and released 
to outside. The Kelvin formulation is equivalent to the statement that 
the reverse process is not possible. We will prove the Kelvin statement by 
reductio ad absurdum. Suppose that the Kelvin formulation is false. The 
reverse process is possible. We evaluate the change of entropy ~S in the 
reverse process. There are three parts: the machine, the heat reservoir, the 
outside. (i) The machine returns to its starting position after a cycle of 
operation. We have the change of the entropy ~Sm = 0 (ii) Only work is 
released to the outside. We have the change of the entropy ~So = 0. (iii) 
The heat reservoir release a quantity of heat q. Thus the change of the 
entropy is given by ~Sr = aQjT = -qjT. Then the total change of the 
entropy 

(10. 75) 

This is in contradiction with the entropy increase principle. Therefore, the 
reverse process is not possible and the Kelvin formulation must be true. 
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T T 

q=w 

Normal process Reverse process 

Fig. 10.1 Heat engine with one heat reservoir. 

10.5.5 Carnot theorem 

Now we consider a thermal engine as shown in Fig. 10.2. A machine oper­
ates between two heat reservoirs. It absorbs heat q1 from the high temper­
ature reservoir and transfer the heat into work w. According to the Kelvin 
statement, the machine can not transfer the entire heat into work. It should 
release some heat q2 into the low temperature reservoir. The conservation 
of energy demands w = q1 - q2. Using /::iS~ 0, we have 

!::iS= _!Q_ + q2 = _!Q_ + q1- w > O. 
T1 T2 T1 T2 -

(10.76) 

Eq. (10. 76) can be rewritten as 

TJ = w < 1 _ T2 = T1 - T2 
q1 - T1 T1 

(10.77) 

where rJ is called the efficiency of engine. The equal sign holds when the 
process is the quasi static process, which is defined as an ideal process 
which is so slow that the system can be considered as in equilibrium during 
all the process. The quasi static process is reversible. A thermal engine 
that operates with the reversible process is called the Carnot engine. The 
efficiency of Carnot engine is given by 

T2 
T}c = 1- -. 

T1 
(10. 78) 

All Carnot engines operating between two given temperatures have the 
same efficiency. According to Eq. (10.77), we have the Carnot theorem: 
No engine operating between two heat reservoirs is more efficient than a 
Carnot engine. 
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~ ql W= q1 - <f2 

0~ 
~<b 

Fig. 10.2 Heat engine with two heat reservoirs. 

10.5.6 Clausius inequality 

We examine a system in contact with a heat reservoir. The temperature of 
the heat reservoir is T. The system absorbs an amount of heat aQ. When 
the heat reservoir is large, the heat releasing process of the heat reservoir 
can be considered as a quasi-static process. However, the process in the 
system is not a quasi-static process generally. The change of entropy in the 
heat reservoir is given by 

(10.79) 

We denote dS as the change of entropy in the system. Then the total 
change of the entropy is given by 

aQ 
dSt = dS + dSr = dS - T · (10.80) 

The heat reservoir and the system together can be considered as an 
isolated system. We have 

aQ 
dSt = dS - T ~ 0. (10.81) 

Thus 

(10.82) 

Eq. (10.82) is called the Clausius inequality, which can also be considered 
as a formulation of the second law of thermodynamics. For an adiabatic 
process, a Q = 0, we recover the entropy increase principle 

dS ~ 0. (10.83) 
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10.5. 7 Characteristic functions 

We define the free energy F by 

F = E -TS. 

Using Eq. (10.63), we have 

F = -kTlnZ. 

(10.84) 

(10.85) 

F is also called the Helmholtz free energy. The variation of the free energy 
is given by 

dF = -SdT- PdV. (10.86) 

We call the replacement E by F = E - T S as a Legendre transforma­
tion. The term TdS in Eq. (10.74) is replaced by -SdT in Eq. (10.86). 
Eq. (10.74) is often used when S and V are independent variables while 
Eq. (10.86) is used when T and V are independent variables. When a 
function with suitable variables (so-called natural variables) contains all 
thermodynamic information, we call this function as a characteristic func­
tion. E(S, V) is such a function. We can obtain all other thermodynamic 
functions when we know the function E(S, V). From Eq. (10.74), we have 

(10.87) 

The equation of state P = (V, T) can be obtained by eliminating the vari­
able S in Eq. (10.87). Therefore, E(S, V) is a characteristic function. 

F(T, V) is also a characteristic function. There are two other important 
characteristic functions which can be constructed through the Legendre 
transformation. One is the enthalpy defined by 

H=E+PV. (10.88) 

H ( S, P) is a characteristic function with the variables S and P. The other 
is the Gibbs free energy defined by 

G = F + PV = E - T S + PV. (10.89) 

G(T, P) is a characteristic function with the variables T and P. 
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10.5.8 Maxwell relations 

The following fundamental relations are related through the Legendre 
transformations: 

dE = TdS - PdV, 

dH = TdS + VdP, 

dF = -SdT - PdV, 

dG = -SdT + VdP. 

(10.90a) 

(10.90b) 

(10.90c) 

(10.90d) 

From Eq. (10.90), we can easily obtain the following four relations be-
tween derivatives 

(~~t =-(~~)v' (10.91a) 

(~~) s = (~~) p' 
(10.91 b) 

( ;~) T = ( ~~) V ' 
(10.91c) 

(;!t =-(~~)p· (10.91d) 

For example, 

( BT) 8
2
E 8

2
E ( BP) 

av s = avas = asav =- as v · (10.92) 

The four relations between derivatives are called the Maxwell relations. 
They are useful to express the thermodynamic variables in terms of mea­
surable variables. 

10.5.9 Gibbs-Duhem relation 

One of the most important functions in statistical mechanics is the chemical 
potential J-l defined by Eq. (10.23) 

I"= a~ ( -~ lnZ) lv.p = ;~ lv.r. (10.93) 

According to Eq. (10.60), F(T, V, N) is an extensive quantity with the 
property 

F(T,aV,aN) = aF(T, V,N), (10.94) 

where a is a factor by which the system is enlarged. Since T = 8Ej8S, T 
is not changed by enlarging the system. We call T as intensive quantity. 
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Differentiating Eq. (10.94) with respect to a and then setting a= 1, we 
find 

F = [v D(:v/(T,aV,aN) +N a(:N)F(T,aV,aN)ll"~1 
= -PV + f-LN, (10.95) 

which gives 

E = TS- PV + f-LN. (10.96) 

Eq. (10.96) is called the Gibbs-Duhem relation. Using Eq. (10.96), we 
obtain 

G = E -TS + PV = f-LN, (10.97) 

which shows that the chemical potential M is the Gibbs free energy per 
particle. 

10.5.10 Isothermal processes 

We have shown that in an isolated system, the entropy of the system always 
increases. It reaches its maximin when the system reaches its equilibrium 
state. 

When the system is in contact with a heat reservoir and is not isolated, 
we have other criteria to determine the process direction. For a system 
with constant temperature T and volume V, we have 

~F = ~(E-TS) 
= ~E-T~S 
= ~Q+~W-T~S 
= ~Q -T~S 
::; 0. (10.98) 

In the derivation, we have used ~ W = 0 because V = canst. Eq. (10.98) 
shows that an isothermal and isochoral process takes the direction that the 
free energy F decreases. 

For a system with constant temperature T and pressure P, we have 

~G = ~(E- TS + PV) 

= ~Q + ~W- T~S- P~V 

= ~Q -T~S 
::; 0. (10.99) 

Eq. (10.99) states that an isothermal and isobaric process takes the direction 
that the Gibbs free energy G decreases. 
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10.5.11 Derivatives of thermodynamic quantities 

In this section, we will introduce several important thermodynamic deriva­
tives. We define the heat capacity by 

Cx == ~~~x. (10.100) 

The specific heat capacity is the heat capacity per unit mass. Since a Q 
depends on the path of a process, the heat capacity also depends on the 
path of process. For an adiabatic process, a Q = 0. Thus the adiabatic heat 
capacity Cs = 0. For an isothermal process, dT = 0. Then the isothermal 
heat capacity Cr = oo. The two most important heat capacities are the 
heat capacity Cv at constant V and the heat capacity C p at constant P. 
They can be expressed as the derivatives of state functions 

Cv- T (as) - (8E) 
- {)T V,N - {)T V,N 

(10.101) 

and 

Cp _ T (8S) _({)H) 
- {)T P,N - {)T P,N . 

(10.102) 

Other important thermodynamic derivatives include the compressibility, 
the coefficient of thermal expansion, and the thermal pressure coefficient. 
The compressibility is defined by 

1 dV 
1'1,=---- VdP. (10.103) 

When there is no heat transfer, it is called the adiabatic (isentropic) com­
pressibility 

(10.104) 

For a compression at a constant temperature, we have the isothermal com­
pressibility 

(10.105) 

To describe the thermal expansion, we use the coefficient of thermal 
expansion defined by 

a=~(~~) . 
P,N 

(10.106) 
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The thermal pressure coefficient is defined by 

/3 =I_ (8P) 
- p aT V,N. 

Using Eq. (G.7) in the Appendix G, we have 

a= KrfJP. 

(10.107) 

(10.108) 

The quantities such as Kr show how the extensive quantities vary with the 
change of the intensive quantities. We also called them susceptibilities. 

10.6 Third law of thermodynamics 

When T = 0, the value of the entropy depends on the degeneracy of the 
ground state. We denote the degeneracy of the ground state energy Eo as 
no. The density matrix of the canonical ensemble can be written as 

A e -f3ii 
p = ----c-, 

Tr e-f3H 

l:n e-f3En Jn) (nJ 
l:n e-f3En 

_ 2::~~1 JO)ii(OJ + l:n,t:O e-f3(En-Eo)Jn)(nJ 

- no+ l:n e-f3(En-Eo) 
(10.109) 

where JO)i is the ith degenerate ground state. Thus the entropy at T = 0 
is given by 

S(T = 0) = -kTr(p ln p) = k ln no. (10.110) 

The ground states of all known systems are found to have degeneracy 
no= 0(1). We have 

lim ksN = o. 
T--+0 

N--+oo 

(10.111) 

Even if no= O(N), Eq. (10.111) is still hold. Eq. (10.111) is not a proved 
results. It is only a summary of known properties of the ground states. 
Although Eq. (10.111) can not be proven strictly, it is expected to be hold 
generally because all the calculation results on the ground states suggest 
the validity of Eq. (10.111). Eq. (10.111) is called Nernst's theorem or the 
third law of thermodynamics. The Nernst's theorem has some restrictions 
on the specific heat capacity and other thermodynamic quantities. 
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Using Eq. (10.100), we have 

S(T)- S(T = 0) =iT dTi. (10.112) 

S. S(T=O) 
mce N 0 in the thermodynamic limit N --+ oo, Eq. (10.112) 

becomes 

S(T) = [ dT;,. (10.113) 

In order to have convergent integration, we have 

Cx(T) --+ 0 for T--+ 0. (10.114) 

Let us consider other thermodynamic derivatives. For the coefficient of 
thermal expansion a, we have 

a=~ (~~)P =-~ (~!)r~o (10.115) 

The ratio of the thermal expansion coefficient a to the isothermal com­
pressibility "'T also approaches zero when T--+ 0. 

a 
1 (av) 
v ar p 

1 (av) 
v 8P T 

= (~~t 
= (~~)T ~ 0 (10.116) 

In the derivation of Eq. (10.116), we have used Eq. (G.7) in the Appendix 
G and the Maxwell relations. 

When Eq. (10.111) holds, we can show that one needs infinitively many 
steps to reach the temperature of zero, which is called the Nernst principle. 

10.7 Thermodynamic quantities expressed in terms of 
grand partition function 

Thermodynamic functions can also be evaluated using the grand partition 
function. The average value of an observable A is evaluated by Eq. (10.28). 
First we calculate the average number of particles for an open system in 
equilibrium with an heat and particle reservoir. 
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N=LLNPs,N 
N 8 

N 8 

8ln3 
00: ' 

(10.117) 

where 

(10.118) 

The energy E of the system is given by 

E = LLE8p8,N 
N 

= g-1 L L E8e-aN-f3Es 
N 8 

= _ 3 -1 :f3'L,L,e-aN-~E. 
N s 

8ln3 
-¥. (10.119) 

The generalized force is the average of ~. 

(10.120) 

If Yi is the volume V of the system, we have the equation of state for a 
hydrodynamic system 

(10.121) 
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Using Eq. (10.65), the entropy is given by 

S = -klnp 

= k(3(E- J-LN) + klnS 

275 

( 
a ln =: a ln 3) 

= k InS-n~-(3~ . (10.122) 

Similar to the free energy defined by Eq. (10.85), we introduce the grand 
potential J defined by 

J = -kTlnS. 

Replacing k ln S by S- k(3(E- J-LN), we have 

J=E-TS-J-LN. 

Since G = J-LN = E - T S + PV, we have 

J= -PV, 

which gives 

PV = kTlnS. 

10.8 Relation between grand partition function and 
partition function 

(10.123) 

(10.124) 

(10.125) 

(10.126) 

Eq. (10.26) shows that the grand partition function has the following rela­
tion with the partition function 

00 

S(n, (3, y) = 2::= e~pN ZN(/3, y) (10.127) 
N=O 

with 

(10.128) 
s 

ZN is the partition function for an N-particle system. When N = 0, we 
define Z0 = 1. Using the fugacity q defined by 

-Q __!!:_ 

q = e = ekr' 

Eq. (10.127) can be rewritten as 
00 

N=O 

(10.129) 

(10.130) 

Generally, for a classical system, it is more easy to calculate the par-
tition function Z. The grand partition function can also be calculated 
using Eq. (10.127). For a quantum system, the grand partition is usually 
more easy to obtain. Then the partition functions can be calculated using 
Eq. (10.130) from the grand partition function as the expansion coefficients. 
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10.9 Systems with particle number changeable 

10.9.1 Thermodynamic relations for open systems 

Let us consider the free energy F(T, V, N) with variables T, V, N. 

dF = (aF) dT + (aF) dV + (BF) dN 
8T V,N 8V T,N 8N T,V 

= -SdT- PdV + J-LdN. (10.131) 

For a system with multi-components, we denote J-li as the chemical po­
tential of ith component ( i = 1, · · · , n). The chemical potential term in 
Eq. (10.131) should be replaced by a summation over all components for a 
multi-component system. Then we have 

dF = -SdT- PdV + L J-lidNi. (10.132) 

Eq. (10.132) is the fundamental thermodynamic relation for the open 
systems. 

The other derivative relations can be obtained through Legendre 
Transformations. 

dE= TdS- PdV + LJ-lidNi, 

dH = TdS + VdP + LJ-lidNi, 

dG = -SdT + v dP + L J-lidNi. 

(10.133a) 

(10.133b) 

(10.133c) 

Thus the chemical potentials can be evaluated through a variety of relations. 

J-li = (:~.) 
t T,P,Nj=/:-Ni 

= (::.) 
t T,V,Nj=/:-Ni 

= (:!.) 
t S,V,Nj=/:-Ni 

- (;:.) . (10.134) 
t S,P,Nj=/:-Ni 

The Gibbs-Duhem relation for multi-component systems is given by 

(10.135) 
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For the grand potential J, we have 
dJ = dF- dG 

= dF - d(L J-LiNi) 
i 
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(10.136) 

Eq. (10.136) is the fundamental thermodynamic relation for the grand po­
tential. Inserting J = -PV into Eq. (10.136), we have 

SdT- v dP + L NidJ-Li = 0. (10.137) 

This is the differential Gibbs-Duhem relation. In the case of one component, 
it shows that T, P, and J-L can not be varied independently. We have only 
two independent variables for a homogeneous system with one component. 

10.9.2 Equilibrium conditions of two systems 

Let us consider two macroscopic systems. In the following, we discuss what 
is the conditions that these two systems are in equilibrium with each other. 
We denote the two systems as A1 and A2 . The two systems A1 and A2 can 
be considered to form an isolated system At with the total energy Et and 
total volume Vt. We have two constraint conditions 

Et = E1 +E2, 

Vt = v1 + v2. 
(10.138a) 

(10.138b) 
If the particle number is conserved, we have another constraint condition 

Nt = N1 + N2. (10.139) 
The number of microscopic states flt of the total system is given by 

flt(Et, vt, Nt) = fl1 (E1, V1, NI)fl2(E2, V2, N2) 

= fl1 (E1, V1, NI)fl2(Et- E1, vt- V1, Nt- NI). (10.140) 
The equilibrium state is the state with the maximum entropy. Thus the 
equilibrium condition is 

8S = k8(ln flt) = 0, (10.141) 
which gives 

(10.142) 
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Using Eq. (10.133a), we have 
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8lnn 1 
8E kT' 

8lnn P 
&V" = kT' 
8lnn J.-L 

oN = -kT. 

(10.143a) 

(10.143b) 

(10.143c) 

Since dE1, dV1 and dN1 in Eq. (10.142) are independent, we obtain 

T1 = T2 (thermal equilibrium condition), 

P1 = P2 (mechanical equilibrium condition), 

/-ll = J.-L2 (chemical equilibrium condition). 

(10.144a) 

(10.144b) 

(10.144c) 

These are the three equilibrium conditions between two macroscopic sys­
tems. Eq. (10.144a) is also called the zeroth law of thermodynamics, which 
states that when two systems are in thermal equilibrium with a third sys­
tem, then they are in equilibrium with one another. 

10.9.3 Phase equilibrium conditions 

Let us consider a macroscopic system. When the system is homogeneous, 
there is only one phase in the system. If the system can be divided into two 
homogeneous parts, then there are two phases in the system. For example, 
in the low temperature, the atoms arrange themselves orderly to form the 
solid state to achieve the lowest energy. With the increase of temperature, 
the entropy begins to have effect. The entropy makes the system become 
disordered. When the temperature is high enough, the solid phase begins 
to melt into a disordered state (called liquid phase). Then we have a system 
with two phases. 

The equilibrium conditions for two phases are similar to the equilibrium 
conditions Eq. (10.144) for two systems. We can generalize Eq. (10.144) to 
a system of the r..p phases with k components in each phase. The equilibrium 
conditions are given by 

Ta = Tf3 = · · · = Tcp, 

Pa = Pf3 = · · · =Pep, 

/-la,l = J.-l(3,1 = · · · = /-lc.p,l, 

/-la,k = /-l(3,k = · · · = /-lcp,k· 

(10.145a) 

(10.145b) 

(10.145c) 

(10.145d) 

(10.145e) 
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Together we have (k + 2)('P- 1) equations. Since the concentrations Xa,i 

satisfy the following normalization condition 

Xa,l + Xa,2 + · · · + Xa,k = 1, (10.146) 

we have 2'P+(k-1)'P = (k+1)'P variables. Then the number of independent 
variables( also called freedom number) f is given by 

f = (k + 1)'P- (k + 2)('P -1) = k + 2- 'P ~ 0. (10.14 7) 

Eq. (10.147) is the Gibbs phase rule. For a system with one component, 
there are only pure phases. From Eq. (10.147), we have 'P :::; 3. Thus the 
maximum number of the coexistent phases is three for a pure phase system. 
For example, liquid water, water vapor, and one type of solid ice can coexist 
at Tt = 273.16 K and Pt = 4.58 Torr. The coexistent point is called the 
triple point. The absolute temperature scale is defined by the triple point 
of water. The constant k in S = ln 0 fixed by this temperature unit is 
called the Boltzmann constant. We usually denote the Boltzmann constant 

as kB. 

10.10 Equilibrium distributions of nearly independent 
particle systems 

Now we discuss the calculations of the thermodynamic properties of the 
systems composed of nearly independent particles. For example, in a gas, 
the distance between particles are large. Thus the interaction of particles in 
such systems are weak and can be neglected. When the interaction can be 
neglected, the energy of the system can be described by the single-particle 
energy. We can then use the distribution functions of single particle to 
describe the statistical properties of the system. 

10.10.1 Derivations of the distribution functions of single 
particle from the macro-canonical distribution 

10.10.1.1 Expressions in terms of single particle quantities 

We denote Ei as the single-particle energy and gi as the degeneracy of the 
energy Ei. We define the distribution function ni as the number of particles 
occupying the energy level Ei· The distribution { ni} is a macroscopic state 
of the system. For a system on the state s with particle number N and 
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energy Es, we have 

(10.148a) 

(10.148b) 

The equilibrium state is described by the macro-canonical distribution 

~-1 -a.N-(3E 
Ps,N = =. e s. (10.149) 

Ps,N is the probability of the system occupying the states with the particle 
number Nand the energy E 8 • If there are n{ni} microscopic states for the 
distribution { ni}, the probability of the system occupying the macroscopic 
state { ni} is given by 

~-ln -a.N-(3E 
P{ni},N = =. H{ni}e s, (10.150) 

where N is the particle number of the system in the macroscopic state { ni} 
and Ek is the energy of the system in the macroscopic state { ni}. They are 
given by Eq. (10.148). Using the normalization condition 

(10.151) 

we have 

B(a, (3, y) = L L n{ni}e-a.N-f3Es. (10.152) 
N {ni}' 

where the prime in { ni}' represents that the summation is over all the 
distributions { ni} at fixed N. 

For an independent particle system, n{ni} is the number of the micro­
scopic states corresponding to the distribution { ni}. We denote ni as the 
number of distinct ways of assigning the ni particles to gi degenerate states 
of Ci· Then n{ni} is equal to the multiplying of all ni, which gives 

(10.153) 

Inserting Eq. (10.148) into Eq. (10.150), we have 

(10.154) 

and 

(10.155) 
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The second summation is over all the distributions { ni} at fixed N. Since 
we have the summation over N together with that over {ni}', which releases 
the restriction on { ni}', we can change the summations over N and { ni}' 

to the summation over { ni} without restriction. Eq. (10.155) becomes 

with 

CXJ CXJ CXJ 

B(a, (3, y) = L L ... L ... II nie-(o+/3ci)ni 

n1=0 n2=0 ni=O 
CXJ CXJ 

= 2:: n1e-(o:+/3ci)nl 2:::.:: n2e-co:+/3c2)n2 ... 

CXJ 

= II 2:::.:: nie-co:+/3ci)ni 

i ni=O 

CXJ 

Bi(a, (3, y) = L nie-(o:+/3ci)ni. 

ni=O 

(10.156) 

(10.157) 

Now we calculate the average particle number ni on the Ei energy level. 

ni = L L niP{ni},N 

N {ni}' 

= :=;-1 L L nifl{ni}e-o:N-f3Es 

N {ni}' 

= :=;-1 L L nin{ni}e-O:Li ni-!3Li niEi 

N {ni}' 

CXJ CXJ 

= :=:-1 2:::.:: ninie-co:+/3ci)ni II 2:::.:: nje-co:+/3cj)nj. 

Using Eq. (10.156), we have 
CXJ 

ni = s-1 2:::.:: ninie-co:+;3ci)ni _= ___ ........ ___ _ 

ni=O L 

Bi 8a 
8ln3i 

-a;;-· 

(10.158) 

(10.159) 

In order to calculate Bi, we need to evaluate ni. There are two types 
of identical particles: bosons and fermions. 
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Bosons 
First we discuss the system with bosons, which is called Bose system. 

To facilitate the calculations, we use the graph in Fig. 10.3 to represent the 
configurations of the ni particles occupying 9i quantum states of Ei. We 
use circles ( o) to represent the particles and squares (D) to represent the 
quantum states. There are 9i squares. In Fig. 10.3, the circles on the right 
of the quantum state D denote the particles occupying the quantum state 
on their left. Since every particle should occupy one quantum state, the 
first position on the left should be a quantum state represented by a square. 
As an example, the graph in Fig. 10.3 represents a configuration that ten 
particles on an energy level with four quantum states. In this configuration, 
there are two particles on the state 1, zero particle on the state 2, five 
particles on the state 3 and three particles on the state 4. Let us count the 
number of the distinct configurations of graphs, which gives the number ni 
of the different ways of assigning the ni-particles to the 9i degenerate states 
of Ei. Since the first position on the left has to be put a quantum state, 
we have 9i selections. There are ni circles and 9i - 1 squares left. If the 
circles and squares were labeled, there would be ( ni + 9i - 1)! different ways 
to arrange them. However, the circles represent identical particles and are 
all equivalent, we need divide the configuration number by the number of 
the ways permuting particles ( ni! ways). Likewise, quantum states are all 
equivalent and a factor gi! should be divided. We have 

ni= 9i(ni+gi-1)! = (ni+gi-1)!. 
ni!gi! ni!(gi - 1)! 

(10.160) 

Multiplying all the factors ni of each energy level Ei, we have the total 
number of the microscopic states for a boson system 

(10.161) 

0 0 [~] 0 0 0 0 0 0 0 0 

quantum states, 0 particles 

Fig. 10.3 Schematic configuration of a microscopic state for a boson system 
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Fermions 
The system with fermions is called Fermi system. Since fermions obey 

the Pauli exclusion principle, no more than one particle can occupy each 
quantum state. The number of possible ways to select ni states from the 
gi quantum states of Ei for ni particles to occupy is 

g·' n. - z· ( ) 
z - ni!(gi _ ni)! 10.162 

Multiplying all the factors ni of each energy level Ei, we obtain the total 
number of the microscopic states for a fermion system 

n(F) __ IJ gi! . 
H (10.163) 

{nd n·'(g·- n·)' . z. z z • 
z 

10.10.1.2 Bose distribution 

Using ni given by Eq. (10.160) for Bose systems, we can evaluate Si(a, (3, y) 
in Eq. (10.157). For Bose systems, we have 

=· _ Loo (ni + gi -1)! -(a+,Bci)ni 
-.....z- e 

_ ni!(gi- 1)! 
ni-0 

= (1 - e-a-,BEi) -gi . (10.164) 

In the derivation of Eq. (10.164), we have used the following formula for 
summation 

m(m + 1) 
(1- x)-m = 1 + mx + 

2
! x2 + · · · 

L
oo (m+n-1)! n 

- X 
- n!(m-1)! · 

n=O 

(10.165) 

Inserting Eq. (10.164) into Eq. (10.159), we have 
- 8ln si 
ni = ---aa 

gia ln(1 - e-a-,BEi) 

a a 

ea+,BEi _ 1 · (10.166) 

Eq. (10.166) is called the Bose-Einstein distribution or Bose distribution. 
The grand partition function S for the independent boson systems is given 
by 

(10.167) 

or 

(10.168) 
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10.10.1.3 Fermi distribution 

For fermions, we insert Oi in Eq. (10.162) into Eq. (10.157) and obtain 

gi ·' ....., L 9~· -(o+,Bc:·)n· 
:::...i = e ' ' 

n·'(g·- n·)' ni=O ~· ~ ~ · 

= (1 + e-a-,Bc:i)gi. (10.169) 

In the derivation of Eq. (10.169), we have used the following formula for 
summation 

m(m -1) 
( 1 + x) m = 1 + mx + x2 + · · · 

2! 
m 1 

"""' m. n 
= L......tn!(m-n)!x · 

n=O 

(10.170) 

Then Eq. (10.159) becomes 
_ oln Bi 
ni=---oa 

-gio ln(1 + e-a-,Bc:i) 

oa 
9i (10.171) 

ea+,Bc:i + 1' 
Eq. (10.171) is called the Fermi-Dirac distribution or Fermi distribution. 
The grand partition function 3 for the independent fermion systems is given 
by 

(10.172) 

or 

(10.173) 

10.10.1.4 Semi-classical distribution 

The Bose and Fermi distributions can be approximated by the classical 
distribution when the quantum correlations can be neglected. When 

9i >> ni, (10.17 4) 
which is called the non-degenerate condition (or semi-classical condition), 

ni for both boson and fermion systems are approximated by 

l 
( ni + 9i - 1)! 

0 . _ ni!(gi- 1)! 
~- g·' 

~ · for fermions 
ni!(gi- ni)! 

for bosons 

g~i 
__:_ -~-

n ·'. ~. 

(10.175) 
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Using Eq. (10.175), we have 

(10.176) 

Inserting Eq. (10.176) into Eq. (10.159), we have 

_ 8 ln 3i ~a-BE n -----ge t 
1- aa - 1 

(10.177) 

Eq. (10.177) is called the semi-classical distribution or Boltzmann distribu­
tion for identical particles. From Eq. (10.177), we have 

ea = 9i e-/3Ei. 
ni 

(10.178) 

If ea >> 1, then the non-degenerate condition gi >> ni holds. The condition 

(10.179) 

is also called the non-degenerate condition. 

10.10.2 Partition function of independent particle systems 

Now we discuss the calculations of the partition function for independent 
particle systems. For quantum boson and fermion systems, we have shown 
that the grand partition function :=: can be calculated easily. For semi­
classical cases, we will show that partition function Z can be calculated 
easily. 

For the case of independent classical particles, whose positions can be 
designated, the particles can be labeled. The particles can occupy the 
energy c8 independently. The energy En of the system is given by 

(10.180) 

where Sa is the quantum number and c8 n is the single-particle energy of 
the particle a. The partition function of the system is given by 

Z = 2::: e-f3En 

n 

= L L ... L e-/3(Eq +Es2+-··+EsN). (10.181) 
81 82 8N 
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Since there are no quantum correlation and particles are distinguishable, 
the summations in Eq. (10.181) are independent. We have 

z = L L ... L e-f3(csl +cs2+·-+csN) 

(10.182) 

with 

(10.183) 

z is called the partition function of single particle. If we use i to denote 
different energy levels Ei with the degeneracy of gi, we have 

(10.184) 

Eq. (10.182) leads to the relation of the partition function Z of the system 
with the partition function z of single particle for the classical independent 
particle systems 

(10.185) 

When the particles are indistinguishable, exchanging two particles gives 
the same microscopic state. Since exchanging two particles on the same 
quantum state of Ei also gives the same microscopic state for the classical 
system with distinguishable particles, we need to exclude this possibility 
to simplify the calculation. For the semi-classical case, ni << gi, we do not 
have the possibility that one quantum state is occupied by two particles. 
Since exchanging two particles gives the same microscopic state, we need 
divide a factor N! which is the number of ways of permuting particles in 
Eq. (10.182). Thus we have 

z = ~! L L ... L e-f3(csl +cs2+··+csN) 

S1 S2 SN 

- 1 N =-,z. 
N. 

(10.186) 

Eq. (10.186) is the relation of the partition function Z of the system with 
the partition function z of single particle for the semi-classical independent 

particle systems. 
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It should be noted that Eq. (10.186) can not be applied to the general 
quantum boson and fermion systems. For a boson system, one quantum 
state can be occupied by more than one particles. For a fermion system, 
there is a limitation that one quantum state can only be occupied by one 
particle, the summation in Eq. (10.186) is not independent for general boson 
and fermion systems. 

10.10.3 About summations in calculations of independent 
particle system 

For an independent particle system, the Hamiltonian of the system contains 
no interaction term. There is only kinetic term 

fi = H(p). (10.187) 

The summations involved in the calculations of thermodynamic quantities 
often have the form 

L F(cs) = Tr F(H) = Tr F(H(p)). (10.188) 
s 

The trace in Eq. (10.188) can be transformed into integration in the f space 
that spanned by the momentum p and position q. 

Tr F(H(p)) = J df p(pJF(H(p))Jp) 

= J df p J df q(pJF(H(p))Jq)(qJp) 

= J dfp J dfqF(H(p))(pJq)(qJp) 

= J df p J df qF(H(p)) ( 2tr~)f 

J dfpdf q 
= (21rn)f F(H(p )). (10.189) 
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2 

When the energy-momentum relation is E = Fm- and f = 3, Eq. (10.189) 
has the form 

with 

Tr F(H(p)) = (2;n)3 I d3pF(c(p)) 

47l'V I 2 
= (27rn)3 P dpF(c) 

47rV I ~de = (21rn)3 2mc-2- y'cF(c) 

27rV 3 I = h3(2m)z y'EF(c)dc 

=I g(c)F(c)dc 

21rV s 
g(c) = h3(2m)2 y'E. 

g(c) is called the density of state. 

10.11 Fluctuations 

(10.190) 

(10.191) 

The thermodynamic properties of a macroscopic system are determined 
by the statistical average of observables. However, there are always fluc­
tuations around the average for a finite system. Now we discuss the 
fluctuations. 

10.11.1 Absolute and relative fluctuations 

For a physical quantity u, its deviation from the average is b..u = u- u. 

Since u- u = 0, we define 
1 

b..u = [(u- u)2] 
2 

(10.192) 

as the fluctuation of u. 

(10.193) 

b..u is called the absolute fluctuation. The relative fluctuation is defined as 

__ b..u (u2 -u2)~ 
8u = - = . (10.194) u u 
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10.11.2 Fluctuations in systems of canonical ensemble 

First we consider the closed systems in which there is only energy exchange 
and no particle exchange. They are the systems of canonical ensemble. The 
fluctuation of energy is defined as 

- - -2 1 

D..E = ( E 2 - E ) 2. (10.195) 

E is given by Eq. (10.66). E 2 can be evaluated as follows: 

E 2 = LPnE~ 
n 

n 

(10.196) 

Thus we have 

- 1 

= (-~::r 
= (kBT2 Cv)!. (10.197) 

The relative fluctuation is given by 

8E = 
1 

(kBT2Cv)!. 
E 

(10.198) 

Eq. (10.197) shows that the heat capacity Cv is always positive 

Cv ~0. (10.199) 

Since E ex N and Cv ex N, we have 

8E ex N-!. (10.200) 

For a macroscopic system (N rv 1023), the relative fluctuation is very small. 
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10.11.3 Fluctuations in systems of grand canonical 
ensemble 

For an open system, there are both energy and particle exchange with 
reservoir. We call such system as the system of grand canonical ensemble. 
There is fluctuation of particle number in an open system in addition to 
the fluctuation of energy. The fluctuation of particle number is given by 

- - -21 
D.N = (N2- N )2. (10.201) 

N is calculated using Eq. (10.117). N 2 can be evaluated as follows: 

Thus we have 

N s 

D.N = (N2 - N2)~ 
1 

= (8~~2Br 

[- (~:) ~vr 
[kBT(~~)J~ 

(10.202) 

(10.203) 

Eq. (10.203) shows that (~~)TV is positive. The relative fluctuation is 

given by 

(10.204) 
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Next we consider the fluctuation of energy. 
- - -21 

D.E = ( E 2 - E )2 

=(a~~")! 

[-(~~)J! 
[k8 T2 

( ~~) J! 
The relative fluctuation of energy is given by 

- 1 

OE = [k~~2 (~~) avl' 

10.12 Classic statistical mechanics and quantum 
corrections 
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(10.205) 

(10.206) 

10.12.1 Classic limit of statistical distribution functions 

Now we consider the classical limit of the statistical distribution functions. 
The classical limit corresponds to the case of high temperature and low 
densities. 

First we consider the simplest case, i.e. one particle systems, which we 
do not need deal with quantum correlation. Then we consider realistic 
many-particle systems. The Hamiltonian operator for one particle systems 
is given by 

A2 

fi = E_ + V(q) = K(f>) + V(q), 
2m 

(10.207) 

where f> and q are the momentum and position operators respectively. They 
obey the commutation relation Eq. (6.103) 

[qi, Pi] = i!L (10.208) 

Their eigenstates are defined by the following equations: 

<li lqi) = qi lqi), 

PiiPi) = PiiPi)· 
The normalization conditions for the eigenstates are given by 

(q~ lqi) = 6( q~ - qi), 

(p~ I Pi) = 6 (p~ - Pi). 

(10.209a) 

(10.209b) 

(10.210a) 

(10.210b) 
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We can derive following relation directly from the commutation relation 
Eq. (10.208). 

1 i 
(qiiPi) = ~eltPiQi. 

v27rn 
From commutation relation, we have 

[qi,Pin] = innpin-1, 
[Pi, <lin] = -innqt- 1

. 

Using the Taylor expansion, we have 

q, exp ( -~q,p}o)q; 

= [ q,, exp (-*q;]i;) ]IO)q; 

= q;exp ( -*q,p,) IO)q;· 

Thus the eigenstates of qi are given by 

lq;) = exp ( -~q,p,) IO)q;. 

Similarly, we can show that the eigenstates of Pi are given by 

lp,) = exp Gp,q}o)p;· 
Then we can calculate (qiiPi) 

(q,lp,) = (q,l exp Gp,q}o)p; 
= exp Gp;q;) (p;IO)p; 

= exp GPiQi) q;(OI exp ( -~q,p}o)p; 

= exp Gp;q;) qJOIO)p;. 

(10.211) 

(10.212a) 

(10.212b) 

(10.213) 

(10.214) 

(10.215) 

(10.216) 

qi (OIO)Pi is just a constant for normalization, which we will take as 1/~. 
Thus we get Eq. (10.211). The normalization condition is consistent with 
the following completeness relations of lqi) and IPi) 

I dqilqi)(qil = 1, (10.217a) 

I dpiiPi)(Pil = 1. (10.217b) 
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We associate with the operator A(p, q) a function Ac(P, q) 

_ (piAiq) 
Ac(P, q) = (plq) . 
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(10.218) 

Ac(P, q) is the classical quantity corresponding to the the operator A(p, q). 
Then the classical Hamiltonian function is given by 

[ 

A 2 l 1 
Hc(P, q) =(PI ~m + V(q) lq) (plq) 

[ 
p2 l 1 = 2m+ V(q) (plq) (plq) 

p2 
=2m+ V(q) 

= H(p, q). 

Now we calculate the partition function 

Z= Tre-f3H 

= J d3p(ple-f3H(f>,q) IP) 

= J d3p J d3q(ple-f3H(f>,q) lq)(qlp) 

= jd3pjd3q(pl[e-f3k(t>)e-f3V(<l) + O(n)Jiq) (plq) (qlp) 
(plq) 

= jd3pjd3q[e-f3H(p,q) + O(h)]-1-
(2Trn)3 

(10.219) 

= j d
3
pd

3
q [e-f3H(p,q) + O(h)]. (10.220) 

(21rn) 3 

O(n) comes from the commutators between K(p) and V(q), which can be 
evaluated using the Campbell-Baker-Hausdorff formula 

(10.221) 

Thus we have the classical partition function 

Z = j d3pd3q e-f3H(p,q) 
(21rn) 3 · 

(10.222) 

We can also define the Wigner function by 

- (qi,Oip) 
p(p, q) = (27rn)3(qlp) · (10.223) 
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The Wigner function satisfies the normalization condition and has the 
same average value with the density matrix p. We have the normalization 
condition 

J d3q j d3pp(p, q) = j d3q f d3p 1 (qlfJIP) 
(21l-fi)3 (qlp) 

and the average values 

= J d3q J d3p 1 (qlfJip)(plq) 
(21l-fi)3 (qlp)(plq) 

=Trp=1 (10.224) 

J d3q j d3pp(p, q)A(p, q) = f d3q f d3p_1_ (qlfJIP) (piAiq) 
(27rn)3 (qlp)(plq) 

= Tr(pA). (10.225) 

For the canonical distribution, we have 

1 (qiZ- 1e-J3iriP) 
p(p, q) = (27rn)3 (qlp) 

1 (qle-J3k e-J3V + O(n)IP) 

(21rn)3 z (qlp) 
1 ---e-J3H(p,q) + O(n). 

(21rn)3 z 
Thus we have the classical limit of the distribution function 

p(p q) = 1 e-J3H(p,q). 
' (21rn)3 z 

The average value of an observable A is given by 

A= J J d3qd3pA(p, q)e-J3H(p,q) 
J J d3qd3peH(p,q) 

(10.226) 

(10.227) 

(10.228) 

We can easily generalize the above formalism to the N-particle system 

in three-dimensions with the Hamiltonian operator 

(10.229) 

We introduce the following eigenstates of the position operators qi and 

momentum operators Pi for many-particle states. 

lq) := lql) .. ·lqN) 

IP) = IPl) .. ·lPN) 

(10.230a) 

(10.230b) 
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They are orthonormal 

(qilq'i) = 83(qi- q'i) 

(Pi IP' i) = 83 (Pi - p' i) 
and satisfy the completeness condition 

J d3
Pi I Pi) (Pi I = 1. 

We have also 
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(10.231a) 

(10.231 b) 

(10.232) 

1 i 

(qiiPi) = (
2
1rn)! e~tPi-qi. (10.233) 

The many-body states are either symmetric (bosons) or antisymmetric 
(fermions). According to Eq. (6.65), we have 

1 
IP)s = VNf ~~Sp Pip). (10.234) 

The subscript S is used to denote that the state has been symmetrized 
according to the features of identical particles. The symmetrical states 
( ~ = 1) are for bosons and antisymmetrical states ( ~ = -1) are for fermions. 
The sum runs over all the permutations P of {p1 , p2 · · · , p N}. According 
to Eq. (6.68), the normalized state is given by 

1 
IP)sN = .Jn

1
!n

2
! ... IP)s, (10.235) 

where ni is the number of particles with momentum Pi· The trace of an 
operator A is then given by 

Tr A= I:' sN(PIAip)sN 

"""" 1 A = 6 N!s(piAIP)s. (10.236) 
PI"""PN 

The prime in Eq. (10.236) indicates that the sum is limited to different 
states. Similar to Eq. (10.220), we can deduce the classical form of the 
partition function for N-particle systems. 

Z = Tre-f3H 

1 J ' = N! d3
N P s(ple-f3HIP)s 

= ~! J d3Nq J d3Nps(ple-f3Hq)(qlp)s 

= ~! J d3Np J d3Nqe-f3H(p,q)l(qlp)sl2 +0(n). (10.237) 
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The factor l(qlp)sl 2 can be expressed as 

(21rn) 3
N I (qlp) s 1 = 1 + J(p, q), (10.238) 

where f (p, q) comes from the symmetrization contribution of identical par­
ticles, which is the quantum correlation effect. The leading term 1 corre­
sponds to the pure classical limit. Then we have the classical partition 
function 

Z = 1 !d3Np!d3Nqe-f3H(p,q) 
N!(21rn) 3N · 

(10.239) 

10.12.2 Quantum corrections 

We discuss the quantum effect correction to the classical partition function. 
There are two sources for the corrections: (i) The symmetrization of wave 
function; (ii) the non-commutativity of K and V. Since the first contribu­
tion is more important when the interaction is weak, we consider the first 
contribution. The first contribution comes from the factor l(qlp)sl 2

. Using 
Eq. (10.234), we have 

l(qlp)sl 2 = ~! LL)±1) 8P(±1)8P' (qiP'Ip)(qiPip)* 
p P' 

= ~! LL(±1)Sp(±1)Sp! (P'qlp)(Pqlp)* 
p P' 

= ~! LL(±l)Sp(±l)Sp/ (qlp)(PP'-lqlp)* 
p P' 

= L(±1)Sp(qlp)(Pqlp)* 
p 

= 1 ""'(±1)Spe-k(Pl·(ql-Fql)+ .. +PN·(qN-FqN)). (10.240) 
(27rn)3N ~ 

p 

In the derivation of Eq. (10.240), we have used the fact that the permutation 
of the particles in the configuration space is equivalent to the permutation 
of the space coordinates. We can rewrite Eq. (10.237) using the following 

formula 

(10.241) 

where 

(10.242) 
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"Ar is called the thermal de Broglie wave length of particles. It represents 
the de Broglie wave length of a particle with an energy of 1rkBT, which can 
be seen easily if we evaluate the energy of a particle with the wave length 

of "Ar. 

(10.243) 

We define 

(10.244) 

Then the partition function Z with the quantum corrections due to the 
symmetrization of wave function becomes 

Z = J d3N pd3N q e-f3H(p,q) 

N!(21rn) 3N 

X L(±1)3
P f(ql- Pql) ... f(qN- PqN ). (10.245) 

p 

Arranging the terms in the summation according to the number of permu­
tation exchanges, we have 

L(±1)3
P f(ql- Pql) ... f(qN- PqN) 

p 

= 1 ± L(J(qi- qj)f 
i<j 

+ Lf(qi- qj)f(qj- Pqk)f(qk- Pqi) ± ... ' 
ijk 

(10.246) 

where the upper sign corresponds to bosons and the lower sign to fermions. 
The first term of the expansion in Eq. (10.246) corresponds to the unit ele­
ment of P. The second term corresponds to the P with one transposition in 
which only one pair of particles is exchanged, and so on. With the increase 

7rX2 
-~ 

of temperature, "Ar decreases and f(x) = e >..r decreases rapidly. When 
( jV) -k > > "Ar, f ( qi- qj) becomes exponentially small in most configuration 
space. f ( qi - qj) is significant nonzero only for a very small configuration 
space with jqi- qjl ::; "Ar. We consider only the leading quantum correc­
tions in the expansion Eq. (10.246). When we consider up to the second 
terms, we have 

i<j i<j 
= e-!3 Li<j vi(qi-qj) (10.247) 
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with 

2.,.1qi -qj I 

vi(qi- qj) = -kTlog(1 ± e Af ). (10.248) 

Vi ( qi - qj) is the effective potential. For bosons, the potential Vi ( qi -
qj) is negative and equivalently attractive. For fermions, Vi ( qi - qj) is 
positive and equivalently repulsive. Using the effective potential vi ( qi- qj), 
Eq. (10.245) is approximated as 

with 

Z= e f3H(p,q)e f3'Li<jv,(qi qj) J 
d3N pd3N q _ _ _. _ 

N!(27rn) 3N 

= J d3N pd3N q e-f3H'(p,q) 

N!(27rn) 3N 
(10.249) 

(10.250) 

H' (p, q) is the effective Hamiltonian with the potential added with 

vi(qi- qj)· 

10.12.3 Equipartition theorem 

For a classical system, the average energy of the system can be calcu­
lated using a very simple method based on the theorem of equipartition 
of energy. We will prove this theorem in the following. The energy for 
a classical system E(p, q, y) is a function of momentums p and positions 
q. If E(p, q, y) ~ oo when Pi and qi ~ ±oo, we can prove the following 
relations 

(10.251a) 

(10.251 b) 

First we prove Eq. (10.251a) 

(10.252) 
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where dpidf- 1pdf q = df pdf q. Integrating by parts, we have 

Pi 8E = -1 [/ ... J df-lpdf q (pie-;3E) loo 
Opi (3N!hf Z Pi=-oo 

-J-·-1 e-~Edfpd/q] 
= 1 J···Je-;3Edfpdfq 

(3N!hf Z 

= kBT. 

Similarly we can prove Eq. (10.251b). 
Suppose that the energy has the following form 

h h 

E = L CliP;
1 + L C2jq~2 • 

i=l j=l 

Then 

We have 

h h 

E= LcliP~1 + LC2jq~2 

i=l j=l 
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(10.253) 

(10.254) 

(10.255a) 

(10.255b) 

(10.256) 

Eq. (10.256) is the generalized theorem of equipartition of energy. 

For an independent particle system, the particle energy c ex: p2 in the 
non-relativistic case. Then the average energy of the system is given by 

- 3N 
E = 2kBT, (10.257) 

where N is the particle number. Eq. (10.257) is the Boltzmann theorem of 

equipartition of energy. It shows that each degree of freedom contributes 
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an energy of ~kBT. In the extreme relativistic case, the particle energy is 
given by 

c = cp = c(p; + p; + p;) ~ . 

The energy of the system reads 

N 

We have 

Thus we have 

E """" ( 2 2 2 ).1 = ~ c Pix + Piy + Piz 2 
• 

i=l 

8E ( 2 2 2 _ _1 

-8 . = CPia Pix+ Piy + Piz) 2 

Pw 

N 

(a=x,y,z). 

E _ """"-(-2--2--2-)--=-.1 
- ~ c Pix + Piy + Piz 2 

i=l 

i=l 

(10.258) 

(10.259) 

(10.260) 

(10.261) 

In the relativistic case, each degree of freedom contributes an energy of 
kBT, instead of ~kBT in the non-relativistic case. 



Chapter 11 

Applications of Statistical Mechanics 

11.1 Ideal gas 

In the high temperature and low density, the state of matter is usually a 
gas due to the entropy effect which prefers a disordered state. For a gas 
state, the distance between molecules are much larger than the molecular 
size in average and thus the interaction of molecules are small. Now we 
consider the properties of the ideal gas. An ideal gas is a gas in which the 
interaction of molecules can be neglected and the condition 

(11.1) 

holds. ea >> 1 is the non-degenerate condition. If Eq. ( 11.1) is not satis­
fied, we call the gas quantum gas. When ea >> 1, the system obeys the 
semi-classical distribution Eq. (10.177). The partition function z of single 
particle for the ideal gas is given by 

(11.2) 

where Ea is the energy eigenvalues determined from the Schrodinger equa­
tion of single particle. For a gas, the independent particles are molecules 
which consist of atoms. We can divide the energy of the molecules into the 
part of mass center and the part of internal degrees of freedom, which is 
similar to what we have done when we treat the Schrodinger equation of 
the hydrogen atom in quantum mechanics. When the Hamiltonian He of 
mass center and the Hamiltonian Hi of internal degrees of freedom com­
mute, they share the same eigenstates described by the same set of quantum 
numbers. We denote the energy of mass center as Ec with the degeneracy 
9c and the energy of internal degrees of freedom as Ei with the degeneracy 
9i· We have 

Ea = Ec + Ei and 9a = 9c + 9i· (11.3) 
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Inserting Eq. (11.3) into Eq. (11.2), we have 

z(/3, V) = L gae-f3ca 

= Zc(/3, V)zi(f3) 

with 

Zc(/3, V) = L gce-f3cc' 
cc 

Zi(f3) = L gie-f3ci. 
Ei 

(11.4) 

(11.5a) 

(11.5b) 

Eq. ( 11.4) shows that the partition function z (!3, V) for a semi-classical 
system can be divided into two parts, zc(/3, V) and zi(/3), which can be 
evaluated independently. 

The particle number N is related to the partition function z through 
the following relation 

(11.6) 

When N is known, Eq. (11.6) can be used to determine a. 

(11. 7) 

The average energy E (also called the internal energy) is given by 

E = _a ln Z = _ N a ln z = E E. 
a(3 a(3 c + ~ (11.8) 

with 

E = -Nalnzc 
c a(3 ' 

(11.9a) 

E, = -Na~~z,. (11.9b) 

The total average energy is the sum of the energy of mass center and the 
energy of internal degrees of freedom. 
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The equation of state is determined by 

1 81nZ N 81nz N 81nzc 
P= ~fiV = (3 8V = fjfiV· (11.10) 

Eq. (11.10) shows that the equation of state of an ideal gas is independent 
of internal degrees of freedom. Thus all the equations of state of ideal gases 
are same, independent of the structures of molecules. 

The entropy of the ideal gas is given by 

with 

S = ks (lnZ- ;/1~~Z) 

= ksN (lnz- fJ 8~~z) - ks InN! 

= Sc + Si (11.11) 

(11.12a) 

(11.12b) 

We have included the term InN! into the entropy of mass center because 
the factor N! comes from the identical properties of molecules. When the 
molecules do not have the internal degrees of freedom, we still have the 
factor N!. 

11.1.1 Partition function for mass center motion 

The Hamiltonian for the mass center motion has the form 

with 

outside container 

inside container 

(11.13) 

(11.14) 
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Using Eq. (10.189), we have 

= Tr e-f3iic -J d3qd3p -f3Hc 
- (2n1t) 3 e 

= h - 3 J dxdydze- ~u J dpx dpydPz exp (- :m (p; + P~ + P;)) 

= h-3v j 47rp
2
dpexp (-!v2

) 

= h-3V(27rmkBT)~. (11.15) 

11.1.2 Ideal gas of single-atom molecules 

The simplest molecule is the single-atom molecule in which there is only 
one atom. Since the excitation energy of electrons is in order of e V or 
104 K, We can neglect the excitation of electrons and consider the atom 
as one single particle. Thus there is no internal degree of freedom for the 
single-atom molecules. The partition function z of single particle for the 
ideal gas of single-atom molecules is equal to the partition function for mass 
center. We have 

(11.16) 

Then 

(11.17) 

We can estimate ea using Eq. (11.17). In the condition of room temperature 
and one atmospheric pressure, ea ~ 105 ::?> 1. Therefore, the ordinary gas 
can be approximated as an ideal gas. 

Inserting Eq. (11.16) into Eq. (11.8), we have 

E = -Nalnzc = ~Nk8T (11.18) 
8(3 2 

which is the same as that given by the equipartition theorem. Then the 
heat capacity is given by 

(11.19) 
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The equation of state of the ideal gas has the form 

p _ N 8lnzc _ NkBT 
-;3---av--v-· (11.20) 

It should be noted that Eq. (11.20) is also applicable for the ideal gases of 
multi-atom molecules. 

The entropy is given by 

(11.21) 

Eq. (11.21) is called the Sackur- Tetrode equation. Eq. (11.21) shows that S 
is an extensive quantity. It should be noted that the term - ln N! is crucial 
for the entropy S to be an extensive quantity. The factor N! results from 
the indistinguishability of the particles. Before quantum mechanics was 
established, the particles were not considered as indistinguishable, which 
gives an entropy formula without the term - ln N!. Without the term 
-ln N!, the entropy is not an extensive quantity. This is so-called Gibbs's 
paradox. 

The free energy can be calculated by 

V 2rrmkBT 2 

[ 
3] 

F = E- TS = -NkBTin N ( h2 ) - NkBT (11.22) 

which gives the chemical potential 

= (aF) = -k Tl [v (2rrmkBT) ~] 
f-1 aN B n N h2 . 

T,V 
(11.23) 

11.1.3 Internal degrees of freedom 

Now we consider the contribution from the internal degrees of freedom. 
The partition function for the internal degrees of freedom is given by 

(11.24) 

We can image a macroscopic system as a huge molecule and then con­
sider that there are J.v1(J.v1 >> 1) huge molecules to form an ideal gas. The 
thermodynamic properties of the system is determined by zi in Eq. ( 11.24). 
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Physically, this is equivalent to the ensemble method. The ideal gas con­
sisted of the macroscopic systems can be considered as an canonical ensem­
ble. For these systems, Zi is then the canonical partition function of the 
system. 

zi can only be evaluated analytically in a few simple cases. In the fol­
lowing, we will deal with the two-atom molecules as an example. If we 
consider atoms as particles without internal degrees of freedom, each two­
atom molecule has 3 + 3 = 6 degrees of freedom with three for mass center 
motion, two for rotations and one for vibration. Since the Hamiltonian op­
erator for rotation commutes with the Hamiltonian operator for vibration, 

we have 

(11.25) 

where Er is the eigenvalue of energy for rotation and Ev is the eigenvalue 
of energy for vibration. The total degeneracy gi for the internal degrees of 
freedom is given by 

9i = 9r9v, (11.26) 

where 9r is the degeneracy for Er and 9v is the degeneracy for Ev· Then 
Eq. (11.24) becomes 

= Zr(f3)zv(f3) (11.27) 

with 

(11.28a) 

(11.28b) 

11.1.3.1 Vibration 

The Hamiltonian operator for the vibration of the molecules is given by 

Eq. (9.7) 
n2 1 

H = --\72 + -mw2x2 (11.29) 
2m 2 ' 

where m = m 1m 2 is the reduced mass with mi (i = 1, 2) the mass of the 
m1+m2 

atoms. w is the vibration frequency. The eigenvalues of the Hamiltonian 

operator for vibration are given by Eq. (9.16) 
1 

E v ( n) = 1'iw ( n + 2), n = 0, 1, 2, · · · ( 11.30) 
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with 

The partition function for vibration reads 

Zv = L gne-Bcv(n) 

n 
00 

-lBnw ~ -(3nwn = e 2 ~e 

n=O 

= exp (-2':; T) 1 - exp (-~) . 
kBT 
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(11.31) 

(11.32) 

Using the partition function given by Eq. (11.32), the average energy of 
vibration can be evaluated as follows 

81nzv 
Ev=-N~ 

N{u;.; 1 kBT (11.33) 
[ 

exp (- !!!::__) l 
= 2 + 1 - exp (- k~T) . 

In Eq. (11.33), the first term is the zero point energy and the second term 
is the excitation energy. Using Eq. (11.33), we obtain the heat capacity 

Cv=(~)v =Nksc(k~T)' 
where c-(x) is the Einstein function defined by 

x2 exp(x) 
c-(x)= [ ( )]2. 1- exp x 

In the low temperature limit k:wr >> 1, Eq. (11.34) becomes 

Cv ~ Nks c~T) 
2 

exp (- k~T). 

(11.34) 

(11.35) 

(11.36) 

Eq. (11.36) shows that the heat capacity of vibration approaches to zero 
when T---+ 0. This results from the quantum effect. We introduce a char­
acteristic temperature Bv defined by 

{u;.; 

kBf)v = 1' (11.37) 
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which gives 

(11.38) 

When T << Bv, which is the low temperature region, the vibration degree 
of freedom is frozen and the heat capacity is small. When T >> Bv, which 
is the high temperature region, the energy becomes 

(11.39) 

This result agrees with the equipartition theorem. The heat capacity Cv 
is then equal to NkB. 

11.1.3.2 Rotation 

For a two-atom molecule, the bonding length of the two atoms is approxi­
mated to be constant. The small variation of the distance between the two 
atoms is described by vibration. The Hamiltonian of the two atoms is given 
by 

n2 n2 
H = --\72

- -\72 + U(r), (11.40) 
2m1 2m2 

where mi (i = 1, 2) are the masses of the two atoms. U(r) is the inter­
action potential of the two atoms, which depends on the distance between 
the atoms. We introduce the mass center coordinates X and relative coor­
dinates x 

X __ m1X1 + m2X2 
m1 +m2 ' 

r = X2- X1. (11.41) 

In terms of X and x, the Hamiltonian operator Eq. (11.41) is expressed as 

n2 n2 
H = --\7k- -\72 + U(r) 

2M 2m x ' 
(11.42) 

where m = m 1+m2 is the reduced mass and M = m 1 +m2 is the total mass. 
m1 m2 

Expressing the solution in the separable product 

We have 

and 

w(x, X) = ~(x)q>(X). 

n2 
--\7~~ + U(r)~ = E~ 

2m 

(11.43) 

(11.44) 

(11.45) 
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Thus He = - 2~1 V'5c is the Hamiltonian operator of mass center, while 

n} 
Hi= -

2
m v; + U(r) (11.46) 

is the Hamiltonian operator of internal degrees of freedom. In the spherical 
coordinates, Hi has the form 

Hi=_.!!!__[~!£ (r2!£) 
2m r 2 dr dr 

+ - 1
- !!_ (sine!!_) + 1 a

2

] + U(r) 
r 2 sin() ae ae r2 sin2 () ar.p2 

i} n2 
= -- -\72 + U(r) 

21 2m r 
(11.47) 

with 

L = --- sme- + ---2 1 a (. a) 1 a2 

sin() ae ae sin2 () ar.p2 (11.48) 

and 

(11.49) 

where I is the rotation inertia1 . The first term in Hi is the Hamiltonian 
operator for rotation and the last two terms form the Hamiltonian operator 
for vibration. From Eq. (9.80), the eigenvalue of energy of rotation is given 
by 

n,2 
Er=

21
l(l+1), l=0,1,2, ... (11.53) 

1 In the following, we give a note to show I = mr2. We introduce the position vectors 
relative to the mass center r1 and r2. 

ffi!Xl + ffi2X2 m2(X1 - X2) 
r1 =XI - -----

ffil +m2 m1 +m2 
(11.50) 

and 

ffi!Xl + ffi2X2 
r2 = X2-

m1 +m2 m1 +m2 m1 +m2 
(11.51) 

The rotation inertial I is defined by I= L:i mirl- Using the above relations, we have 

m1m§ 2 mim2 2 = r + r 
(m1 + m2) 2 (m1 + m2) 2 

m1m2 r 2 
m1 +m2 

= mr2. (11.52) 
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with the degeneracy 

9r = 2l + 1. (11.54) 

When the two atoms in the molecules are the same kind, we need to 
consider the effect of identical particles, which leads to the limitation on 
the values of l. We will consider the simple case that the two atoms in the 
molecules are different. The partition function for rotation has the form 

= [ ~~ l Zr = t;(2l + 1)exp -
21 

l(l + 1) . 

We define a characteristic temperature for rotation by 

1 !i2 

f)r = kB 2F 

In terms of fJn Eq. (11.55) becomes 

= [ ~~ l Zr = t;(2l + 1) exp -
21 

l(l + 1) 

= ~(2l+l)exp[-~l(l+l)]. 

(11.55) 

(11.56) 

(11.57) 

At the high temperature T >> f)r, we can use the Euler-Maclaurin summa­
tion formula 

f f(l) = f' dlf(l) + ~f(O) + f -2~2~ f(Zk-1)(0). 
l=O O k=l ( ) 

(11.58) 

to evaluate the summation in Eq. (11.57). For the case of f(oo) = f'(oo) = 
· · · = 0, Bn is the first Bernoulli numbers. Thus we have 

r= [ ~n2 ] 1 (e ) Zr = } 
0 

dl ( 2l + 1) exp -
21 

l ( l + 1) + 2 + 0 ; 

r= ( ~n2 

) 1 ( e ) = Jo dxexp -
21 

x + 2+0 ; x=l(l+1) 

T 1 (f)r) 
= f)r + 2 + O T 

T 
(11.59) 

Using Zr = [, the energy contributed by the rotational degrees of freedom 
can be evaluated. We have 

_ -N8lnzr _ Nk T 
Er- a~ - B · (11.60) 
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Eq. (11.60) can also be obtained by the equipartition theorem. According 
to the energy equipartition theorem, there are two rotational degrees of 
freedom for one molecule and each contributes ~kBT to the internal energy. 
The total energy is then NkBT. The heat capacity at constant volume reads 

(OEv) 
Cv = [)T v = NkB. (11.61) 

At the low temperature T << Br, only the smallest values of l contribute in 
Eq. (11.57). Then we have 

Zr = 1 + 3 exp (-
2
;:) + 0 ( exp (-i)) . (11.62) 

The energy and the heat capacity are given by 

Br ( 2Br) Er = 6NkBT T exp -T + · · · , (11.63a) 

Cv = l2NkB ( i) 2 

exp (-
2:r) + · · · . (11.63b) 

Eq. (11.63) shows that the rotational degrees of freedom are not thermally 
excited in the low temperature region and the rotational contribution to 
the internal energy is exponentially small. 

11.2 Weakly degenerate quantum gas 

The ideal gases satisfy the non-degenerate condition 
3 

a _ V (21rmkBT) 
2 

1 e - N h2 >> . (11.64) 

If the condition Eq. (11.64) is not satisfied, the gas is called the degener­
ate gas or quantum gas. We use the thermal de Broglie wavelength (see 
Eq. (10.242)) 

h 
A.r = 1 

(27rmk3 T)2 
(11.65) 

to characterize the degenerate level of a gas. Using A.r, Eq. (11.64) can be 
rewritten as 

(11.66) 
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Eq. (11.66) shows that when the average distance of particles is larger 
than the thermal de Broglie wave length of particles, the particles can 
be considered as the classical particles. Otherwise, the waves of particles 
interweaves and the quantum correlation plays role. When e-a = n.A~ < 1, 
the quantum correlation is weak. We call this case the weakly degenerate 
quantum gas. When e-a = n.A~ ~ 1, it is the strong degenerate case. In 
the weakly degenerate case, e-a = n.A~ < 1 is a small parameter, we can 
use the expansion method to calculate the thermodynamic quantities. 

We consider the gas without internal degrees of freedom. The grand 
partition function is given by 

ln3(o:,;J, V) = ± Lgdn(1 ±e-a-;3ci) 
i 

= ± 1= dcg,g(<) ln(l ± e-"-~') 

= ±CV 1= d£yi£1n(l ± e-"-~') (11.67) 

with C = gs27r(2m)~ h-3 , where gs = 2s + 1 is the spin degeneracy factor 
for particles with spin s. The upper sign '+' corresponds to the Fermi gas 
and the lower sign'-' is for the Bose gas. Since e-a < 1, we use the Taylor 
expansion formula 

Then we have 

with 

oo n 

ln(1 ± x) = ± L)=t=t- 1 ~. 
n 

n=1 

Loo ( )n-11 -naf£ 1 =± =t= -e --
n n;J 2n;J 

n=1 

1 
= ± - f(a) 

2;3 

00 

J(a) = L(=t=t-1n-~e-na. 
n=1 

(11.68) 

(11.69) 

(11. 70) 
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Thus Eq. (11.67) becomes 

ln2(a,/3, V) = cvv; /3-~f(a) = VX:y 3gsf(a). 

a can be determined by solving the following equation. 

Bln 2 _3 '( ) N =-----a;;- =-VAT gsf a . 

Eq. ( 11.72) can be rewritten as 

1 ,3 ~( )n-1 _!l. -no:_ -o:(1 2_!l. -o: + ) -nAT = L =t= n 2 e - e =t= 2 e . . . , 
gs n=l 
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(11.71) 

(11. 72) 

(11.73) 

where n = ~. Eq. (11. 73) can be solved by the iteration method, which 

gives 

or 

nA} 3 1 3 a= -ln -- =t= 2-2 -nAT+··· . 
gs gs 

Inserting Eq. (11.74) into Eq. (11.70), we have 

f(a) = e-o:(l =t= 2-~ e-o:+···) 

1 3 5 1 3 
= -nAT(1 ± 2-2 -nAT + · · · ). 

gs gs 

(11.74) 

(11.75) 

(11.76) 

Now we can evaluate the thermodynamic quantities using the grand 
partition function given by Eq. (11.71). The average energy has the form 

8ln2 ~8lnln2 3ln2 
E=---=-ln- =--

8(3 .... 8(3 2 (3 

3 _.§_ 1 3 
= -nkBT(1 ± 2 2 -nAT+···). (11.77) 

2 gs 

The first term corresponds to the semi-classical approximation, which gives 
the energy of the ideal gas. The second term is contributed by the quan­
tum effect. The quantum effect contributes a positive value to the internal 
energy for the Fermi gas due to the Pauli exclusion principle, while the con­
tribution of quantum effect is negative for the Bose gas. Using Eq. (11.77), 
the heat capacity can be obtained. 

(BE) 3 _z 1 3 Cv = - = -nkB(1 =f 2 2 -nAT+···). 
8T V 2 g8 

(11. 78) 
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Other thermodynamic quantities can be evaluated similarly. The equa­
tion of state has the form 

p _ 1 a InS_ InS_ 2 E 
- 73 av - ;3v - 3 v 

= nk 8 T ( 1 ± 2~ ~ :s nA} + · · · ) · (11. 79) 

The effect of the Pauli exclusion principle for the Fermi gas is equivalent 
to an repulsive force and contributes a positive pressure modification. The 
effect of quantum correlation for the Bose gas is equivalent to an attractive 
force and contributes a negative pressure modification. The entropy is given 
by 

S - k (l ,...., a ln 3 ;Q a ln 3) 
- B n=..- aa;;-- fJ---a/3 

= kB Gf3E+Na) 
= nkBT [( 

98
3 + ~) ± 2-~ 2_n,\~ + · · ·]. 

nAT 2 9s 
(11.80) 

The lower temperature T, the larger mass m and the higher density 
n give larger n,\~ and thus stronger quantum effect. For the Bose gas, 
Eq. (11.78) shows that the heat capacity Cv increases with the decrease of 
temperature T. Since Cv should become zero as temperature approaches 
zero, we would expect that there are other mechanism making Cv decrease. 
Thus there should be a peak in the curve of Cv as a function of T. We 
will show that there is a phase transition for the Bose gas in the follow­
ing section. The peak of Cv corresponds to the transition point. The 
heat capacity will decrease with the decrease of temperature in the strong 
degenerate region below the transition temperature. 

11.3 Bose gas 

11.3.1 Bose-Einstein condensation 

Now we consider the strongly degenerate case n,\~ 2:: 1 for the Bose 
gas. In this case, the quantum correlation effect is strong. According to 

Eq. (10.166), we have 

(11.81) 
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Using Eq. (10.118), Eq. (11.81) becomes 

N- ~ gi 
- ~ ef3(c;-f.1)- 1 · 

i 
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(11.82) 

We can set c-0 = 0, which means that co is the reference energy. Since 
ni 2:: 0, we have 

(11.83) 

which gives 

(11.84) 

With the decrease of temperature T, the chemical potential 11 has to in­
crease in order to maintain a constant N. Thus 

aiL 
aT< o. (11.85) 

According to Eq. (11.84), 11 has an upper limit J-Lo :::; 0. For simplicity, we 
consider the Bose gas composed of single-atom molecules. Then 

21TV g_ 1oo y'c 
N = -h3 (2m) 2 g8 de !3( ) • o e E-f-1 - 1 

Using Eq. (11.86), we have 

a 100 v'c - dc- ----..,,...----,----

(
aiL) aT o ef3(E-f.1) - 1 

aT N ~ foe de vfc 
aJ-1 lo ef3(E-f.1) - 1 

The grand partition function is given by 

ln 2 = - L gi ln ( 1 - e- f3 ( E i- f.1)) 

i 

= -CV 1= dcv't'ln(l- e-~(<-~l), 

where C = g8 27r(2m)~h-3 . We introduce the fugacity 

q=e/31-1. 

(11.86) 

(11.87) 

(11.88) 

(11.89) 
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When J.l = 0, q = 1. Then Eq. (11.88) becomes 

ln 3 = -CV 100 

dEE~ ln(l - qe-~<) 

(11.90) 

with 

(11.91) 

where r(n) is the Gamma function. Expanding the integrand in Eq. (11.91) 
gives 

1 100 xn-lqe-x 
9n(q) = r( ) dx 1 n o - qe-x 

00 k 

=L~n· (11.92) 
k=l 

When q = 1, Yn ( q) becomes the Riemann Zeta function ( ( n), 

00 1 
Yn(1) = L kn = ((n) (n > 1). 

k=l 

(11.93) 

According to Eq. (11.92), 9n(q) increases with the increase of q, which 
has an upper limit at qm = 1 or correspondingly 1-l = 0. Thus the right 
hand of Eq. (11.86) is smaller than Nmax given by 

Nmax = Vg, C":~BT) ~ (G)= ~t'( G)()( vr!. (11.94) 

With the decrease of temperature T, Nmax becomes smaller than N below a 
certain temperature Tc. This situation is caused by the using of Eq. (10.190) 
when we replace the summation with integration. The contribution from 
the ground state E = 0 does not appear in the integration since g(O) = 0. 
For bosons, there is no limitation on the number of particles in a quantum 
state. The lowest state E = 0 can be occupied by O(N) particles. In this 
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case, the contribution from the ground state can not be neglected. We 
should express explicitly the term that accounts for the contribution from 
the states= O(k = 0). Thus Eq. (11.86) should be replaced by 

go 21rV ;1 1= VE 
N= -/3 +-h3 (2m)2gs ds /3(-) ] e ~L-1 0 e c ~t -1 

qgo V gs ) 
=-1-+\3g;i(q 

- q "'T 2 

=No+ Nc>O (11.95) 
with 

(11.96) 

and 
No = qgo . (11.97) 

1-q 
Nc>O is the number of particle in the excited states and N 0 is the number 
of particles in the ground state. When p --+ 0, the first term turns to be 
important. The number of particles in the ground state becomes O(N). 
Therefore, with the decrease of temperature T, p becomes zero at a certain 
temperature Tc. This temperature Tc is determined by 

21r v 3 r= [ ( s ) ]-l 
N = ~(2m)2 g8 Jo dsyiE exp kBTc - 1 

21rV 3 3100 Vx 
= -h3 (2m)2 gs(kBTc)2 dx-x--

0 e -1 

= 
2~~ (2m)~g,(kBTc)~r G) (G) 
21rV 3 3 y'Ji 

= ~(2m)2 g8 (kBTc)2 2 X 2.612, (11.98) 

which gives 

Tc = _h_2 ( N ) i 
21rmkB 2.612gs V 

(11.99) 

As T --+ Tc, p --+ 0. The particle number on the ground state so = 0 
increases significantly. At Tc, p reaches its upper limit of zero and remains 
zero for the temperature below Tc. Therefore, when T < Tc, we have 

Nc>O = 
2~; (2m)~g, [' dc,fi [exp (k;T) -1]-l 
21rV 3 3100 Vx 

= -h3 (2m)2gs(kBT) 2 dx-x--
0 e -1 

(11.100) 
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and 

No = N - Nc>O = N [ 1 - ( ~) ~] . (11.101) 

Tc is called the critical temperature. Above Tc, p, > 0. Below Tc, the 
chemical potential p, = 0 and all orders of its derivatives are zero. Thus 
T = Tc is a point with singularity, which means that there is a phase 
transition at T = Tc. This phase transition is called the Bose-Einstein 
condensation (BEC). It can be seen that the phase transition is caused 
by the condensation on the ground state or k = 0 state. This transition is 
important for the properties of macroscopic systems at the low temperature. 
It transforms a classical phase of a macroscopic system into a quantum 
phase which we call the macroscopic quantum state. This phase transition 
mechanism is also responsible for the superfluidity of liquid 4He and 3He, 
and superconductivity in solids. 

11.3.2 Thermodynamic properties of BEG 

After the Bose-Einstein condensation, p, = 0, which gives 

G = p,N = E + PV- ST = 0. (11.102) 

First we consider the contribution of the ground state c = 0. E = 0 and 
S = 0 for the ground state. According to Eq. (11.102), we have 

ST-E 
p = v = 0. (11.103) 

Thus we can neglect the contributions of the ground state in the calculations 
of E, P and S. The c = 0 state only plays the role as a particle source. 
Next we consider the contribution of the excited states. 

lnBbo = -CV l"' d£y'Ein(l- e-~c) 
2 roo c~ 

= 3CV J) lo de e-f3c- 1 

= ~CV JJ- ~ roo dx X~ 
3 }0 e-x- 1 

= ~cv;J-~ 3ft x 1.341. 
3 4 

(11.104) 

Thus we have 

E 8lnSic>O CV(.I_g_ 3ft 1 341 g_ VTg_ =- = fJ 2--x. ocm2gs 2 
BJ) 4 

(11.105) 
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and 

Cv=(::)v 
5 33ft 

= -CvkBf3-2 --X 1.341 
2 4 

3 

= 1.926Nks (~)" (11.106) 

Eq. (11.106) shows that Cv --+ 0 as T--+ 0. 
Other physical quantities can be calculated similarly. We find 

1 a ln :=:ic>O 2 c(3- ~3ft 1 341 ~ T~ P=- =- 2--x. rx.m2g 2 
f3 av 3 4 s 

(11.107) 

and 

S = k(ln :=:lc>O +aN+ (3E) 

5 33ft 
= -CVks/3-2- x 1.341 

3 4 
3 3 

ex m2 g8 VT2. (11.108) 

It can be seen that Pis independent of V due to the existence of the c = 0 
state as a particle source. 

11.4 Photon gas 

Now we study the photon gas. An equilibrium photon gas is also called 
the black body. The radiation emitted from a small opening on a cavity 
can be approximately considered as a black body radiation. Photons are 
massless spin-1 vector bosons. There are almost no interaction between 
photons. Thus we can use the Bose distribution for independent particles 
to calculate the properties of the photon gas. Since photons do not have 
mass, the particle number of the photon gas is not a constant. According 
to Eqs. (10.93) and (10.98), the equilibrium condition for a photon gas with 
constant temperature T and volume V is 

I'= ;~I = 0. 
V,T 

(11.109) 

Thus the chemical potential of an equilibrium photon gas is zero, which 
gives a= -f3p = 0. The Bose distribution for photon gas becomes 

(11.110) 
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where 9i 2 because photons have two spin components as shown by 
Eq. (2.529). The energy-momentum relation for photons is given by 

with 

Since A = ; , we have 

r:: = cp 

h 
P = nk = :-\. 

r:: = hv. 

The photon number in the momentum interval p --+ p + dp is 

) 
9s V 1 2 

n(p dp = (2nn)3 ef3cp- 1 4np dp, 

(11.111) 

(11.112) 

(11.113) 

(11.114) 

where g8 = 2 is the spin degeneracy of photons. We can express Eq. (11.114) 
in terms of frequency v. The photon number in the intervalv--+ v + dv is 
given by 

4ng8 V 2 1 
n(v)dv = --3 -z; f3h dv. 

c e v -1 

Thus the energy in the interval v --+ z; + dv is given by 

1 
U(v)dv = n(v)hvdv = 8nVhv3c-3 

f3h dv. 
e v -1 

Eq. (11.116) is called Planck's law for black body radiation. 
When k';:T << 1, Eq. (11.116) becomes 

U(v)dv = 8nVv2k3 Tc- 3dv. 

(11.115) 

(11.116) 

(11.117) 

Eq. (11.117) is called the Rayleigh-Jeans law, which is the classical version 
of the Planck law. When k';:T >> 1, Eq. (11.116) becomes 

U(v)dv = 81r Vhv3c-3e-f3hv dv. (11.118) 

Eq. (11.118) is called Wien's law, which is the quantum version of the 
Planck law. 

The total energy of the radiation field of the photon gas is calculated 
by the integration over frequency v 

1
00 100 1 

U = U(v)dv = 8nVhv3c-3 
f3hv dv = bVT

4 

o 0 e -1 
(11.119) 

with 

(11.120) 
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Then the energy density u has the form 
u 4 

u=-=bT v l 

which gives the specific heat capacity per unit volume 

C.= 32rr5k~ T3 
v 15h3c3 · 
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(11.121) 

(11.122) 

The specific heat does not approaches to a constant as T --+ oo because the 
photon number increases with the increase of temperature. 

Using Eq. (11.116), we can also calculate the radiation escaped through 
an opening of an unit area on a black body cavity per unit time. For an 
opening with a unit area oriented in n direction, the radiation flux density 
of the photons with frequency v through the opening is given by 

j = J U(v) c~ . n dO 
v ikl 47r 

= J U(v) ccos ()dO 
v 47r 

1~ U(v) ()21r sin ()d() 
= -v ccos 

0 47r 
1 U(v) 

= 4c----v-. (11.123) 

In Eq. ( 11.123), the angular integration in the first line extends only over a 
hemisphere. Integrating over the frequency gives the total radiation flux J. 

J = J jdv = ~cu = uT4 (11.124) 

with 
2rr5 k~ 

a= 15h3c3 · (11.125) 

Eq. (11.124) is called the Stefan-Boltzmann law and a is the Stefan's 
constant. 

In order to evaluate other thermodynamic quantities, we calculate the 
grand partition function 

In 2 = - ~ J d3pg8 ln(1 - e-f3c:) 

{= 8rrV 
=- Jo ----,;}p2dp1n(1- e-f3c:) 

81rV rX) 2 -x 
= - h3c3/33 Jo dxx ln(1- e ) 

= dx----8rrV 1= x
3 

3h3c3f33 o ex- 1 

8rr5V 
- 45h3c3 /33 · 

(11.126) 
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The equation of state is given by 

1 a ln 3 8?T5 b 4 

p = (3 8V = 45h3c3 jJ4 = 3T (11.127) 

and the entropy has the form 

,...., 8ln3 ,...., 4 3 S = kB(ln.::.- JJ-----a;3) = 4kB ln.::.= 3bVT . (11.128) 

Then we obtain the Helmholtz free energy 

F = U -TS = -~U =- S?T
5
V = -~bVT4 

3 45h3c3 jJ4 3 ' 
(11.129) 

which gives 

G =F+PV =0. (11.130) 

Since G = J-lN, we have 1-l = 0. This is consistent with Eq. (11.109). 

11.5 Fermi gas 

Now we discuss the degenerate Fermi gas such as the electron gas in met­
als. We neglect the interaction between fermions and treat the gas as an 
independent particle system. The grand partition function for the Fermi 

gas is given by 

(11.131) 

with 

g(c) = CV 9sE!. (11.132) 

Integrating by parts, Eq. (11.131) becomes 

lnS = -CVg8 dc2ln(1 + e-a-f3c) 2 100 

3 

3 0 

2 roo E:~ 
= 3CV 9sfJ Jo de ea+f3c + 1. (11.133) 

a in Eq. (11.133) can be determined by 

roo 1 
N = Jo dcg(c) ea+f3c + 1 

(11.134) 
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The integrals in Eqs. (11.133) and (11.134) have the similar form. We write 
them as 

Q, = 1= dxx1j(x). (11.135) 

with 
1 

f(x) = ea+!Jx + 1. (11.136) 

We use q = e-a to replace e-a in Eq. (11.136). q is the fugacity. In the 
case of the weakly degenerate quantum gas, we have used the following 
expansion 

k-1 q l -x 1 ()() k 1()() 
= f3l+ 1 ~( -1) kl+ 1 

0 
dxx e 

()() k 
1 '"' k-1 q 

= f3l+1r(Z+1)L.)-1) kl+1. 
k=1 

(11.137) 

In the derivation of the last line of Eq. (11.137), the definition of the r­
function is used. The expansion Eq. (11.137) can only be used when q = eJJI-l 

is small. In the low temperature, /3/1 is large, we consider another kind of 
expansion. We first integrate by parts 

with 

Qz = _1_el+1 f(e)loo- _1_ {()() dee/+1 df 
l + 1 0 l + 1 }0 de 

= __ 1_ roo deel+1 df 
l + 1 } 0 de 

= 1= dcv(E)j'(E) 

1 
v(e) = ---el+1. 

l + 1 

(11.138) 

(11.139) 
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We expand the function v( c) at c = J-l 

= (n)( ) 
v(c) = L v /" (c- J-L)n. 

n=O n. 

Inserting the expansion Eq. (11.140) into Eq. (11.138), we have 

= (n)( ) r= 
Qz = L v 1 1-L Jn dcf'(c)(c- J-L)n. 

n=O n. 0 

We introduce rJ = /3(c- J-L). Then 

and 

1 
f(c) = erJ + 1 

erJ 
!'(c)= -{3 (erJ + 1)2. 

Thus Eq. (11.141) becomes 

=- = v(n)(J-L) -nj= d e7J n 
Qz ~ n! f3 -f3f.1 TJ (erJ + 1)2 TJ • 

(11.140) 

(11.141) 

(11.142) 

(11.143) 

(11.144) 

At low temperature, f3J-L >> 1. We neglect the exponentially small terms 
and obtain 

(11.145) 

The expansion in Eq. (11.145) is called the Sommerfeld expansion. 

The chemical potential J-L in Eq. (11.145) is determined by 

N = CVgsQl 
2 

= ~CVg,~! { 1 + "82 c:T) 2 + 0 [ c:T) 4]}. (11.146) 

J-L(T) can be evaluated using the iteration method. The zero order term is 
J-L(O) which is the chemical potential at T = 0. LetT= 0 in Eq. (11.146), 
we have 

2 3 

N = 3cv gsJ-L(O) 2. (11.147) 
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Solving ~-t(O) in Eq. (11.147) gives 

( 
3N )~ 

~-t(O) = 2CV gs = cp. (11.148) 

We have introduced cp to denote ~-t(O) because the chemical potential at 
zero temperature is also called the Fermi energy. At zero temperature, 
the energy levels are filled with one fermion occupying one state until all 
particles are exhausted. According to Eq. (10.171), the boundary between 
the occupied energy and unoccupied energy at zero temperature is the 
Fermi energy. In terms of ~-t(O), Eq. (11.146) is expressed as 

(11.149) 

Solving J-L gives 

(11.150) 

Using the Sommerfeld expansion, we can evaluate the thermodynamic 
quantities of the Fermi gas. The energy U of the Fermi gas is given by 

U = _ 8ln3 
8/3 

Inserting Eq. (11.150) into Eq. (11.151), we have 

u = ~cv g,cq 1+ 51~2 ( k::r + 0 [ c::r]} 
= Uo { 1+ 

51~
2 c::r + o [ c::r]} 

(11.151) 

(11.152) 

with Uo = ~ N c F. Uo is the ground state energy of the Fermi gas. The 
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equation of state for the Fermi gas is given by 
p = 2:_ 8ln3 

f3 av 

= 1~ Cg,JL~ { 1 + 5;2 c:Tr + 0 [ c:Trn 
= ~ ~EF { 1+ 5~2 c::r + 0 [ c::rn 

2U 
3V 

(11.153) 

Eq. (11.153) shows that at zero temperature, there is a nonzero pressure 

P, -
2

Uo (11.154) 0 - 3V. 
The entropy is given by 

S = kB(lnS +aN+ (3U) 

= 1~kBCVg,~JL~ { 0 + 5:2 ( k:T) 2 + 0 [ (k:T) 4]} 

= ~
2 

CV g,c}k~T { 1 + 0 [ c::) 2] } • (11.155) 

Eq. (11.155) shows that S --+ 0 as T --+ 0. The specific heat capacity is 
given by 

Cv=(~~)v 
= Uo { 5~

2 

:}T+O [ c::)']} 
= NkB ~: k:: { 1+ o [ c::rn. (11.156) 

Eq. (11.156) shows that the specific heat capacity of the Fermi gas at low 
temperature is a linear function of temperature T. We introduce a charac­
teristic temperature Tp defined by 

Sp 
Tp = kB. (11.157) 

Tp is called the Fermi temperature. When T >> Tp, the Fermi gas becomes 
the ideal gas. Otherwise, it is a quantum gas. In terms of Tp, Eq. (11.156) 

can be expressed as 

Cv = ~
2 

NkB ~ { 1+ 0 [ GJ 2]} . (11.158) 
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For the electrons in metals, cF rv 104eV. Thus Cv of electron gas in metals 
is small as compared with that contributed from the vibration of atoms in 
the room temperature. 





Chapter 12 

General Relativity 

12.1 Classical energy-momentum tensor 

In the Einstein field equations Eq. (3.26), the metric tensor 9J-Lv is deter­
mined by the energy-momentum tensor T/:. Now we consider the energy­
momentum tensor T/: of a classical system. The conservation of energy­
momentum in the local flat metric gives 

fJT/: = 0. (12.1) 
fJxJ-L 

The energy-momentum vector is defined by 

PJ-L = ~ J TJ-Lv dsv. (12.2) 

Eq. (12.1) leads 

f J-ld - J ar;: d -Tv sJ-L - fJxJ-L V - 0. (12.3) 

We consider the integration over hyper plane J ds J-L as an integration over 
the hyper plane x0 = const. :f T/:dsJ-L is the difference between the integrals 
J T/:dsJ-L taken over two such hyper planes. We have PJ-L = ~ J TJ-Lv dsv = 
const. and thus PJ-L is conserved. 

T 00 is the energy density and we denote it as W = T 00 . We can separate 
the conservation equations into the space and time parts. 

1fJTOO fJTOi 
~at + fJxi = 0, (12.4a) 

1 [)Tio [)Tij 
~at + fJxj = 0. (12.4b) 

Integrating the first equation over a volume V in space, we have 

1 f) J J fJTOi ~ 8t ToodV + fJxi dV = 0. (12.5) 

329 
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Using Gauss's theorem, we obtain 

~ jr00dV = -cfT0ids· at t, 
(12.6) 

where the integral on the right is taken over the surface surrounding the 
volume V. Since the expression on the left is the change rate of the energy 
contained in the volume V, the expression on the right is the amount of 
energy transferred across the boundary of the volume V. We define a vector 
s, 

(12. 7) 

From Eq. (12.6), we can see that Sis the amount of energy passing though 
unit surface in unit time. Thus S is called the flux density of energy. 

Eq. (12.2) shows that~ is the momentum density. Thus the flux density 
of energy is equal to the momentum density multiplied by c2 . Now we 
consider the second equation in Eq. (12.4). We have 

~ J ~yiodV =-J aTi~ dV 
at c axJ 

=- f yijdsi· (12.8) 

The term on the left is the change of the momentum of the system in V per 
unit time. Therefore, j Tij dsi is the momentum leaving the system in V per 
unit time. The components yij of the energy-momentum tensor constitute 
the three-dimensional tensor of momentum flux density, which we denote 
as -O'ij· O'ij is also called the stress tensor, which has the meaning that 
the component O'ij is the amount of i-component of the momentum passing 
though unit surface perpendicular to the xJ axis per unit time (the direction 
entering the system is taken as positive) according to Eq. (12.8). Thus T 11v 

can be expressed as the following matrix 

TJ.LV = 

W Sx Sy Sz 

Sx 
c c c 

- -O'xx -O'xy -O'xz 
c 

Sy 
- -O'yx -O'yy -O'yz 
c 

Sz 
- -O'zx -O'zy -O'zz 
c 

(12.9) 

The flux of momentum through the surface element ds is the force acting 
on the surface element according to Newton's law (Eq. (8.57)). Thus O'ijdSj 
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is the i-component of the force acting on the surface element. Now we use 
the reference system in which the elements of volume of the system are 
at rest. For an equilibrium hydrodynamic system, the pressure P is equal 
everywhere. The pressure P has the meaning of being the force acting on 
unit surface element. We have 

(12.10) 

Thus, 

(12.11) 

We denote T 00 at local rest frame by E. p = -2x is defined as the mass 
density of the system, i.e. the mass per unit volume. It should be noted 
that the volume element here is the one in the reference frame in which the 
corresponding portion of body is at rest. We call such volume as proper 

volume. Thus in the reference frame that the system is at rest, the energy­
momentum tensor has the form 

(

c 0 0 0) 
TJ-LV = 0 p 0 0 

0 0 p 0 . 

0 0 0 p 

(12.12) 

We can use tensor transformation to obtain the expression for the 
energy-momentum tensor in an arbitrary reference frame. We introduce 
the four-velocity defined by Eq. (A.34) in the Appendix A to describe the 
macroscopic motion of a body element. In the rest frame, ua = (c, 0). 
Generally, 

dx 11 

uf.l. = dr · 

Since dx 11 dx 11 = ds2 = -c2 (dr) 2
, we have 

u11u11 = -c2
. 

When the velocity is v, we have 

2 dx2 + dy2 + dz 2 

v = dt2 

In a local rest frame, dx' = dy' = dz' = 0. We have 

ds2 
= -c2dt2 + dx2 + dy2 + dz2 = -c2dt'

2
• 

Then 

~ 
dt' = dr = dt y 1 - --;}. 

(12.13) 

(12.14) 

(12.15) 

(12.16) 

(12.17) 



332 Principles of Physics 

Thus the four-velocity has the form 

U~=(g,g) (12.18) 

Using the four-velocity, we can write the right-hand side of Eq. (12.12) 
in a tensor form. 

(12.19) 

Since a tensor equation is hold in any frame, Eq. (12.19) is also valid for a 
general reference frame. 

Thus the energy density W, energy flow vector S and stress tensor a-ij 

are given by 

(12.20a) 

(12.20b) 

(12.20c) 

12.2 Equation of motion in the Riemann spacetime 

The curvature of metric has the similar effect as an interaction. This effect 
is called the gravity. Now we derive the equation of motion for a classic 
particle in the curved metric. 

The energy-momentum tensor is given by Eq. (12.19). For a classic 
particle, there is no pressure term, The energy-momentum tensor becomes 

f 
T 11v = 2 u11 uv = pu11uv. 

c 
(12.21) 

The conservation of energy-momentum reads 

T 11v;v = DvT11v = 0. (12.22) 

Using Eq. (A.76a) in the Appendix A, we have 

T 11l/. = T 11l/ + r 11 TPl/ + rv T 11P. ,v ,v pv pv (12.23) 
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The connection obeys the following relation 

/1 - ~ J1V - -~ J1V - __!__ ag - ~(l c;:.) r 0:/1 - 2g gJ1V,a - 2gJ1Vg ,a - 2g axa - axa n y -g • (12.24) 

Inserting Eq. (12.24) into Eq. (12.23), we have 

TJ1V. = _1_ ~ (TJ1V c;:.g) + f/1 yvcr = 0. ,v r=;:. a 1/ v -y vcr y-g X 
(12.25) 

We can reform this equation into the following form 

a a a . 
axo ( yC'gT 11 ) + axi ( yCgT211 ) + J=gr~vTav = 0, i = 1, 2, 3. (12.26) 

Integrating Eq. (12.26) over the volume of the particle, we have 

J _!!__( yC'gT011)d3x + J ~( yC"gTi11 )d3 x + J yCgr11 Tav d3 x 
ax0 ax2 0:1/ 

= 0. (12.27) 

Using Gauss's theorem, the second term can be transformed into the surface 
integration and be dropped away because p = 0 at surface 

(12.28) 

Inserting the expression of the energy-momentum tensor given by 
Eq. (12.21), we have 

d~o j yCgpu0u11 d3x + j yCgr~13 puauf3d3x = 0. (12.29) 

We have changed a~o to d~o in Eq. (12.29) because spatial variables have 
been integrated over. 

For a point-like particle, we can take u11 and r~13 out of the integral. 
Then Eq. (12.29) becomes 

__:!__ (u 11 J J=gpu0d3x) + f 11 uauf3 _!_ J yCgpu0d3x = 0. (12.30) dxO af3 uO 

We define the mass m of the particle in gravity as 

m = ~ J yC"gpu
0
d

3
x. 

In the local fiat rest frame, u0 = c, F[J = 1. Then 

m= j pd3 x. 

(12.31) 

(12.32) 
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m is just the rest mass of particle. In the local flat rest frame, pis a constant 
due to the conservation of energy. We have 

(puv);v = 0. (12.33) 

Eq. (12.33) is a tensor equation, which should be valid in any reference 
frame. Eq. (12.33) is also called the continuity equation of mass conserva­
tion. In the arbitrary reference frame, we have 

(pu");v = ~ ( Fgpu");v = 0. (12.34) 

Multiplying Eq. (12.34) with .j=9 and integrating, we obtain 

djr-;:; o3 jar-;:; i 3 dx0 V -gpu d X+ axi ( y -gpu )d X= 0. (12.35) 

Using Gauss's theorem, the second term turns to be the surface integration 
and vanishes. We have 

dj~03 d 
dxo v - g pu d x = dxo m = 0. (12.36) 

Thus, m is not dependent on x0 . Using Eq. (12.36), Eq. (12.30) becomes 

dx0 dul-l J-l a (3 -
m dr dx0 + mr a(3u u - 0. (12.37) 

Thus we obtain the geodesic equation for the motion of a classic particle 

dul-l - + rJ-l uauf3 = 0 (12.38) 
dr a(3 

or 

d2 xl-l dxa dxf3 
d72 + r~(3 dT dT = 0. (12.39) 

Eq. (12.39) is called the geodesic equation because it is also the equation 
describing the shortest route connecting the two points in the Riemann 
spacetime. The detailed derivation is shown in the Appendix H. Thus the 
particles move along the shortest route in the Riemann spacetime. 

12.3 Weak field limit 

12.3.1 Static weak field limit-Newtonian gravitation 

The metric tensor is determined by the Einstein field equations Eq. (3.26), 

which have the form 

(12.40) 
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where K = 8;P. Using the Ricci scalar defined as 

R - J-LVR - J-Lv o:{3R = g J-LV - g g O:J-L{3V l (12.41) 

we have 

R = -Kr. (12.42) 

with r = r::. Then Einstein field equations can be rewritten as 

R"" =" (r""- ~g""T). (12.43) 

In the normal temperature and weak field, the thermal velocity of par­
ticles is much smaller than the speed of light. Thus the pressure P is much 
smaller than the density p. Using Eq. (12.19), we have 

(12.44) 

The four-velocity ui-L in the proper (local rest) frame has the form 

dxJ-L 1 
ui-L = -d = c-;;:::-:::-(c, 0, 0, 0), 

r v -goo 
(12.45) 

where dr = i~s = ~J-gJ-LvdxJ-Ldxv = ~J-goodx0 = J-goodt. 
In the local rest frame, the energy-momentum tensor has only one 

nonzero component r 00 

2 
roo = __!!!?__. 

J-goo 

The trace of the energy-momentum tensor r is given by 

r = gJ-LvrJ-Lv = pui-LuJ-L = -pc2
. 

The energy of a point-like particle is defined by 

E = -mui-LuJ-L = mc2
, 

(12.46) 

(12.47) 

(12.48) 

which is equal to r00 in the local fiat rest frame. Since E is a scalar and 
conserved in the local fiat rest frame, E is conserved in any frame. 

When the curvature effect is weak, we can write the metric tensor as 
follows 

(12.49) 

where hJ-Lv is the term describing the deviation of the curved metric from 
the Minkowski metric. We have 

(12.50) 
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Its derivative is also small. 

lgJ-Lv,il = lhJ-Lv,il << 1 i = 1,2,3. (12.51) 
We consider the static case, in which p is not time dependent and cor­

respondingly 

lgJ-Lv,ol = lhJ-Lv,ol = 0. (12.52) 
The Ricci tensor is defined as 

RJ-LV = R~>-v = r~v,>- - r~>-,v + r~l/r~p- r~l/r;J-L, (12.53) 
where r~v is the Levi-Civita connection of the Riemann metric given by 

r >, -
1 Ap( ) (12 54) J-LV - 2g gpJ-L,V + gpV,J-L- gJ-LV,p · . 

We keep only the linear terms of hJ-LV and hJ-Lv,p in the expansion of r~v· 
We have 

>, _ 1 AP( ) ( ) r J-LV - 2TJ hpJ-L,V + hpV,J-L - hJ-LV,p . 12.55 

We can neglect the quadratic terms of r~v in the Ricci tensor and obtain 

RJ-LV = r~v,A - r~A,V' (12.56) 
Inserting Eq. (12.55) into Eq. (12.56), we have 

1 
Roo= -2hoo,i,i, (12.57a) 

1 
Roi = 2(hko,i,k- hoi,k,k), (12.57b) 

1 
R· · = --(-hoo · · + hkk · · - hk· · k- hk · · k + h· · k k)· (12.57c) ~J 2 ,~,J ,~,J ~,J, J,~, ~J, ' 

The most important term is the (00) component, which obeys the fol-
lowing equation 

1 
Roo = K(Too- 2gooT). 

In the weak field limit, Eq. (12.58) becomes 
hoo · · = -c2 Kp. ,~,~ 

We define 

(12.58) 

(12.59) 

c2 
'P = -2hoo, (12.60) 

which is called the gravitational potential function. Then Eq. (12.59) reads 
c4 

D..'P = 2Kp = 47rGp. (12.61) 

Eq. (12.61) is the Poisson equation for Newtonian gravitation, which has 
the solution _ _ 1 p(x')d3 x' 

'P(x) - G I 'I . v x-x 
For point-like particles with mass of M, Eq. (12.62) becomes 

GM 
'P(r) = --. 

r 

(12.62) 

(12.63) 
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12.3.2 Equation of motion in Newtonian approximation 

Now we discuss the equation of motion in the static weak field limit and 
nonrelativistic case, which is called the Newtonian gravitational equation. 
We approximate the connection by keeping up to one order terms 

.X - 1 .Xp(h h - h ) r f.LV - 2TJ pf.L,V + pV,f-1 JLV,p • 

In the nonrelativistic limit, we have 

The geodesic equation Eq. (12.39) becomes 

d2xo 
dr2 = 0, 

d2xi i (dxo) 2 -
dr2 + r 00 --;;;;: - 0. 

Solving Eq. (12.66a), we have 

(12.64) 

(12.65) 

(12.66a) 

(12.66b) 

(12.67) 

where a and b are constants. Inserting Eq. (12.67) into Eq. (12.66b), we 
obtain 

d2xi . 1 
dxo2 = -fbo = 2hoo i· (12.68) 

Using x 0 = ct and Eq. (12.60), we have 

d2xi arp 
dt 2 axi · (12.69) 

Multiplying the equation by mass m, we obtain the Newton's equation 
of motion for a particle in a gravitational potential 

d2xi a 
m dt2 =- axi (mrp). (12.70) 

The mass on the left hand side of Eq. (12.70) is usually called the inertial 
mass and the mass on the right hand side is called the gravitational mass. 
Eq. (12.70) shows that the inertial mass is the same with the gravitational 
mass. We define the gravitational force F 9 as 

a 
Fg. =--a . (mrp). z xz (12. 71) 

Then Eq. ( 12.70) becomes 

(12. 72) 
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Thus 
V(x) = m<p(x) (12. 73) 

can be considered as the potential energy. 
When the curvature source is a particle, from Eq. (12.63), the potential 

energy reads 

V(r) =-GMm. (12.74) 
r 

Eq. (12.74) is the Newtonian gravitational law. Using Eq. (12.60), we have 

goo=- (1-
20

M) . (12.75) 
c2r 

The weak field limit demands 

or 

2GM 
--<<1 

c2r 
(12. 76) 

2GM 
r >> r9 = - 2-. (12.77) 

c 
r9 is called the gravitational radius of star. It is also called the radius 
of black hole. Although Newtonian gravitational potential could lead to 
gravitational collapse to black hole, Eq. (12. 77) shows that it is invalid to 
use the Newtonian theory to treat the collapse to black hole. 

12.3.3 Harmonic coordinate 

In the calculations of the particle motion, we have the freedom to select a 
coordinate frame. The most convenient selection is the frame determined 
by the Harmonic coordinate condition. With this condition, when the cur­
vature source disappears, we recover the inertial frame in the flat spacetime. 
The harmonic gauge is defined by 

rA = gl-lVf~V = 0. (12.78) 

Using the relation 
-' >. ( >.p ) Ap + >.p 0 
u/-l,V = g 9p/-l ,v = g 9p/-l,V gPI-lg ,v = ' (12.79) 

(12.80) 
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In the derivation of Eq. (12.80), we have used Eq. (A.92) in the 
Appendix A 

Using Eq. (A.94) in the Appendix A, we have 

D(xll) =_I _ _!_ (~g>.paxll) 
.j=g axP ax>. 

1 a 
= --(~gllP), (12.81) .;=g axP 

where the symbol D is the four-dimensional Laplacian operator 

Of - jill - glll/J - f'll - ( 1 a2 + V'2) f - ;ll - ;ll;v - ;ll - - c2 8t2 ' (12.82) 

where f is a scalar. The symbol D is also called the d'Alembert or wave 
operator. Eq. (12.80) becomes 

fll = -Dxll = 0. (12.83) 

Eq. (12.83) is the harmonic gauge for the coordinates. Since it was consid­
ered to be similar to the gauge in the electromagnetic field, it is also called 
the Lorentz gauge in gravity. 

For the Minkowski metric, 

(12.84) 

Since r~v = 0, the harmonic gauge Eq. (12. 78) is satisfied for the Minkowski 
metric. Thus the harmonic gauge is a generalization of the inertial frame 
in the flat spacetime to the Riemann spacetime. 

12.3.4 Weak field approximation in the harmonic gauge 

12.3.4.1 Radiation of gravitational waves 

When we use the harmonic gauge, the weak field formulas become much 
more simpler. In the weak field limit, the metric can be written as 

with 

I hill/ I << L 

The Christoffel symbol becomes 

r~jJ = ~rylll/ (hva,jJ + hvjJ,a - hajJ,v) 

1 
= 2(hlla,jJ + hlljJ,a- hajJ'Il). 

(12.85) 

(12.86) 

(12.87) 
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The Ricci tensor has the form 

R - rA - rA - _!(h ,o: h - ho: - ho: ) f.LV - f.LV,A f.LA,V - 2 f.tl/ ,o: + ,f.t,V f.t,V,O: V,f.t,O: l 

where h is defined as 

h = h~ = 'f]o:f3 ho:f3 = -hoo + hu + h22 + h33· 

We introduce a tensor lit-tv defined by 
- 1 
ht-tv = hf.tv - 2,TJt-tvh. 

Then the Einstein equation Eq. (12.40) becomes 

G 
h ,o: + rJ h ,o:,f' h ,o: h ,o: = -16n-

4 
T"v· f.tl/ ,o: f.tl/ o:(3 - f-LO: ,v - l/0: ,f.t c ,-

The harmonic gauge Eq. (12. 78) in the weak field has the form 

fA - 1 f.LV Ap ( + ) - 2g g 9pf.t,V 9pv,f.t - 9t-tv,p 

= hAo:,o: 

= 0. 

(12.88) 

(12.89) 

(12.90) 

(12.91) 

(12. 92) 

The harmonic gauge Eq. (12.92) makes the last three terms in Eq. (12.91) 
vanish. Then the Einstein equations become 

G h ,o: = -16n-
4
T"v· (12.93) f.tl/ ,o: c r-

Eq. (12.93) is a wave equation with a source. The source could emit the 
gravitational wave. 

The solution of Eq. (12.93) is given by 

-h ( t)=_!5:___j Tt-tv(x',t-~)d3' 
f.tl/ x, 2 I 'I X. 1r v x-x 

(12.94) 

Tt-tv is the source and lit-tv can be considered as the potential induced by 
the source Tt-tv. 

In the region outside the source, Eq. (12.93) becomes 

( 
2 1 8

2
) -

V' - c2 8t2 ht-tv(x, t) = 0. 

The solutions of Eq. (12.95) are the superpositions of plane waves 

ht-tv(x, t) = ht-tvOei(k·x-wt) 

with 

k = ':!._, 
c 

Thus the gravitational waves propagate at the speed of light. 

(12.95) 

(12.96) 

(12.97) 
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12.3.4.2 Newtonian gravitation 

In the nonrelativistic case, we have 

- G 
Dhoo = -167r2p, 

c 

341 

(12.98) 

where we have used the fact T00 ~ pc2
• Since the time variation is caused 

by the source moving with the velocity v, gt is of the same order as v · V, 
we have 

(12.99) 

To the lowest order, 

(12.100) 

Since all other components of haf3 (a, ;3 =I 0) are negligible at this order, 

we have 

Using the relation 

we have 

h = h~ = -h~ = -hoo. 

1-
hoo = 2hoo, 

1-
hxx = hyy = hzz = -2hoo. 

Using Eq. (12.60) for the definition of cp, we have 

- 4 
hoo = -2'P· 

c 

(12.101) 

(12.102) 

(12.103a) 

(12.103b) 

(12.104) 

Inserting Eq. (12.104) into Eq. (12.100), we obtain the Poisson equation 
for Newtonian gravitation 

\l2 cp = 47rGp. 

The metric in the weak field limit is given by 

ds
2 

= -c
2 

( 1 + ~;) dt2 + (1- ~;) (dx2 + dy2 + dz2
). 

We define the four-momentum pas 

dxl-l 
pl-l=m-. 

dr 

(12.105) 

(12.106) 

(12.107) 
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Then 

P. P = -m2e2 = ga(3PaP(3. 

Using Eq. (12.106), we have 

-m2c2 = _ (1+ ~) CPOl2 + ( 1 - ~n p2. 

We can solve p0 in Eq. (12.109), 

(p0)2 = ( \~) [m2c2 + (1- ~;) p2]· 
1+­e2 

Since -Zr << 1 and p << me, Eq. (12.110) can be rewritten as 

(po)2 ~ m2e2 ( 1 _ 2'f? + L) 
e2 m2e2 

or 

(12.108) 

(12.109) 

(12.110) 

(12.111) 

p0 ~me (1- ~ + L) . (12.112) 
e2 2m2e2 

Lowering the index gives 

a 0 ( 2'f?) 0 1 ( 2 p
2 

) Po = goaP = gooP = - 1 + 7? P = - ~ me + m'P + 2m · 

(12.113) 

Now we consider the geodesic equation Eq. (H.3) in the Appendix H, 
which can be expressed as an equation for the lowered components of pas 
follows 

(12.114) 

Using 

(12.115) 

and 

(12.116) 

we have 

(12.117) 
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Thus the geodesic equation becomes 

dp/3 1 l/ Q 

mb = 2gva,/3P p (12.118) 

In the case of stationary (time-independent) field, gva,o = 0. Thus Po 
is time-independent and thus conserved. We can call -poe as the energy 
of the particles in the gravitational field and denote it by E0 = -p0c. As 
we can see from Eq. (12.113) that Eo consists of three terms. mc2 is the 

2 

rest energy. mcp is the gravitational potential energy. ~ is the kinetic 
energy. It should be noted that this conserved law is only applicable to the 
stationary case. 

12.4 Spherical solutions for stars 

12.4.1 Spherically symmetric spacetime 

Spherically symmetric systems are the most important gravitational sys­
tems because point-like particles and spherical stars are described by such 
systems. 

12.4.1.1 Minkowski spacetime in the spherical coordinates 

Minkowski spacetime is a flat spacetime with the spherical symmetry. In 
the spherical coordinates, the line element of the :Minkowski spacetime is 
given by 

(12.119) 

The surface of constant t and r is a two dimensional spherical surface, 
which is often called two-sphere in a simple notation. Distances dl along 
curves on the two-sphere are given by Eq. (12.119) with the constraint 
dt = dr = 0. 

(12.120) 

where the symbol dfJ2 defines the element of solid angle. A two-sphere has 
circumference 27rr and area 47rr2

• 

12.4.1.2 Spherically symmetric metric 

For a Riemann spacetime with spherical symmetry, every point of spacetime 
should be on a two-sphere, whose line element is given by 

(12.121) 
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where f ( r', t) is a function of two other coordinates r' and t. The area 
of each two-sphere is 4rr f ( r', t). We can make a coordinate transformation 
from (r', t) to (r, t) in such a way f(r', t) = r 2

. Then in the new coordinates 
r and t, the area of a two-sphere is 4rrr2 and circumference 2rrr. This 
coordinate r is called the curvature coordinate or area coordinate. It should 
be noted that generally, r is not the distance from the center of the sphere 
to its surface in the Riemann spacetime. 

Now we consider the spheres at r and r + dr. Each sphere has a coor­
dinate system ( e, ¢). We demand that a line with e =const and ¢ =const 
is orthogonal to the two-spheres, which requires er · ee = er · e¢ = 0. Thus 
we have gre = gr¢ = 0. Then the metric with spherical symmetry has the 
form 

ds 2 = g00 dt 2 + 2gordtdr + 2goedtde 

+ 2go¢dtd¢ + grrdr2 + r 2 d02
. (12.122) 

Similarly, we consider the spheres at t and t+dt. The line with r =const, 
e =const and¢ =const should also be orthogonal to the two-spheres, which 
requires et · ee = et · e¢ = 0 or gte = gt¢ = 0. Then Eq. (12.122) becomes 

ds 2 = goo(r, t)dt2 + 2gor(r, t)dtdr + grr(r, t)dr2 + r2 d0 2
. (12.123) 

This is the general form of a spherically symmetric metric. 

12.4.1.3 Spherically symmetric metric for static systems 

Now we consider the static systems. For a static system, the energy­
momentum tensor is independent of time t. Thus the metric can be chosen 
to be static, i.e. a metric components are independent of timet. Since the 
energy-momentum tensor has the time reversal symmetry, the geometry is 
not changed by time reversal, t-+ -t. The metric should be unchanged by 
the coordinate transformation (t, r, e, ¢) -+ ( -t, r, e, ¢ ). We have gor = 0. 
The causality principle demands that g00 < 0 and grr > 0. Then the metric 
of a static spacetime with the spherical symmetry is given by 

ds 2 = -e2
<I> dt 2 + e2Adr2 + r 2d0 2 (12.124) 

with 
- 2<I> d _ 2A goo = -e an grr = e . (12.125) 

For a star, which is a bound system, the spacetime far from the star is 
flat. We have the boundary conditions on the Einstein field equations. 

lim <I>(r) = lim A(r) = 0. (12.126) 
r-+oo r-+oo 

This condition is called the asymptotic fiat condition of spacetime. 
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12.4.1.4 Einstein tensor in the spherically symmetric metric for 
static systems 

Using the metric Eq. (12.124), we can calculate the Einstein tensor 

1 
GJLV = RJLV - 2,9J.tvR. 

The components of the Einstein tensor are given by 

Goo = J_e2<P ~ [r(1 - e-2A)] , 
r 2 dr 

Grr = - J_e2A(l - e-2A) + ~<I>'' 
r 2 r 

[ 
<I>' A'] GBB = r2e-2A <I>"+ (<I>')2 +-:;:-<I>' A'--:;: ' 

G¢¢ = sin2 BGBB· 

All other components are zero. 

12.4.1.5 Gravitational redshift 

(12.127) 

(12.128a) 

(12.128b) 

(12.128c) 

(12.128d) 

We have shown that any particle moving along a geodesic has a constant 
energy E = -p0c. However, a local inertia observer at rest measures a 
different energy. When one is at rest, ui = ~~i = 0. From the condition 
uJ.tuJL = -c2, we have u0 = ce-<P. According to Eq. (12.48), the energy 
measured by the local observer at rest is 

(12.129) 

Considering the asymptotic flat condition Eq. (12.126), e-<P = 1 as 
r--+ oo. It can be seen that E is the energy that a distant observer would 
measure when the particle gets there. For a star, in the weak field limit, 
e2<~> = 1 + ~ according to Eq. (12.106). Thus <I> ~ ~ < 0. We have 
e-<P > 1. Then Eq. (12.129) shows that the particle has larger energy from 
the view point of local inertial observer. This extra energy is the kinetic 
energy gained by falling in a gravitational field. 

When this is applied to photons, we get an important physical phe­
nomenon called gravitational redshift. We consider a photon emitted at 
radius r 1 and received at r2. We denote Vr 1 the frequency of the photon at 
r1 in the local inertial frame, then its local energy is hvr1 and its conserved 
constant E is hvr1 exp (<I>(rl)). When the photon reaches the radius r 2, it 
is measured to have energy 

(12.130) 
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The redshift of the photon is defined by 

Z = Ar2 - Arl = llrl _ 1. 
Arl llr2 

(12.131) 

Inserting Eq. (12.130), we have 

Z = exp ( <I>(r2 ) - <I>(rl)) - 1. (12.132) 

When !::lr = r2 - r 1 = h is small, we have 

hvr2 gh 
-- =1-2, 
hvr1 c 

(12.133) 

where g is gravitational acceleration. The effect of Eq. (12.133) is significant 
in the precision measurement. 

12.4.2 Einstein equations for static fluid 

12.4.2.1 Energy-momentum tensor 

We consider the static stars, in which the fluid is at rest. u has only one 
nonzero component u0 . Using the formula uJ-luJ-I = -c2 , we have 

Inserting Eq. (12.134) into Eq. (12.19), we have 

Too= pc2e2
<I>, 

Trr = Pe2
A, 

Tee= r2P, 

Tcp¢ = sin2 ()Tee. 

All other components are zero. 

12.4.2.2 Equation of state 

(12.134) 

(12.135a) 

(12.135b) 

(12.135c) 

(12.135d) 

In the energy-momentum tensor, which is often called the stress-energy 
tensor for a fluid, there are two thermodynamic variables P and p. From 
statistical mechanics, we can obtain a relation between them 

P = P(p,T). (12.136) 

Eq. (12.136) is the equation of state. When the temperature T is low, we 
have 

p = P(p). (12.137) 

The form of this relation depends on the constituents of stars. 
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12.4.2.3 Equation of motion 

The conservation of energy-momentum gives 

Ta:/3;/3 = 0. 

Using Eq. (12.135), we have 
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(12.138) 

(pc
2 + P) ~~ =- ~~. (12.139) 

Due to the symmetries, the tensor equation Eq. (12.138) becomes a scalar 
equation. 

12.4.2.4 Einstein equations 

Using Eqs. (12.128) and (12.135), we obtain the Einstein equations for a 
fluid. 

For the (0,0) component, we have 

with 

du(r) =47rr2p 
dr 

(12.140) 

1 c2 -2A 
u(r) = 2 G r(1- e ). (12.141) 

Eq. (12.140) shows that u(r) has the meaning of the mass apart from a 
constant. 

u(r) =for 41JT2p + Uo. (12.142) 

u0 can be nonzero and is determined by Eq. (12.141) using the boundary 
condition. u0 has only geometric meaning. In the Newtonian approxima­
tion, it can be shown u0 = 0. Then u(r) is the mass. In the case of the 
strong field, we will show that u0 can be nonzero. 

For the (r, r) component, we have 

d<P(r) Gc2u(r) + 47rGr3 P(r) 
~ c2r[c2r- 2Gu(r)] 

(12.143) 

Due to the symmetry, (B, B) and(¢,¢) components can be derived from 
Eqs. (12.140) and (12.143) by the Bianchi identity. We have now four equa­
tions (Eqs. (12.137), (12.139), (12.140) and (12.143)) with four functions 
(P(r),p(r),<P(r) and u(r)). We can solve the equations to obtain the four 
functions P(r),p(r),<P(r) and u(r). 

Generally, we use the boundary conditions at the boundary of the star, 
which reads 

Plr=rb = 0 Plr=rb = 0, 

where rb is the radius at the boundary of the star. 

(12.144) 
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12.4.3 The metric outside a star 

Outside the star (r > R = rb) is the vacuum. We have p = 0 and P = 

0. The four equations reduce to the two effective equations with the two 
functions u and <I>. 

du(r) 
~=0, 

d<I>(r) Gu(r) 
dr r[c2r- 2Gu(r)]' 

The solution of Eq. (12.145) has the form 

u(r) = M = const, 

(12.145a) 

(12.145b) 

(12.146a) 

e2 <~> = 1-
2
GM. (12.146b) 
c2r 

We have used the asymptotic flat boundary condition <I> --+ 0 as r --+ oo for 
the solution. 

For the vacuum region outside the star, we have the following metric 

ds2 = - 1 - -- dt2 + 1 - -- dr2 + r 2 dfl2. ( 
2GM) ( 2GM)-l 
c2r c2r 

(12.147) 

This metric is called the Schwarzschild metric. At large r, Eq. (12.147) 
becomes 

ds2 =- (1- 2GM) dt2 + (1 + 2GM) dr2 + r2dn2. 
c2r c2r 

(12.148) 

We can see that this far field metric of a star is equivalent to the metric of 
point-like particles with mass M given by Eq. (12.106). 

The Schwarzschild metric is the vacuum solution outside stars. The 
Minkowski metric is also the vacuum metric. When the whole space is 
vacuum, the only physical solution is the Minkowski metric. When the 
space contains a star with the spherical symmetry, the physical solution is 
the Schwarzschild metric. Therefore, Schwarzschild metric should be used 
for r > R outside the star with the radius of R = rb. It can not be used for 
r < R. Until now, all solutions for the fluid stars haveR> rg = 2~f1. 
12.4.4 Interior structure of a star 

Inside the star, since p #- 0 and P #- 0, we can divide Eq. (12.139) by 
(pc2 + P), and eliminate ~~ using Eq. (12.143). Then we have 

dP ( c2 p + P) ( Gc2 u + 47rGr3 P) 
dr c2r[c2r- 2Gu(r)] 

(12.149) 
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This equation is called the To/man-Oppenheimer- Volkov (TOV) equation. 
Combined with Eq. (12.140) and the equation of state, we have three equa­
tions for u, p and P. Eqs. (12.140) and (12.149) are two first order dif­
ferential equations. We have two constants of integration. There are two 
ways to determine the constants of integration: One is to use the boundary 
conditions for the integration from the center of the star; The other is to 
use the boundary conditions for the integration from the boundary of the 
star. In the first case, we use u(r = 0) and P(r = 0) as the initial values 
of integration. Solving e- 2A from the equation u(r) = ~fr(1- e-2A), we 

have 
_ 2A 2Gu(r) 

e = 1 -
2 

. (12.150) 
c r 

Since 9rr = e2A is positive, we have u(O) ::; 0. If u(O) -=/= 0, e-2A will 
approach infinite at the origin r = 0. From Eq. (12.149), around the origin 

r = 0, we have 
dP c2 p + P c2 nP8 + P 

dr 2r 2r 
(12.151) 

where we have expressed the equation of state as p = nP8
• When s < 1, 

the solution of Eq. (12.151) is pl-s ~ ~c2n(1- s) In r + c, which will result 

in a negative p when r--+ 0. Thus u(O) can only be zero for a star without 
a void. When s 2: 1, we have P r-v cr. Then Pfr=O = 0. It is possible that 

u(O) can be nonzero in this case. Since for most kinds of cold stars, s < 1. 

We will mainly focus on the case of s < 1, which is applicable for most star 
matters. We can rewrite the solution of Eq. (12.151) as follows, 

pl-s = ~c2n(1 - s) In(!:___) . 
2 ri 

(12.152) 

We find that P = 0 at r = ri. If we consider r = ri as an inner boundary, 
P will remain zero when r ::; ri and we could avoid a negative p. Thus, 
we have another type of solutions with Pi = 0 at r = ri. Since p = 0 for 
r ::; ri, there is a void around r = 0 for this type of solutions. The solutions 
satisfy the Einstein equations. From r = 0 to r = ri, p = 0 and P = 0. 
There are no particles and thus pressure is zero in this void region. The 
initial condition for this type of solutions should take the values at the inner 
radius r = ri instead of r = 0. The differential equations can be solved 
by integrating from the initial values. The outer radius r o is reached when 
P=O. 

Outside the star, the metric is the Schwarzschild metric. The metric 
functions must be continuous at r = r 0 • Inside the star, the metric is 

_ ( 1 _ 2Gu(r)) -l 
9rr­ c2r 

(12.153) 
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Outside the star, we have 

_ ( 2GM)-1 

9rr- 1--2-C r 
(12.154) 

The continuity of the metric demands 

M = u(r0 ). (12.155) 

Thus the gravitational mass of the star is determined by 

M = 1~o dr41rr2 p + u(r,). (12.156) 

In the weak field limit, ri = 0 and u(ri) = 0. The gravitational mass 
in Eq. (12.156) is just the mass of the star. It should be noted that we 
always have ¥fu(r) < r for stars. If it ever happened that r- ¥fu(r) = E 

is small near some radius r 1 and decrease with the change of r, from the 
TOV equation Eq. (12.149), the pressure gradient ~~ could be of order ~ 
and negative. This would leads to the rapid decrease of the pressure P and 
drop to zero before E reaches zero. At P = 0, we reach the surface of the 
star. Outside the star, u is constant and r increases. Thus u(r) of a star 

2 

can not reach ~cr. 
We can also solve the differential equation using the boundary conditions 

at the outer surface of the star. We have the initial values of u(ro) and 
P = 0 at r = r 0 • Integrating from the surface of the star to the inner 
center, we can solve the TOV equations. We could obtain two types of 
solutions: solutions without void and those with void, without assuming 
that there is a void inside a priori. The solutions with void can only occur 
in strong field. In the weak field limit , there are only the solutions without 
void. 

12.4.5 Structure of a Newtonian star 

In the weak field and nonrelativistic limit, P << pc2
• We have 47rr3 P << uc2 

and 2?u << 1. Thus the TOV equation becomes c r 

dP Cpu 
dr ---:;:2. (12.157) 

This equation is equivalent to the Newtonian gravitational equation. 
This equation does not have the solutions with void. Thus uo = 0, which 
gives 

(12.158) 



General Relativity 351 

We consider a volume element as shown in Fig. 12.1. The inward grav­
itational force by Newton theory is given by Eq. (12.71). 

F = b.V P Gm2(r). 
r 

The outward force is given by 

dP 
-P(r + D.r)b.A + P(r)b.A =- dr b.V. 

(12.159) 

(12.160) 

The balance of the force is Eq. (12.157). Thus the Newtonian gravitational 
equation is equivalent to Eq. (12.157) 

r+dr 

Fig. 12.1 The pressure force on a small volume element ~V = ~A~r of a spherical 
star. 

12.4.6 Simple model for the interior structure of stars 

The TOV equation is hard to solve analytically for a given equation of 
state. We will show a simplified solution for the spherical stars. 

To simplify the problem, we consider the approximation 

p = const (12.161) 

inside the star with a radius of R. This approximation is proposed by 
Schwarzschild. It should be noted that the speed of sound V 8 which is 
proportional to ( 1{p) ~ 1 is infinite. Thus it has the problem of causality. 

1 According to Eq. (12.160) and Newton's law, we have 

dv 
p- = -'VrP. 

dt 
(12.162) 

In order to derive the relation of the time derivative of velocity with that of pressure, we 
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We consider the case of u0 = 0. From Eq. (12.142), we have 

47r 
u(r) = 3 pr3 r::; R. 

Outside the star, p = 0. u(r) is constant and is denoted by M 

) 
47r 3 

M = u(r IR = 3 pR r 2:: R. 

(12.169) 

(12.170) 

M is often called the Schwarzschild mass. The TOV equation now has the 
form 

dP 

dr 
4nG r(pc2 + P) (pc2 + 3P) 

- 3c4 
( 1 81rG 2 ) ---r p 

3c2 

(12.171) 

We denote the pressure Pat r = 0 as P0 . Eq. (12.171) can be integrated 
from P =Po at r = 0, which gives 

1 

pc
2 + 3P = pc

2 + 3P0 ( 1 _ 2G M) 2 

pc2 + P pc2 + P0 c2r 

use the equation of continuity 

ap . 
at + V' r . J = 0. 

Neglecting the high order term of velocity, Eq. (12.163) can be rewritten as 

ap - + pV'r · V = 0. at 
For a gas, we can approximately use the expansion relation 

p = ( ap) P. ap s 

(12.172) 

(12.163) 

(12.164) 

(12.165) 

We have neglected the damping effect in Eq. (12.165). Combining Eq. (12.164) with 
Eq. (12.162), we have 

a ( 1 ap) aV' r. v pat pat = -p~ = V' r. V' rP. (12.166) 

Inserting Eq. (12.165) into Eq. (12.166) and neglecting the high order term, we have 

which gives 

( a P ) a2 P = fl.P 
ap s at2 ' 

(12.167) 

(12.168) 
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At r = R, P = 0. We can obtain the relation between Po and R 

2 [ ( 2G lv1) ~ l 1 
Po = pc 1 - 1 - C2 R 

3 
(

1 
_ 

20
M) t _ 

1 
(12.173) 

c2 R 

Inserting Eq. (12.173) into Eq. (12.172), we find 

(1- 2~~~2) t- (1- 2~:) t 
P = pc2 

1 1 . ( 12 .1 7 4) 

3 (1- 2~:)'- (1- 2~~~2)' 
Eq. (12.174) is called the Schwarzschild constant-density interior solution. 

From Eq. (12.174), we can see that Po = Plr=O -t oo as ~2~ -t ~· Thus 
the radii of an uniform-density star can not be smaller than ~ ~~. For a 
star with R = ~ ~~I , the pressure at the center of the star is infinite. 

12.4. 7 Pressure of relativistic Fermi gas 

12.4.7.1 Thermal properties 

Now we give a discussion on the pressure that supports the compact stars 

such as white dwarfs and neutron stars. We start from the Hamiltonian for 
N non-interacting fermions given by Eq. (2.363) 

(12.175) 

where wp = ylp2c2 + m 2c4 . The Hamiltonian operator is diagonal in the 
momentum space jp). \Ve can rewrite the Hamiltonian Eq. (12.175) as 

fi = L j d3pwpiP)(pj. (12.176) 
s 

fi is the one body operator. The N-particle basis is given by 

IPIP2 ... PN)SN = ~ ~(-1)5P Plpl) .. ·lPN)· (12.177) 

The sum runs over all the permutation P of {1, 2, · · · , N}. 
Since the total number of the occupied states equals the number of 

particles, we have 

(12.178) 
s p 
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lp1p 2 · · · PN)SN is the eigenstate of H. Thus the energy eigenvalue of N­
particle state is given by 

E({np}) = LLnpwp. 
s p 

We can calculate the grand partition function 

00 

=-""' ----L..J 
N=O {np} 

LsLpnP=N 

= L e-(3 Ls Lp(wp-f.l)np 

{np} 

=II II I: e-f32::p(wp-f.l)np 

= II IJ [ 1 + e-(3(wp-f.l)] ' 

s p 

(12.179) 

(12.180) 

where 1-l is the chemical potential. The grand potential has the form 

<I> = -(3- 1 ln 3 = -(3- 1 L LIn ( 1 + e-(3(wp-f.l)). (12.181) 
s p 

Then we can evaluate the average particle number using Eq. (10.117), 

which has the form 

N = _ 8In3 = _ (o<I>) = ""'""' 1 oa OJ-l f3 L: .!;' ef3(wp-f.l) + 1. 
(12.182) 

The internal energy is given by 

(12.183) 

where g8 is the spin degeneracy factor given by 

9s = 2s + 1. (12.184) 

s = ~ for electrons or neutrons. V is the volume of the system. 
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12.4.7.2 Ground State (T=O) 

Now we deal with the ground state of noninteracting Fermi gas. In the 
ground state, the N lowest single-particle states IP) are occupied. All the 
momenta within an energy surface (called Fermi surface) are thus occupied. 
The radius of the Fermi surface is called the Fermi momentum PF· The 
particle number is related to the Fermi momentum p F. 

N = 9s L 1 

= g, (2:1!)' J d3p8(pp- p) 

= g, (2:/l)31PF 41fp'dp 

81rVp} 
Jh3• 

We can solve p F as a function of the particle density n 
Eq. (12.185) 

(12.185) 

~ from 

(12.186) 

Each fermion has an energy Wp = -/m2c4 + p2c2. Therefore the energy 
density of the relativistic Fermi gas is 

E 
pc2 =-v 

{PF 81rp2 1 

= Jo };3(m2c4 + p2c2)2 dp 

= 8,~1!3 {pp(2p~ + m2c2)Jp~ + m 2c2
- (mc) 4 sinh- 1 (;:C)}. 

(12.187) 

The pressure is given by 

P=-8E 
av 

= 8,~1!' {PF GP~- m
2
c

2
) JP~ + m2

c
2 

+ (mc)4 sinh- 1 
( :) }· 

We introduce a parameter 

~ = 4sinh- 1 
(:). 

(12.188) 

(12.189) 
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Then the formulas can be rewritten in the following parameter form. 

(
mc)3 1 . 3 ~ n = - - smh - (12.190a) n 37r2 4' 

m 
4 
c

5 
( 1 . 8 . ~ ) P = -- - smh~- -smh- +~ 

327r2n3 3 3 2 ' 
m4c5 

pc2 = 327r2 n3 (sinh~ - ~) . 
We can also use another parameter defined by 

PF 
xp=-. 

me 
Then 

12.5 White dwarfs 

(12.190b) 

(12.190c) 

(12.191) 

(12.192) 

When a star with about a mass of the sun runs out of the reaction energy, 
the pressure in the star resulted from the thermal effect becomes small. 
Then the pressure resulted from the quantum effect of fermions due to 
the Pauli exclusion principle dominates. White dwarfs are stars that the 
outwards pressure is delivered by the cold electron gas. Since the mass of 
electrons is much smaller than the mass of nuclei (mass of four protons for 
helium), the pressure of electrons is larger than that of nuclei. This can be 
seen from the following derivations. 

The pressure increases with the mass of star. We consider the limit case 
that the pressure of electron gas can resist the gravitational potential. We 
denote the total mass of the star by M and the radius of the star by R. We 
have 

M = (me+ 2mp)N ~ 2mpN, (12.193a) 

R=(!~)I (12.193b) 

where me is the mass of an electron and mp the mass of a proton. The 
mass density is given by 

1 3 M 
p=-=---

v 81r mpR3 
(12.194) 

with v = *· 
(12.195) 
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We introduce two parameters M and R 

M = 91rA1' 
8mp 

- ffieC 
R=--,;-R· 

In terms of M and R, we have 

Af~ 
Xp = R. 

In the nonrelativistic limit where Xp << 1, we have 

m4c5 Af~ 
P rv e 5 K 

= 157r2n3 xp = R5 , 
where 
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(12.196a) 

(12.196b) 

(12.197) 

(12.198) 

(12.199) 

(12.200) 

According to Eq. (12.157), The Newtonian equations for the star are 
given by 

d~;r) = 47rr2p(r), 

dP = -Gp(r) m(r). 
dr r2 

(12.201a) 

(12.201 b) 

In the following, we make the evaluations in order of magnitude. We 
introduce the typical density p and the typical pressure P. p and P can 
be considered approximately as the average density and average pressure, 
respectively. Eqs. (12.201) are equivalent to 

M = R 3p, 

P GA1 
R = p R2 . 

Eliminating p, we have 

(12.202a) 

(12.202b) 

(12.203) 

In the following, we discuss two approximate cases: xp << 1 and 

Xp >> 1. 
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(i) When the mass of the star is not very large, the nonrelativistic limit 
(xp << 1) can be used. Then we can use the relation Eq. (12.198) to 
eliminate P in Eq. (12.203) 

-.§_ -2 

K~ 3 =K'~ 
R5 R4' 

(12.204) 

where 

K' = a ( s;;:;) 2 Ct) • . (12.205) 

Eq. (12.204) can be rewritten as 

-1- K 
M3R=-. 

K' 
(12.206) 

Thus the radius of the star decreases with the increase of the mass of the 
star. Eq. (12.196b) shows that the radius of the star would be smaller if we 
replace electron mass with proton mass. The effect of pressure of electrons 
is stronger than that of nuclei and thus it is reasonable that we consider 
only the pressure of electrons. 

(ii) When the mass of the star is large enough, the extreme relativistic 
limit (xp >> 1) should be used. The equilibrium condition is given by 

5 (M~ M~) ,M2 

4 K R4 - R2 = K R4 (12.207) 

or 

- - 1 M 3 J - ' 
R = M• 1 - Cw-J ' (12.208) 

where 
3 3 3 

Mo = (::,)' = G~;)' (a~~)' (12.209) 

Eq. (12.208) shows that no white dwarf can have a mass larger than Mo 
which is given by 

8 - 33 M 0 = -mpMo ~ 10 g ~ M 8 , (12.210) 
97r 

where 8 is the mass of the sun. According to Eq. (12.208), we can see 
that R--+ 0 as M --+ M0 . Thus Newtonian gravitational theory can have 
gravitational collapse. In contrast, if one uses the TOV equation, as mass 
increases, R would not approach zero. Instead, R approaches a finite value. 
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Therefore, the general relativity does not have the similar gravitational col­
lapse as predicted by the Newtonian gravitational theory. The underlying 
physics is that the general relativity allows only positive energy while the 
energy in the Newtonian gravitational theory can be negative and without 
a lowest limit. 

More refined calculations give the result Mo = 1.4M0 . This value of 
mass is called the Chandrasekhar limit. When the mass of the star is 
larger than the Chandrasekhar limit, it will collapse until other repulsive 
mechanism is effective or the Newtonian gravitational theory is no more 
applicable. 

12.6 Neutron Stars 

When a white dwarf is further compressed, the electrons could combine 
with the protons to release the energy. The final equilibrium stars are the 
neutron stars. For the neutron stars, the gravitation effect is so large that 
the Newtonian gravitational theory is no more applicable. We will use the 
TOY equation to calculate the interior structure of neutron stars. 

For the neutron stars, there are two types of solutions. The solutions 
without void and the ones with void. First we consider the solutions without 
void, which we call the normal solutions. 

12.6.1 Normal solutions 

Eqs. ( 12.140) and ( 12.149) are the two first-order differential equations for 
solving u(r) and P(r). They are 

d~~) = 47rr2 p, (12.211a) 

dP (c2p + P)(Gc2 u + 47rGr3 P) 
dr c2r[c2r- 2Gu(r)] 

(12.211b) 

We denote the radius of the neutron star as R. One can integrate the two 
equations simultaneously from some initial values u = u0 and P = Po at 
r = 0 to the values at r = R where P = 0. The value of u at the boundary 
r = R is connected with the value of the Schwarzschild metric outside the 
star. We have 

u(r) =- (1- e-2A) =- 1- 1- -- = Af c
2 R c

2 R [ ( 2G M) l 
2G 2G c2R . (12.212) 
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Thus u(R) is the gravitational mass of the neutron star as measured by a 
distant observer. 

For a neutron star consists of the particles with the rest mass of mn 
obeying the Fermi-Dirac statistics, it is more convenient to use the paramet­
ric form of p and P with the parameter ~ related to the Fermi momentum 
PF by Eq. (12.189) 

(12.213) 

Then the energy density and pressure are given by 

p = K(sinh~- ~), (12.214) 

P = c
2 

K(sinh~- 8 sinh~+ 3~), 
3 2 

(12.215) 

where K = 1rm~c3 /(4h3 ). The Fermi momentum PF is related to the 
density of the particle number n = NjV by n = 87rp~/(3h3 ). 

There are some restrictions on the choice of Po and u0 . First only 
positive pressure is meaningful, which gives P ~ 0. Since 9rr = e2A is 
positive, we have u0 ::; 0. Eq. (12.141) shows that u0 = 0 if e-2A takes 
finite value. If u0 =I= 0, we express the equation of state by p = aPs at 
r ~ 0. If Po =I= 0, s = 0. If Po = 0, s = t(Expanding Eq. (12.190) at~= 0 
gives P r-v pi). According to Eq. (12.151), p1-s ~ 1/2c2a(1 - s) ln r + c, 
which will result in a negative p when r ---+ 0. Thus u(O) can only be zero. 

We can use ~ as the parameter in solving the differential equations. 
Then Eq. (12.211) becomes 

d~ 

dr 

~~ = 47rKr2 (sinh~- ~), 

4 (sinh~- 2sinh ~) 

c2r(c2r- 2Gu) (cosh~- 4 cosh~+ 3) 

[
47rGKc

2
r

3 
( ~ ) l x 

3 
sinh~- 8sinh 2 + 3~ + Gc2u . 

(12.216) 

(12.217) 

For a neutron star, the equations can only be solved numerically. Numerical 
results show that there is a maximum limit of mass which is about 0.78. 
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12.6.2 Solutions with void 

Now we consider the solution with void. We have shown that the initial 
value u0 ::; 0. When u0 < 0, near 1 = 0, the TOV equation becomes 
Eq. (12.151). The solution of Eq. (12.151) can be rewritten as 

(12.218) 

We can see that P = 0 ar 1 = li· If we consider 1 =lias an inner boundary, 
P will remain zero when 1 ::; li and we would avoid a negative P. Thus, 
we have another type of solutions with P = 0 at 1 = li. Since p = 0 for 
1 ::; li, there is a void around 1 = 0 in this type of solutions. In the void 
region from 1 = 0 to 1 = 1 i, p = 0 and P = 0. There are no particles and 
thus pressure is zero in this void region. 

In the void region, we have the Minkowski-type metric 

(12.219) 

where A= e2<Pi and B = (1- 2Gui/c21i)- 1 are constants. The parameter 
<I>i can be obtained by integrating the equation Eq. (12.143). From 1 = li 
to 1 = 1 0 = R, p ~ 0 and P ~ 0. P and p increase first from zero at 1 = li. 
After reaching a maximum, P and p then decrease. At 1 = 1 0 , P and p 
decrease to zero, where we have the outer boundary. At the outer radius 
1 0 = R, U 0 = c210 [1- e-2A(ra)JI(2G) = M. lvf is the apparent mass of the 
star as measured by a distant observer. 

Similar to the case of the normal solutions, we can use the parameter 
form of the TOV equation Eq. (12.216) and (12.217) to obtain the numerical 
solutions. We can also calculate the particle number in the star by 

f ro 2 1 

N = ri 47rl girndl 

= 4(mnc)
3 1ro 2 ( 1 _ 2Gu) -~ . h3 (~) d 

to3 I 2 sm I. 
37rn ri c I 4 

(12.220) 

Now we discuss the case of the solutions with initial value Ui < 0 at 
li f. 0. Numerical calculations show that u increases from the negative 
value to a positive value at the outer radius 1 o· u = U 0 at 1 = 1 0 corresponds 
to the mass of the star as measured by a distant observer. The structure 
parameter~ increases from zero at the inner radius li to a maximum and 
then decreases to zero at the outer radius 1 0 • p and P, as functions of 
~, show the similar change tendency. P increases from 0 according to 
Eq. (12.211b). After reaching a maximum, P decreases to zero at the outer 
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radius ro. Figure 12.2 show the particle number N, mass M and outer 
radius r 0 as functions of ui at ri = a. From Fig. 12.2, we can see that the 
particle number N increases with the increase of lui I, exhibiting a power law 
dependence. The mass M also increases with the increase of I ui I according 
to the power law with a crossover. The crossover value corresponds to the 
minimum in the curve of r0 • The outer radius r0 decreases first with the 
increase of luil to a minimum at luiml and then increases with the increase 
of luil· When luil < luiml, although ro decreases with the increase of luil, 
the peak values of p and P are increased. The increase of N and M is 
mainly due to the increase of the peak value of p. When luil > luiml, 
the increase of N and M is mainly due to the increase of r0 . When luil 
increases, g0 = (1- 2Gu0 jc2ro) decreases and approaches to zero. 

One can also solve the differential equations of Eqs. (12.216) and 
(12.217) by integrating from the outer radius r0 • Then the solutions with 
the void inside the center emerge naturally. When we keep the outer radius 
r0 in constant and make the parameter g0 = 1- 2Gu0 /(c2r 0 ) decrease and 
approach to zero, the particle number approaches to infinite and the void 
radius ri approaches to zero. 

The solutions without maximum mass limit do not depend on a special 
property of the equation of state for the star matter. Similar solutions 
can also be obtained for other equations of state P = P(p). It shall be 
noted that the Newtonian gravitational theory does not give this type of 
solutions. From Eq. (12.157), dPjdr = -pGm(r)jr2 < 0. Thus P always 
decreases monotonously. The pressure in the solution with a void is zero at 
both inner radius ri and outer radius r 0 of the two boundaries, which is not 
compatible with the above Newtonian gravitational equation for pressure P. 
The solutions with void show that the Einstein general relativistic theory 
has significant difference with the Newtonian gravitational theory on the 
equilibrium mass distribution. 
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Fig. 12.2 (a) The particle number N inside the neutron star, (b) the mass, and (c) the 
outer radius ro as functions of Ui at the inner radius ri = 1. The unit of the length is 
taken to be a= h312 /('rrm~c 1 1 2G11 2 ) = 1.36 x 106 cm and the unit of the mass is mo = 
ac2 /G = 1.83 x 1034 g. The unit of the particle number is No = 327r2 (mnca) 3 /(3h3 ) = 
1.174 X 1059 . 
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Appendix A

Tensors

A.1 Vectors

A position in the space can be described by a three dimensional vector

x. In four-dimensional spacetime, it is a four-dimensional vector x. A

vector in a certain coordinate system can be expressed by the component

xi (i = 1, 2, 3) in a three-dimensional space or xα (α = 0, 1, 2, 3) in a

four-dimensional spacetime. α = 0 is usually used to denote the time

component. It is custom to use the Greek alphabet (α, β, γ, · · · ) to denote

the components in spacetime and Latin alphabet (i, j, k, · · · ) to denote the

components in space only.

We have used superscripts for the components xi of an ordinary vector,

which is often called a contravariant vector . A vector x can be expressed

in any coordinate system. We use x′i to denote the components of the

position vector in another coordinate system. Then the relation between

x′i and xi can be written as

x′
i
=
∂x′i

∂xj
xj , (A.1)

where we have used the Einstein summation convention that a summation

is carried over doubly repeated indices. Eq. (A.1) is the definition of a

vector. A vector is an object whose components transform according to

Eq. (A.1). x′i is often written as xi
′

with the prime attached to the super-

script rather than the main symbol, which can be used more conveniently.

Thus Eq. (A.1) is often written as

xi
′

=
∂xi

′

∂xj
xj . (A.2)

An infinitesimal dxi can be expressed by a differential formula

dxi
′

=
∂xi

′

∂xj
dxj . (A.3)

365
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Thus dxi forms an ordinary or contravariant vector.

Let us now consider ∂
∂xi . For a function f(x), we have from calculus

∂f

∂xi′
=

∂f

∂xj
∂xj

∂xi′
. (A.4)

Thus the derivative transforms as

∂

∂xi′
=
∂xj

∂xi′
∂

∂xj
, (A.5)

which shows that ∂
∂xi′ is also a vector. It is called a covariant vector . Thus

we can define two types of vectors. A contravariant vector Aµ is defined as

an object whose components transform as

Aµ
′

=
∂xµ

′

∂xν
Aν . (A.6)

A covariant vector Aµ(also called a one-form or covector) is defined by the

transformation

Aµ′ =
∂xν

∂xµ′ Aν . (A.7)

A.2 Higher rank tensors

A vector has one index for its components. A scalar has zero indices.

We can generalize them to the tensors with two or more indices. A con-

travariant tensor of rank two is of form Bµν which obeys the following

transformation relation

Bµ
′ν′

=
∂xµ

′

∂xα
∂xν

′

∂xβ
Bαβ . (A.8)

A mixed tensor Bµν is partly covariant and partly contravariant with the

transformation

Bµ
′

ν′ =
∂xµ

′

∂xα
∂xβ

∂xν′ B
α
β . (A.9)

A covariant tensor is defined by

Bµ′ν′ =
∂xα

∂xµ′

∂xβ

∂xν′ Bαβ . (A.10)

More generally,

Bµ
′ν′ ···
ρ′··· =

∂xµ
′

∂xα
∂xν

′

∂xβ
∂xγ

∂xρ′
· · ·Bαβ ···γ···. (A.11)
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We introduce Λαµ′ = ∂xα

∂xµ′ , Eq. (A.11) becomes

Bµ
′ν′ ···
ρ′··· = Λµ

′

α Λν
′

β Λγρ′ · · ·Bαβ ···γ···. (A.12)

Since

∂xα

∂xβ
= δαβ , (A.13)

where δµν is the Kronecker delta, the chain rule gives

∂xα

∂xβ
=
∂xα

∂xµ′

∂xµ
′

∂xβ
= Λαµ′Λ

µ′

β = δαβ . (A.14)

The tensor product of two tensors produces a higher rank tensor. For

example,

Cαγ
β
δ = AαγB

β
δ. (A.15)

The tensor product (also called outer product) is often written as

C = A⊗B. (A.16)

When we set a covariant and contravariant index equal and sum over

the index, we make a high rank tensor to a lower rank tensor. For example,

Tαγ
β
β ≡ Tαγ . (A.17)

This process is called the contraction. The contraction over a pair of indices

reduces the rank of a tensor by two.

We define an inner product of two tensors by forming the outer product

and then contracting over a pair of indices. For example,

Cαβ ≡ AαγBγβ . (A.18)

The inner product of two vectors A and B produces a scalar C

C = AµBµ ≡ A ·B. (A.19)

A scalar is a tensor of rank zero. It is invariant under transformation

C′ = Aµ
′

Bµ′

= Λµ
′

µ A
µΛνµ′Bν

= δµνA
µBν

= AµBµ

= C. (A.20)
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A.3 Metric tensor

We define metric tensor as a tensor that realizes the mapping between

contravariant and covariant tensors. We use the relation A ·B = AµB
µ =

gµνA
µBν for the definition of the metric tensor gµν . Thus we have

Aµ = gµνA
ν . (A.21)

In this equation, the metric tensor plays the role of lowering the indices.

The mapping should be invertible. We have the definition of gµν :

Aµ = gµνAν . (A.22)

Thus gµν raises the indices. From the definition of metric tensor, we can see

that gµν should be symmetric if we want A ·B = AµB
µ = B ·A = BµA

µ.

Thus

gµν = gνµ. (A.23)

Using the relation

Aµ = gµαAα = gµαgανA
ν , (A.24)

we have

gναg
αµ = δµν . (A.25)

When we use the metric tensor gµν to lower the metric gµν , we have

gµν = gναg
αµ = δµν . (A.26)

Thus gµν is also a Kronecker delta.

A.4 Flat spacetime

The simplest metric is the metric of flat space. The three-dimensional

Euclidean space is characterized by the metric gij = δij . The Minkowski

metric of four-dimensional spacetime is given by gµν = ηµν or gµν = η′µν
with

ηµν =









1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1









and η′µν =









−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









. (A.27)

The Minkowski metric is the only flat spacetime metric guaranteeing the

causality principle. ηµν is said to have the signature [1,−1,−1,−1] and
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η′µν has the signature [−1, 1, 1, 1]. It is just a custom to use ηµν or η′µν to

describe the Minkowski spacetime. We use ηµν in the quantum field theory

and η′µν in other parts of the book. Since ηµν = −η′µν , one can easily

make transformation. To simplify the notation, we often omit the prime in

η′µν .
When the signature [−1, 1, 1, 1] is used, for a contravariant vector spec-

ified by

Aµ = (A0, Ai) = (A0,A), (A.28)

the covariant vector Aµ = ηµνA
ν has the form

Aµ = (A0, Ai) = (−A0, Ai) = (−A0,A). (A.29)

The distance of the spacetime is defined by

(ds)2 = dxµdxµ = gµνdx
µdxν . (A.30)

In the Minkowski metric

(ds)2 = −(dt)2 + (dx)2 + (dy)2 + (dz)2 (A.31)

when the signature [−1, 1, 1, 1] is used. The proper time dτ is defined by

(dτ)2 = −(ds)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2. (A.32)

Thus the signature [1,−1,−1,−1] describes the proper time. In the unit

c 6= 1, we have

(cdτ)2 = −(ds)2 = c2(dt)2 − (dx)2 − (dy)2 − (dz)2. (A.33)

The proper time is the time measured in the local rest frame of observer.

In terms of proper time, we can introduce an useful vector, the four-velocity

uµ, which is defined by

uµ ≡ dxµ

dτ
. (A.34)

A.5 Lorentz transformation

A.5.1 Infinitesimal Lorentz transformation

The coordinate transformation Eq. (A.1) in the Minkowski spacetime is

called the Lorentz transformation. For an infinitesimal proper Lorentz

transformation

(x′)µ = Λµνx
ν , (A.35)
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Λµν can be expressed as

Λµν = δµν +∆ωµν , (A.36)

where ∆ωµν are infinitesimal parameters. Using Eq. (A.14), we have

ΛλµΛλ
ν = (δλµ +∆ωλµ)(δλ

ν +∆ωλ
ν)

= δλµδλ
ν + δλµ∆ωλ

ν + δλ
ν∆ωλµ

= δνµ +∆ωµ
ν +∆ωνµ

= δνµ. (A.37)

We have omitted the second order terms of the infinitesimal ∆ωµν . Thus

we have

∆ωµν +∆ων
µ = 0 (A.38)

or

∆ωµν = −∆ωνµ, (A.39)

which shows that ∆ωµν is antisymmetric.

There are six non-vanishing parameters in the antisymmetric ∆ωµν .

There are two typical examples of ∆ωµν .

(1) Lorentz boost

We consider the case that ∆ω10 = −∆ω01 ≡ −∆β 6= 0 and all other

∆ωµν = 0. The components in mixed indices are ∆ω0
1 = −∆ω1

0 =

−η1µ∆ωµ0 = −η11∆ω10 = −∆ω10 = −∆β. Other components are zero.

Thus we have the transformation

x′
ν
= (δνµ +∆ω1

0δ
ν
1 δ

0
µ +∆ω0

1δ
ν
0δ

1
µ)x

µ

= (δνµ −∆βδν1 δ
0
µ −∆βδν0δ

1
µ)x

µ. (A.40)

The explicit form is given by

x′
0
= x0 −∆βx1, (A.41a)

x′
1
= −∆βx0 + x1 (A.41b)

x′
2
= x2, (A.41c)

x′
3
= x3. (A.41d)

This Lorentz transformation is a transformation relating the x frame to an

inertial frame moving along x1 with an infinitesimal velocity ∆β relative to

the x frame. The Lorentz transformation Eq. (A.41) is called the Lorentz

boost.
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(2) Spatial rotation

When ∆ω12 = −∆ω21 ≡ −∆ϕ 6= 0 and all other ∆ωµν = 0. The

transformation relation is given by

x′
ν
= (δνµ +∆ϕδν1 δ

2
µ −∆ϕδν2 δ

1
µ)x

µ. (A.42)

The explicit form of Eq. (A.42) reads

x′
0
= x0, (A.43a)

x′
1
= x1 +∆ϕx2, (A.43b)

x′
2
= −∆ϕx1 + x2, (A.43c)

x′
3
= x3. (A.43d)

Eq. (A.43) is the transformation generated by an infinitesimal rotation

about the z axis with the rotation angle of ∆ϕ.

A.5.2 Finite Lorentz transformation

The finite Lorentz transformation can be generated by successive applica-

tions of the infinitesimal Lorentz transformations. We write

∆ωµν = ∆ω(In)
µ
ν , (A.44)

where (In)
µ
ν is the 4 × 4 matrix for an unit rotation around the axis in

the n direction. ∆ω is the infinitesimal rotation angle around the n axis.

Under a transformation of Lorentz boost described by Eq. (A.40), the n

axis is perpendicular to the x0 and x1 axes. We use n(01) to denote the n

axis. According to Eq. (A.40),

(In(01)) = −(δν1δ0µ + δν0 δ
1
µ)

=









0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0









. (A.45)

Straightforward calculations can give the following relations

(In(01))
2 =









0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

















0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0









=









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









(A.46)
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and

(In(01))
3 =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

















0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0









=









0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0









= (In(01)). (A.47)

For the spatial rotation around the z axis, according to Eq. (A.42), we

have

(In(z)) = (δν1 δ
2
µ − δν2δ1µ)

=









0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0









. (A.48)

Straightforward calculations give the following relations

(In(z))
2 =









0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

















0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0









=









0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 0









(A.49)

and

(In(z))
3 =









0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 0

















0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0









=









0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0









= −(In(z)). (A.50)
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A finite rotation of ω can be divided into N successive infinitesimal

rotations of ∆ω = ω
N with N →∞. Thus the finite Lorentz transformation

can be written as

x′
ν
= lim

N→∞

(

1 +
ω

N
In

)ν

µ1

(

1 +
ω

N
In

)µ1

µ2

· · ·xµ

= lim
N→∞

(

(

1 +
ω

N
In

)N
)ν

µ

xµ

=
(

eωIn
)ν

µ
xµ. (A.51)

(1) Lorentz boost

Under a finite pure Lorentz transformation(Lorentz boost), using

Eqs. (A.45), (A.46) and (A.47), we have

x′
ν
=
(

eωIn(01)
)ν

µx
µ

=
(

cosh
(

ωIn(01)
)

+ sinh
(

ωIn(01)
))ν

µ
xµ

=

([

1 +
1

2!
(ωIn(01))

2 +
1

4!
(ωIn(01))

4 + · · ·
]

+

[

ωIn(01) +
1

3!
(ωIn(01))

3 + · · ·
])ν

µ

xµ

=

([

1 +
ω2

2!
(In(01))

2 +
ω4

4!
(In(01))

2 + · · ·
]

+

[

ω +
ω3

3!
+ · · ·

]

In(01)

)ν

µ

xµ

=
(

1− (In(01))
2 + cosh(ω)(In(01))

2 + sinh(ω)In(01)
)ν

µ
xµ. (A.52)

The explicit matrix form of Eq. (A.52) is










x′0

x′1

x′2

x′3











=









cosh(ω) − sinh(ω) 0 0

− sinh(ω) cosh(ω) 0 0

0 0 1 0

0 0 0 1

















x0

x1

x2

x3









. (A.53)

We introduce

β ≡ tanh(ω). (A.54)

Then we have

cosh(ω)=
cosh(ω)

√

cosh2(ω)− sinh2(ω)
=

1
√

1− tanh(ω)
=

1
√

1− β2
, (A.55a)

sinh(ω)=
sinh(ω)

√

cosh2(ω)− sinh2(ω)
=

1
√

1
β2 − 1

=
β

√

1− β2
. (A.55b)
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Thus Eq. (A.53) becomes











x′0

x′1

x′2

x′3











=













1√
1−β2

− β√
1−β2

0 0

− β√
1−β2

1√
1−β2

0 0

0 0 1 0

0 0 0 1





















x0

x1

x2

x3









. (A.56)

or

x′
0
=
x0 − βx1
√

1− β2
, (A.57a)

x′
1
=
x1 − βx0
√

1− β2
, (A.57b)

x′
2
= x2, (A.57c)

x′
3
= x3. (A.57d)

Eq. (A.57) is called the Lorentz transformation in the special relativity.

(2) Spatial rotation

Under a finite spatial rotation in the z direction, we have

x′
ν
=
(

eωIn(z)
)ν

µx
µ

=
(

cosh
(

ωIn(z)
)

+ sinh
(

ωIn(z)
))ν

µ
xµ

=

([

1 +
1

2!
(ωIn(z))

2 +
1

4!
(ωIn(z))

4 + · · ·
]

+

[

ωIn(z) +
1

3!
(ωIn(z))

3 + · · ·
])ν

µ

xµ

=
([

1 +
ω

2!
(In(z))

2 − ω

4!
(In(z))

2 + · · ·
]

+
[

ω − ω

3!
+ · · ·

]

In(z)

)ν

µ
xµ

=
(

1 + (In(z))
2 − cos(ω)(In(z))

2 + sin(ω)In(z)
)ν

µ
xµ. (A.58)

The explicit matrix form of Eq. (A.58) is











x′0

x′1

x′2

x′3











=









1 0 0 0

0 cos(ω) sin(ω) 0

0 − sin(ω) cos(ω) 0

0 0 0 1

















x0

x1

x2

x3









. (A.59)
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A.6 Christoffel symbols

Now we consider a contravariant vector field Aµ(xµ) as a function of con-

travariant coordinates. The direct derivative ∂Aµ

∂xν is often denoted as

Aµ,ν ≡
∂Aµ

∂xν
. (A.60)

However, there is a problem here that the derivative Aµ,ν is not a tensor.

This can be seen from the transformation of Aµ,ν

Aµ
′

,ν′ =
∂Aµ

′

∂xν′

=
∂

∂xν′

(

∂xµ
′

∂xα
Aα

)

=
∂xµ

′

∂Aα

∂xα∂xν′ +
∂2xµ

′

∂xν′∂xα
Aα. (A.61)

Since Aα is a function of xµ, we need express ∂A
α

∂xν′ in terms of ∂A
α

∂xν . Inserting
∂Aα

∂xν′ = ∂Aα

∂xγ
∂xγ

∂xν′ , we have

Aµ
′

,ν′ =
∂xµ

′

∂xα
∂xγ

∂xν′

∂Aα

∂xγ
+

∂2xµ
′

∂xν′∂xα
Aα

=
∂xµ

′

∂xα
∂xγ

∂xν′ A
α
,γ +

∂2xµ
′

∂xν′∂xα
Aα. (A.62)

Thus Aµ,ν does not follow the tensor transformation due to the existence

of the second term in Eq. (A.62). This problem is caused by the definition

of the derivative

Aµ,ν =
∂Aµ

∂xν
= lim

δxν→0

Aµ(xν + δxν)−Aµ(xν)
δxν

. (A.63)

A vector has a direction. The direction also changes with the location in

a curved spacetime. Therefore, the difference between two vectors is not a

simple difference of components if they are located at different positions.

In order to compare the direction of a vector, we need first put them at the

same point in spacetime. This procedure is called the parallel transport.

We denote δAµ as the change produced in the vector Aµ(xν) at xν by

an infinitesimal parallel transport of distance dxν

δAµ ∝ dxν . (A.64)

δAµ should also be directly proportional to Aµ because larger Aµ would

produces larger change. Thus

δAµ = −ΓµανAαdxν , (A.65)
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where Γµαν is the constant of proportionality and is called the Christoffel

symbol or Levi-Civita connection. It defines the parallel transport of a vec-

tor. The vector Aµ(xν) at xν parallel transported an infinitesimal distance

dxν to the position at xν + dxν has the components

Cµ = Aµ + δAµ. (A.66)

The vector Aµ(xν) at xν + dxν has the components Aµ(xν + dxν). The

difference between them gives

dAµ = Aµ(xν + dxν)− [Aµ(xν) + δAµ]. (A.67)

This is the difference between two vector located at the same point, which

should be also a vector. Thus we have a definition of derivative for a vector

Aµ;ν ≡
dAµ

dxν
= lim

δxν→0

Aµ(xν + δxν)− [Aµ(xν) + δAµ]

δxν
. (A.68)

The derivative Aµ;ν is called the covariant derivative. Since dAµ is a con-

travariant vector and d
dxν is a covariant vector, Aµ;ν should be a two rank

tensor. Using Eq. (A.65), we have

dAµ =
∂Aµ

∂xν
dxν − δAµ

= Aµ,νdx
ν + ΓµανA

αdxν . (A.69)

Inserting Eq. (A.69), Eq. (A.68) becomes

Aµ;ν = Aµ,ν + ΓµανA
α. (A.70)

Now we consider the derivative of a covariant vector Bµ. For any con-

travariant vector Aµ,

φ = BαA
α (A.71)

is a scalar. ∇νφ is thus a vector, which has the form

∇νφ = φ,ν =
∂Bα
∂xν

Aα +Bα
∂Aα

∂xν
. (A.72)

Expressing Aα,ν in terms of Aα;ν , we have

∇νφ =
∂Bα
∂xν

Aα +BαA
α
;ν −BαAµΓαµν

=

(

∂Bα
∂xν

−BβΓβαν
)

Aα +BαA
α
;ν . (A.73)

This equation shows that ∂Bα

∂xν − BβΓβαν should be a tensor because Aµ is

an arbitrary vector. We define the covariant derivative of Bα as

Bµ;ν = Bµ;ν −BαΓαµν , (A.74)
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which is a two rank covariant tensor. Then Eq. (A.73) becomes

∇ν(BαAα) = Bα,νA
α +BαA

α
;ν . (A.75)

Thus covariant differentiation obeys the product rule similar to the ordinary

differentiation. Similarly we can obtain

Aµν ;α = Aµν ,α +AβνΓµβα +AµβΓνβα, (A.76a)

Bµν;α = Bµν,α +BβνΓ
µ
βα −BµβΓβνα, (A.76b)

Cµν;α = Cµν,α − CβνΓβµα − CµβΓβνα. (A.76c)

Generally, Γµαβ is not symmetric. We can divide Γµαβ into the symmetric

part Γµ(αβ) and the asymmetric part Γµ[αβ],

Γµαβ = Γµ(αβ) + Γµ[αβ] (A.77)

with

Γµ(αβ) ≡
1

2
(Γµαβ + Γµβα), (A.78a)

Γµ[αβ] ≡
1

2
(Γµαβ − Γµβα). (A.78b)

A physical curved spacetime should have a local Minkowski metric to

guarantee the local causality. In this local Minkowski metric, Γµαβ is zero

and thus Γµ[αβ] is zero. We can prove that Γµ[αβ] is a tensor. If the tensor

Γµ[αβ] vanishes in one coordinate system, it must vanish in any coordinate

system. Now let us prove that Γµ[αβ] is a tensor.

The transformation relation for Γτµν is given by

Γτ
′

µ′ν′ = Γραβ
∂xα

∂xµ′

∂xβ

∂xν′

∂xτ
′

∂xρ
+

∂2xρ

∂xµ′∂xν′

∂xτ
′

∂xρ
. (A.79)

The second term is symmetric in µ′ and ν′. Thus it cancels out in the

transformation for Γτ[µν]. Therefore Γτ[µν] transforms as a tensor

Γτ
′

[µ′ν′] = Γρ[αβ]
∂xα

∂xµ′

∂xβ

∂xν′

∂xτ
′

∂xβ
. (A.80)

Γτ[µν] is often called the torsion tensor.

A.7 Riemann spacetime

Mathematically, at any position P , we can find a local flat space ‘tangent’

to any curved space if we do not restrict the transformation. Physically the

local metric should be a local Minkowski metric to fulfill the causality. We



October 17, 2013 16:1 BC: 9056 - Principle of Physics ws-book9x6junni

378 Principles of Physics

call the spacetime with this property as the Riemann spacetime or strictly

pseudo-Riemann spacetime (The metric of the Riemann space is positive-

definite by definition). In this local flat spacetime at P , straight line is

meaningful locally. Thus Γα[µν] is zero at P locally at this local Minkowski

metric. In these coordinates at this point P , the covariant derivative of a

vector Aα is given by the ordinary derivative of the vector.

Aα;β = Aα,β atP in local flat spacetime. (A.81)

In this local flat metric, the metric is constant locally. We have

gµν;λ = gµν,λ = 0 atP. (A.82)

gµν is a tensor. If the equation gµν;λ = 0 is true in one frame, it will be

valid in any frame. Therefore, we have

gµν;λ = 0. (A.83)

Since Γτ[µν] = 0 for a Riemann spacetime, we have

Γτµν = Γτνµ. (A.84)

The connection should be symmetric.

Eqs. (A.83) and (A.84) can lead to an important formula in which the

Christoffel symbol is expressed in terms of the metric tensor and its deriva-

tives. From Eq. (A.83), we have

gµν;λ = gµν,λ − Γαµλgαν − Γανλgµα = 0. (A.85)

This gives

gµν,λ = Γαµλgαν + Γανλgµα. (A.86)

Permuting the µνλ indices cyclically, we have

gλµ,ν = Γαλνgαµ + Γαµνgλα, (A.87a)

gνλ,µ = Γανµgαλ + Γαλµgνα. (A.87b)

Adding the above two equations and subtracting Eq. (A.86), we obtain

gλµ,ν + gνλ,µ − gµν,λ = 2Γαµνgλα, (A.88)

where we have used the symmetries Γαµν = Γανµ and gµν = gνµ. Multiplying

Eq. (A.88) by gλτ and using Eq. (A.25), Eq. (A.88) becomes

Γτµν =
1

2
gλτ (gλµ,ν + gνλ,µ − gµν,λ). (A.89)

Eq. (A.89) is the relation between the metric tensor with the Christoffel

symbol (or Levi-Civita connection) of the Riemann metric.
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Using

gατgτβ,α = gατgβτ,α = gταgβα,τ = gατgβα,τ (A.90)

and contracting over τν of Γτµν , Eq. (A.89) becomes

Γαβα =
1

2
gατ (gτβ,α + gτα,β − gβα,τ)

=
1

2
gατgτα,β. (A.91)

We use g to denote the determinant |gαβ | and calculate the differential

dg of the determinant g. dg can be evaluated by taking the differential of

each component of the tensor gαβ and multiplying it by its coefficient in

the determinant which is the corresponding minor. Since the tensor gαβ

is reciprocal to gαβ, the components of gαβ are equal to the minors of the

determinant of gαβ divided by the determinant. Thus, we have

dg = ggαβdgαβ = −ggαβdgαβ. (A.92)

Using Eq. (A.92), Eq. (A.91) becomes

Γαβα =
1

2g

∂g

∂gτα

∂gτα
∂xβ

=
1

2g

∂g

∂xβ

=
1

2

∂ ln(−g)
∂xβ

=
1

2
[ln(−g)],β

=
∂ ln
√−g

∂xβ
= (ln

√−g),β. (A.93)

Using Eq. (A.93), the divergence Aα;α of a vector Aα can be expressed

as

Aα;α = Aα,α +
1√−gA

α(
√−g),α]

=
1√−g (
√−gAα),α. (A.94)

A.8 Volume

Now we discuss the calculation of volumes for integrations in spacetime.

In the local Minkowski metric, we have the volume element dV ≡ d4x =

dx0dx1dx2dx3. In any other coordinate system {xα′}, we have

dV = dx0dx1dx2dx3 =
∂(x0, x1, x2, x3)

∂(x0′ , x1′ , x2′ , x3′)
dx0

′

dx1
′

dx2
′

dx3
′

, (A.95)
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where the factor ∂( )/∂( ) is the Jacobian determinant defined by

∂(x0, x1, x2, x3)

∂(x0′ , x1′ , x2′ , x3′)
= det













∂x0

∂x0′
∂x0

∂x1′
· · ·

∂x1

∂x0′
· · · · · ·

...
...

. . .













= det(Λαβ′). (A.96)

Meanwhile, we have

gα′β′ = Λµα′Λ
ν
β′ηµν . (A.97)

To simplify the notation, we denote the matrix of cαβ as (c). Then

Eq. (A.97) can be expressed in a matrix form

(g) = (Λ)(η)(Λ)T , (A.98)

where T denotes transpose. Evaluating the determinant of Eq. (A.98), we

have

g ≡ det(g) = det(Λ)det(η)det(ΛT ) = −[det(Λ)]2. (A.99)

Thus, Eq. (A.96) becomes

dV =
√−gd4x. (A.100)

The factor
√−gd4x is also called the proper volume element.

It should be noted that Gauss’s theorem also applies on the Riemann

spacetime. We integrate the divergence over a volume,

∫

Aα;α
√−gd4x =

∫

(
√−gAα),αd4x. (A.101)

We have used Eq. (A.94) in the derivation of Eq. (A.101). Using Gauss’s

theorem, we have

∫

Aα;α
√−gd4x =

∮

Aαnα
√−gds, (A.102)

where nα is the unit direction vector of the surface element ds. This is the

version of Gauss’s theorem in the Riemann spacetime. nα
√−gd3S is also

called the proper surface element.
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A.9 Riemann curvature tensor

The connection Γαµν is not a tensor. However, we can construct tensors

using Γαµν . One of them is the Riemann curvature tensor, which is the most

important tensor in describing the properties of the Riemann spacetime.

Let us consider a covariant vector field Aλ(x). The second covariant

derivative of Aλ reads

Aλ;µ;ν = Aλ;µ,ν − ΓρλνAρ;µ − ΓρµνAλ;ρ

= Aλ,µ,ν − Γρλµ,νAρ − ΓρλµAρ,ν − ΓρλνAρ,µ

+ ΓρλνΓ
σ
ρµAσ − ΓρµνAλ;ρ. (A.103)

If we exchange the order of the differentials, we have

Aλ;ν;µ = Aλ,ν,µ − Γρλν,µAρ − ΓρλνAρ,µ − ΓρλµAρ,ν

+ ΓρλµΓ
σ
ρνAσ − ΓρνµAλ;ρ. (A.104)

The difference of them has the form

Aλ;µ;ν −Aλ;ν;µ = RρλµνAρ − 2Γρ[µν]Aλ;ρ (A.105)

with

Rρλµν ≡ Γρλν,µ − Γρλµ,ν + ΓρσµΓ
σ
λν − ΓρσνΓ

σ
λµ. (A.106)

We call Rρλµν the Riemann curvature tensor . Rρλµν is a tensor because all

other terms in Eq. (A.105) are tensors.

We have shown that the torsion tensor Γρ[µν] is zero. Thus Eq. (A.105)

becomes

Aλ;µ;ν −Aλ;ν;µ = RρλµνAρ. (A.107)

The Riemann curvature tensor can also be expressed as

Rρλµν = gρσR
σ
λµν . (A.108)

For a flat spacetime with the Minkowski metric, Rρλµν = 0. If the

Riemann curvature tensor is not zero, we have a curved spacetime. The

Riemann curvature tensor has the following symmetry properties:

Rρλµν = −Rρλνµ, Rρλµν = −Rρλνµ, (A.109a)

Rρλµν = −Rλρνµ, (A.109b)

Rρλµν = Rµνρλ. (A.109c)

The symmetry relation Eq. (A.109a) can be obtained directly by exchang-

ing the subscripts µ and ν in Eq. (A.106). The symmetry relations
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Eqs. (A.109b) and (A.109c) can be easily proved in the local flat frame.

Since Eqs. (A.109b) and (A.109c) are tensor relations, they will be valid in

any frame. In the local flat frame, Γαµν = 0. We have

Γαµν,σ =
1

2
gαβ(gβµ,ν,σ + gβν,µ,σ − gµν,β,σ). (A.110)

Inserting Eq. (A.110) into Eq. (A.106), we have

Rαβµν =
1

2
gασ(gσβ,ν,µ + gσν,β,µ − gβν,σ,µ − gσβ,µ,ν
− gσµ,β,ν + gβµ,σ,ν). (A.111)

Since

gαβ,µ,ν = gαβ,ν,µ, (A.112)

we have

Rαβµν =
1

2
gασ(gσν,β,µ − gσµ,β,ν + gβµ,σ,ν − gβν,σ,µ) (A.113)

or

Rαβµν = gαλR
λ
βµν

=
1

2
(gαν,β,µ − gαµ,β,ν + gβµ,α,ν − gβν,α,µ). (A.114)

The symmetry relations Eq. (A.109) can be easily obtained using

Eq. (A.114).

There is another relation for the Riemann curvature tensor

Rρλµν +Rρµνλ +Rρνλµ = 0, (A.115)

which can be easily verified using Eq. (A.106). Eq. (A.115) is called the

Ricci identity.

A.10 Bianchi identities

In the following, we will prove an important derivative identity of the Rie-

mann curvature tensor.

Rρλµν;σ +Rρλνσ;µ +Rρλσµ;ν = 0. (A.116)

Eq. (A.116) is called the Bianchi identity. If a tensor equation is hold in

one frame, it would be valid in any frame. Thus we only need to prove

Bianchi identity in the local Minkowski metric. In the local Minkowski

metric, Γρµν = 0. We have

Rρλµν;σ = Rρλµν,σ . (A.117)
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Using Eq. (A.106), Eq. (A.117) becomes

Rρλµν;σ = (Γρλν,µ − Γρλµ,ν),σ + (ΓρκµΓ
κ
λν − ΓρκνΓ

κ
λµ),σ

= (Γρλν,µ − Γρλµ,ν),σ

= Γρλν,µ,σ − Γρλµ,ν,σ. (A.118)

Similarly, we can obtain

Rρλνσ;µ = Γρλσ,ν,µ − Γρλν,σ,µ, (A.119a)

Rρλσµ;ν = Γρλµ,σ,ν − Γρλσ,µ,ν . (A.119b)

Adding Eq. (A.119a), Eq. (A.119b) and Eq. (A.118), we obtain the

Bianchi identity

Rρλµν;σ +Rρλνσ;µ +Rρλσµ;ν = 0. (A.120)

It is a tensor equation and should be valid in any frame.

A.11 Ricci tensor

When we make contraction of the Riemann curvature tensor Rµανβ on the

first and third indices, we obtain a two rank tensor

Rαβ ≡ Rµαµβ = Rβα. (A.121)

Rαβ is called the Ricci tensor. Contractions on other indices either give

zero or ±Rαβ . Using Rαβ , we can define the Ricci scalar

R ≡ gµνRµν = gµνgαβRαµβν , (A.122)

R is also called the Ricci scalar curvature.

A.12 Einstein tensor

We contract the indices ρσ in the Bianchi identity Eq. (A.120) and obtain

Rσλµν;σ −Rλν;µ +Rλµ;ν = 0. (A.123)

Multiplying gνλ and contracting, we have

Rσµ;σ −R;µ +Rνµ;ν = 0 (A.124)

or

Rνµ;ν −
1

2
R;µ = 0. (A.125)
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Eq. (A.125) can be rewritten as

(Rνµ −
1

2
δνµR);ν = 0 (A.126)

or

(Rµν −
1

2
gµνR)

;ν = 0, (A.127a)

(Rµν − 1

2
gµνR);ν = 0. (A.127b)

We define Einstein tensor as

Gµν ≡ Rµν −
1

2
gµνR. (A.128)

Eqs. (A.126) and (A.127) become

Gνµ;ν = Gµν
;ν = Gµν ; ν = 0. (A.129)

This property is used to show that the conservation of energy-momentum

is fulfilled in the Einstein field equations.
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Appendix B

Functional Formula

A function of multi-variables can be expressed as an expansion form

F (ϕ0, ϕ1 · · · , ϕn) =
∞
∑

m=0

1

m!

∑

i1

· · ·
∑

im

×
(

∂mF

∂ϕi1 · · · ∂ϕim

)

ϕi1 · · ·ϕim . (B.1)

Eq. (B.1) can also be considered as the definition of a function of multi-

variables. Using the expansion form of Eq. (B.1), one can generalize the

function of multi-variables to functionals. Let ϕ(x) be a function of x. We

can generalize Eq. (B.1) and express the functional F [ϕ] in the expansion

form

F [ϕ] =

∞
∑

m=0

1

m!

∫

dx1 · · ·dxmF (m)(x1, · · · , xm)ϕ(x1) · · ·ϕ(xm), (B.2)

where F (m) is a symmetric function of its arguments.

We define the functional derivative by

δF [ϕ]

δϕ(x)
= lim

ǫ→0

1

ǫ
{F [ϕ(y) + ǫδ(x− y)]− F [ϕ(y)]}. (B.3)

The functional derivatives have the similar properties with the ordinary

derivatives

δϕ(y)

δϕ(x)
= δ(x− y), (B.4a)

δ

δϕ(x)
(F1[ϕ] + F2[ϕ]) =

δ

δϕ(x)
F1[ϕ] +

δ

δϕ(x)
F2[ϕ], (B.4b)

δ

δϕ(x)
(F1[ϕ]F2[ϕ]) = F1[ϕ]

δ

δϕ(x)
F2[ϕ] + F2[ϕ]

δ

δϕ(x)
F1[ϕ]. (B.4c)
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According to Eq. (B.4), we have

δ

δϕ(x)
F [ϕ] =

∞
∑

m=0

1

m!

∫

dx1 · · · dxmF (m+1)(x, x1, · · · , xm)

× ϕ(xi1 ) · · ·ϕ(xim ). (B.5)

We can also define the functional integration as a limit of multi-variable

integration
∫

DϕΦ[ϕ] = lim
n→∞

∫

dϕ1 · · · dϕnΦ(ϕ1, · · · , ϕn). (B.6)
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Appendix C

Gaussian Integrals

C.1 Gaussian integrals

The integral

I0(a) =

∫ ∞

0

e−ax
2

dx (a > 0) (C.1)

is called the Gaussian integral . We can obtain the integral result in the

following way. We consider I20 (a),

I20 (a) =

(

1

2

∫ ∞

−∞
e−ax

2

dx

)(

1

2

∫ ∞

−∞
e−ay

2

dy

)

=
1

4

∫∫

dxdye−a(x
2+y2). (C.2)

In the planar polar coordinates, we have dxdy = rdrdθ and x2 + y2 = r2.

Then Eq. (C.2) becomes

I20 (a) =
1

4

∫ ∞

0

rdr

∫ 2π

0

dθe−ar
2

=
π

2

∫ ∞

0

e−ar
2

rdr

=
π

4a
, (C.3)

which gives

I0(a) =
1

2

√

π

a
. (C.4)

Generally, one can calculate the integrals

In(a) =

∫ ∞

0

e−ax
2

xndx (a > 0). (C.5)
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When n = 1, we have

I1(a) =

∫ ∞

0

e−ax
2

xdx =
1

2a

∫ ∞

0

e−ax
2

d(ax2) =
1

2a
. (C.6)

When n > 1, we differentiate Eq. (C.5) with respect to a

dIn(a)

da
=

∫ ∞

0

e−ax
2

xn(−x2)dx

= −
∫ ∞

0

e−ax
2

xn+2dx

= −In+2(a). (C.7)

Using Eq. (C.7), we have

In(a) =

∫ ∞

0

e−ax
2

xndx =















1× 2 · · · (n− 1)

(2a)
n
2

1

2

(π

a

)
1
2

, n = 2, 4, · · ·
2× 4 · · · (n− 1)

(2a)
(n+1)

2

, n = 3, 5, · · · .
(C.8)

C.2 Γ(n) functions

The Gaussian integrals are related to the Γ(n) functions. The Γ(n) func-

tions are defined as

Γ(n) =

∫ ∞

0

e−xxn−1dx (n > 0). (C.9)

Integrating by parts, we have

Γ(n) = −
∫ ∞

0

xn−1d(e−x)

= −xn−1d(e−x)
∣

∣

∞
0

+

∫ ∞

0

e−xdxn−1

= (n− 1)

∫ ∞

0

e−xxn−2dx

= (n− 1)Γ(n− 1). (C.10)

Now we consider some special cases.

(1)

Γ(1) =

∫ ∞

0

e−xdx = 1. (C.11)
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(2)

Γ

(

1

2

)

=

∫ ∞

0

e−xx−
1
2 dx

= 2

∫ ∞

0

e−
√
x2

d
√
x

=
√
π. (C.12)

(3) n = 1, 2, 3, · · ·

Γ(n) =

∫ ∞

0

e−xxn−1dx = (n− 1)!. (C.13)

(4) n = 1
2 ,

3
2 , · · · 2m+1

2 , · · ·

Γ(n) = Γ

(

1

2

)

· 1
2
· 3
2
· · · (n− 1)

=
1

2
· 3
2
· · · (n− 1)

√
π. (C.14)

In terms of Γ(n) functions, we can express the Gaussian integrals as

In(a) =

∫ ∞

0

e−ax
2

xndx

=
1

a
n+1
2

∫ ∞

0

e−u
2

undu

=
1

2a
n+1
2

∫ ∞

0

e−yy
n−1
2 dy

=
Γ
(

n+1
2

)

2a
n+1
2

. (C.15)

C.3 Gaussian integrations with source

Let us consider the Gaussian integral with source term
∫ ∞

−∞
e−

1
2ax

2+Jxdx =

∫ ∞

−∞
e−

1
2a(x− J

a )
2
+ J2

2a dx

=

∫ ∞

−∞
e−

1
2ax

′2

e
J2

2a dx′

=

(

2π

a

)
1
2

e
J2

2a . (C.16)

We can calculate the following integrals similarly
∫ ∞

−∞
e−

1
2ax

2+iJxdx =

(

2π

a

)
1
2

e−
J2

2a . (C.17)



October 17, 2013 16:1 BC: 9056 - Principle of Physics ws-book9x6junni

390 Principles of Physics

∫ ∞

−∞
e

1
2 iax

2+iJxdx =

(

2πi

a

)
1
2

e−i
J2

2a . (C.18)

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
dx1dx2 · · · dxNe−

1
2x·A·x+J·x

=

[

(2π)N

det(A)

]

1
2

e
1
2J·A

−1·J . (C.19)

For the functional Gaussian integrals, we have
∫

Dϕe−
∫

ddx( 1
2ϕKϕ−Jϕ) = N e

∫

ddx( 1
2J·K

−1·J). (C.20)

∫

Dϕei
∫

ddx( 1
2ϕKϕ+Jϕ) = N ei

∫

ddx(− 1
2J·K

−1·J), (C.21)

where N is the normalized parameter related to the definition of functional

integration. For complex ϕ with hermitian K, we have
∫

Dϕ†Dϕe−
∫

ddx[ϕ†·K·ϕ+J†·ϕ+ϕ†·J] = N e
∫

ddx[J†·K−1·J]. (C.22)

Using the Taylor expansion,

F [ϕ] =
∞
∑

m=0

1

m!

∫

dx1 · · · dxmF (m)(x1, · · · , xm)ϕ(x1) · · ·ϕ(xm), (C.23)

we have
∫

DϕF [ϕ]e
∫

ddx(− 1
2ϕ·K·ϕ+J·ϕ)

= F

[

δ

δJ

]
∫

Dϕe
∫

ddx(− 1
2ϕ·K·ϕ+J·ϕ)

= F

[

δ

δJ

]

N e
∫

ddx( 1
2J·K

−1·J). (C.24)
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Grassmann Algebra

The fermion field operators obey the anti-commutation relations. Corres-

pondingly, the fermion field functions can not be simply described by the

ordinary number. The anti-commuting numbers have to be introduced.

Since the anti-commuting numbers were first introduced by Hermann Grass-

mann, we call these numbers Grassmann variables.

A Grassmann algebra (also called exterior algebra) is an algebra con-

structed from a set of generators θi obeying the anti-commutiion relation

{θi, θj} = 0. (D.1)

The index i of θi runs from 1 to n. n is called the dimension of the algebra.

Later we will generalize θi to θ(x) for an infinite dimension.

From Eq. (D.1), we have

θ2i = 0. (D.2)

Thus the square and all higher powers of a generator vanish. When we

expand an element of the Grassmann algebra, we have only finite sum of

the following terms due to Eq. (D.2).

f(θi) = f (0) +
∑

i

f
(1)
i θi +

∑

i1<i2

f
(2)
i1,i2

θi1θi2 + · · ·+ f (n)θi1θi2 · · · θin , (D.3)

where the coefficients f (i) are ordinary numbers. We define differentiation

with respect to the generators by

dθi
dθj

= δij (D.4)

and

d

dθi
θi1θi2 · · · θim = δii1θi2 · · · θim − δii2θi1θi3 · · · θim

+ · · ·+ (−1)m−1δiimθi1θi2 · · · θim−1 . (D.5)
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The minus sign comes from the anti-commutation relation when the factor

θik is anti-commuted to the left so that the derivative operator can be

applied directly. From Eq. (D.4), we have
{

d

dθi
, θj

}

= δij , (D.6a)

{

d

dθi
,
d

dθj

}

= 0. (D.6b)

All the higher derivatives with respect to the same generator θi are zero.

The integration of the generators of Grassmann algebra is defined by
∫

dθi = 0, (D.7a)

∫

dθiθi = 1. (D.7b)

The definition Eq. (D.7) is made to guarantee the translation invariance of

the integration, which is an important property of the ordinary integration.

For any function f(θ), its expanded form is

f = f1 + f2θ. (D.8)

Then
∫

dθf(θ + η) =

∫

dθ[f1 + f2(θ + η)]

=

∫

dθ(f1 + f2θ) +

∫

dθf2η

=

∫

dθf(θ). (D.9)

Comparing the definitions of the differentiation and integration

(Eqs. (D.4) and (D.7)), we can see that the operators of differentiation and

integration for Grassmann variables are the same. Thus the differentials

dθi obey the same anti-commutation relations as d
dθi

.

{dθi, dθj} = 0, (D.10a)

{dθi, θj} = δij . (D.10b)

Now let us consider the variable transformations in the integral involving

Grassmann algebra. For a linear transformation in one-dimension such as

θ′ = η + aθ, (D.11)
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where η is an anti-commuting number and a is an ordinary number, we

have
∫

dθf(θ) =

∫

dθ′f(θ′)

=

∫

dθ′f(aθ + η)

=

∫

dθ′f(θ)

=

∫

dθ′
(

dθ

dθ′

)−1

f(θ). (D.12)

It should be noted that Eq. (D.12) is different with the transformation

formula for ordinary integration
∫

dxf(x) =

∫

dx′
dx

dx′
f(x). (D.13)

The Grassmann integral exhibits the opposite behavior as compared to

the ordinary integral. In general, under a linear transformation for an n-

dimensional Grassmann algebra

θ′i =
n
∑

j

aijθj + ηi, (D.14)

we have
∫

dθn · · · θ1f(θ) =
∫

dθ′n · · · θ′1
[

det

(

dθ

dθ′

)]−1

f(θ). (D.15)

We have a factor of the inverse of the Jacobian determinant instead of the

Jacobian determinant.

Now let us evaluate the Gaussian integrals for Grassmann algebra. Since

the Dirac fermion field is complex, we introduce the complex Grassmann

variables. θi and θ
∗
i obeying the anti-commutation relations

{θi, θj} = {θ∗i , θ∗j } = {θi, θ∗j } = 0. (D.16)

The conjugate generators are defined as

(θi)
∗
= θ∗i , (D.17a)

(θ∗i )
∗
= θi, (D.17b)

(θi1θi2 · · · θin)∗ = θ∗in · · · θ∗i2θ∗i1 , (D.17c)

(λθi)
∗
= λ∗θ∗i . (D.17d)
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For one dimensional case, we have
∫

dθdθ∗eθ
∗aθ =

∫

dθdθ∗(1 + aθ∗θ)

= a

= e+ ln a. (D.18)

In general, we have
∫

dθ1 · · · θndθ∗1 · · · θ∗neθ
†Aθ = det(A) (D.19)

and
∫

dθ1 · · · θndθ∗1 · · · θ∗ne(θ
†Aθ+θ†ρ+ρ†θ)

= det(A) exp(−ρ†A−1ρ). (D.20)

Generalization from the variable to the continuum limit θi → θ(x)

for applications in anti-commuting fields is straightforward. The anti-

commutation relation of the variable θ(x) is given by

{θ(x), θ(y)} = 0. (D.21)

The ordinary differentiations in Eqs. (D.4) and (D.6) are replaced by the

functional derivative.

δθ(x)

δθ(y)
= δ4(x− y). (D.22)

and
{

δ

δθ(x)
, θ(y)

}

= δ4(x− y), (D.23a)

{

δ

δθ(x)
,

δ

δθ(y)

}

= 0. (D.23b)

An functional of θ(x) can be expanded like

f(θ) = f (0) +

∫

dx1f
(1)(x1)θ(x1) + · · ·

+

∫

dx1 · · · dxnf (n)(x1, · · · , xn)θ(x1) · · · θ(xn). (D.24)

The integration rules for continuous Grassmann variables are
∫

dθ(x) 1 = 0, (D.25a)

∫

dθ(x)θ(x) = 1. (D.25b)
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The Gaussian integral over fermion fields is given by
∫

Dψ

∫

Dψ̄ exp

{∫

d4x′d4xψ̄(x′)A(x′, x)ψ(x)

+

∫

d4x[ψ̄(x)ρ(x) + ρ̄(x)ψ(x)]

}

= det(A) exp

[

−
∫

d4x′d4xρ̄(x′)A−1(x′, x)ρ(x)

]

. (D.26)
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Appendix E

Euclidean Representation

The flat physical spacetime is the Minkowski spacetime. The Wick rotation

makes the calculations easier because we can transform the calculations

in the Minkowski spaceitme into those in the four-dimensional Euclidean

space. We denote a space point in the Euclidean space by xE = (x, x4). The

four-dimensional Euclidean space is obtained from the Minkowski spacetime

by the transformation.

xi → xi, ix0 → x4. (E.1)

Under the transformation Eq. (E.1) and the Wick rotation t′ → −it, x4
becomes real. The calculations can then be performed in real Euclidean

space. The transformation of volume element is given by

d4xE = d3xdx4 = d3xidt = id4x. (E.2)

The distance transforms as

(dxE)
2 =

3
∑

i=1

(dxi)
2 + (dx4)

2 = −(dx)2. (E.3)

The kinetic term for a scalar field is given by

∂µφ∂
µφ = ∂0φ∂

0φ+ ∂iφ∂
iφ = −(∂0φ)2 − (∇φ)2 = −(∂Eφ)2. (E.4)

The d’Alembert Operator is given by

� =
∂2

∂t2
−∇2 = − ∂2

∂x42
−∇2 = −(∂E)2 = −�E . (E.5)

The generating functional for a free scalar field in the Euclidean repre-

sentation has the form

W 0
E [J ] =

∫

Dφe−
∫

d4xE{ 1
2 [(∂Eφ)

2+m2φ2]+Jφ}. (E.6)
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We can also define the Euclidean momentum space by the following trans-

formation relating the momentum k in the Minkowski spacetime to the kE
in the Euclidean space.

kE = (k, k4) with k4 = −ik0. (E.7)

The volume element in the momentum space is given by

d4kE = d3kdk4 = −d3kidk0 = −id4k. (E.8)

and the distance in momentum space has the form

(dkE)
2 =

3
∑

i=1

(dki)
2 + (dk4)

2 = −(dk)2. (E.9)

For the factor k · x, we have

k · x = kµx
µ = k0x

0 − k · x = k4x
4 − k · x, (E.10)

which is not equal to kE · xE . However we always have Eq. (E.10) in

the integration over d3k. We can change k → −k and then replace k · x
by kE · xE . As an example, the Feynman propagator in the Euclidean

representation has the form

∆F (x) = −i
∫

d4kE
(2π)4

e−ikE ·xE

k2E +m2

= −i
∫

d4kE
(2π)4

e−ikE ·xE

k2 + k24 +m2
. (E.11)

Since k4 is real, the integration in Eq. (E.11) contains no poles on its inte-

gration path and is thus well defined.
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Appendix F

Some Useful Formulas

(1)

(σ ·A)(σ ·B) = A ·B+ iσ · (A×B). (F.1)

To prove Eq. (F.1), we use the commutation relations for σi

σiσj = iǫijkσk + δij , (F.2)

where ǫijk is the antisymmetric Levi-Civita symbol.

ǫijk =







1 even permutation of 1,2,3

−1 odd permutation of 1,2,3

0 otherwise.

(F.3)

From Eq. (F.2), we can easily obtain

σiσj − σjσi = 2iǫijkσk, (F.4a)

σiσj + σjσi = 2δij . (F.4b)

Using the above relations, we have

(σ ·A)(σ ·B) = (

3
∑

i=1

σiAi)(

3
∑

j=1

σjBj)

=
3
∑

i=1

3
∑

j=1

AiBj(iǫ
ijkσk + δij)

=

3
∑

i=1

3
∑

j=1

AiBj(iǫ
ijkσk) +A ·B. (F.5)

Using the relation
∑

ijk

ǫijkAiBjσk =
∑

k

(A×B)kσk = σ · (A×B), (F.6)
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we have

(σ ·A)(σ ·B) = A ·B+ iσ · (A×B). (F.7)

(2) The trace relations of the Gamma matrices γµ (µ = 0, 1, 2, 3).

Tr{γµ} = 0, (F.8a)

Tr{γαγβ} = 4ηαβ , (F.8b)

Tr{γαγβγµγν} = 4ηαβηµν − ηαµηβν + ηανηβµ, (F.8c)

Tr{γ5} = 0, (F.8d)

Tr{γ5γαγβ} = 0, (F.8e)

Tr{γ5γαγβγµγν} = −4iǫαβµν, (F.8f)

where ǫαβµν is the totally antisymmetric symbol with ǫ0123 = 1.

(3) d-dimensional integral in polar coordinate form
∫

ddkF (k2) =
2π

d
2

Γ
(

d
2

)

∫ ∞

0

dkkd−1F (k2), (F.9)

where k2 = k21 + k22 + · · ·+ k2d.

Eq. (F.9) can be derived in the following way. We first evaluate the

integral

Id =

∫

ddke−
1
2 k

2

. (F.10)

Eq. (F.11) is a Gaussian integral. Thus we have

Id = (
√
2π)d. (F.11)

On the other hand, Id can be expressed as

Id = C(d)

∫ ∞

0

dkkd−1e−
1
2k

2

= C(d)2
d
2−1

∫ ∞

0

dxx
d
2−1e−x

= C(d)2
d
2−1Γ

(

d

2

)

. (F.12)

Comparing Eq. (F.12) with Eq. (F.11), we have

C(d) =
2π

d
2

Γ
(

d
2

) . (F.13)

C(d) is the factor before the integral on the right hand side of Eq. (F.9),

which proves Eq. (F.9).
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(4) The volume and surface area of d-dimensional spheres.

Using Eq. (F.9), we can obtain the volume Vd of a d-dimensional sphere

with the radius of R.

Vd =

∫

∑

x2<R2

ddx

=
2π

d
2

Γ
(

d
2

)

∫ R

0

drrd−1

=
π

d
2

d
2Γ
(

d
2

)Rd. (F.14)

The corresponding sphere surface area Sd(R) in d-dimension is

Sd(R) =
dVd
dR

=
2π

d
2

Γ
(

d
2

)Rd−1. (F.15)
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Appendix G

Jacobian

We consider functions of two variables: u(x, y) and v(x, y). The Jacobian

determinant is defined by

∂(u, v)

∂(x, y)
≡

∣

∣

∣

∣

∣

∣

∣

∣

(

∂u

∂x

)

y

(

∂u

∂y

)

x
(

∂v

∂x

)

y

(

∂v

∂y

)

x

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂u

∂x

)

y

(

∂v

∂y

)

x

−
(

∂u

∂y

)

x

(

∂v

∂x

)

y

. (G.1)

There are several relations for Jacobian which are useful in the calcula-

tions of the thermodynamic derivatives. When f = f(u, v) and g = g(u, v)

are two functions of u and v, we can prove the following chain rule

∂(f, g)

∂(x, y)
=
∂(f, g)∂(u, v)

∂(u, v)∂(x, y)
. (G.2)

Interchanging two columns of the determinant, we have

∂(u, v)

∂(x, y)
= −∂(v, u)

∂(x, y)
. (G.3)

Setting v = y, Eq. (G.1) becomes

∂(u, y)

∂(x, y)
=

(

∂u

∂x

)

y

. (G.4)

Setting f = x and g = y in Eq. (G.2), we have

∂(x, y)∂(u, v)

∂(u, v)∂(x, y)
= 1. (G.5)
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Using Eq. (G.4) and the chain rule, we obtain
(

∂u

∂x

)

y

=
∂(u, y)

∂(x, y)

=
∂(u, y)∂(u, x)

∂(u, x)∂(x, y)

= −

(

∂u
∂y

)

x
(

∂x
∂y

)

u

, (G.6)

which can be rewritten as
(

∂u

∂x

)

y

(

∂x

∂y

)

u

(

∂y

∂u

)

x

= −1. (G.7)
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Geodesic Equation

In the Euclidean space or Minkowski spacetime, a line without changing

its direction is a straight line. The shortest line in the Euclidean space or

Minkowski spacetime is a straight line. Thus we call them the flat space

or flat spacetime. In the curved spacetime such as the Riemann spacetime,

there is no more a straight line. However, one can extend the concept of

straight line to the curved space. A straight line in the Euclidean space is

a line without changing the direction characterized by the tangent of the

line. Similarly we define the ′straight line′ or precisely so-called geodesics

in the Riemann spacetime a line in which the tangents of nearby points are

parallel. We denote uµ = dxµ

dλ as the tangent of the curve x(λ) with λ as

the curve parameter. Then a geodesic is a line determined by the following

equation

∇uu = 0. (H.1)

In the component notation, we have

uαuµ;α = uαuµ,α + Γµαβu
αuβ = 0. (H.2)

Inserting uµ = dxµ

dλ and uα ∂
∂xα = d

dλ into Eq. (H.2), we have

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0. (H.3)

Eq. (H.3) is called the geodesic equation. It describes a line drawn in such

a way that keeps its tangent as parallel as possible.

A geodesic is also a curve with minimal distance between any two

points. The shortest line in the Euclidean space or Minkowski spacetime

is a straight line. In the curved spacetime such as the Riemann spacetime,

we will prove that the shortest line is a geodesic line. We can use the varia-

tion principle to derive the equation that describes the shortest line in the
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Riemann spacetime. The distance S of a line connecting two points A and

B in the Riemann spacetime is defined as

S =

∫ A

B

ds. (H.4)

The line has the minimum distance S is the shortest line. Therefore we

determine the minimum of S by variation.

δS = δ

∫ A

B

ds = 0. (H.5)

The line element ds is given by

dS = (gαβdx
αdxβ)

1
2 . (H.6)

For a line described by a parameter λ, i.e. xµ = xµ(λ), Eq. (H.6) reads

dS = (gαβ ẋ
αẋβ)

1
2 dλ (H.7)

with

ẋα =
dxα

dλ
. (H.8)

Eq. (H.5) becomes

δ

∫ A

B

(gαβ ẋ
αẋβ)

1
2 dλ = 0. (H.9)

Due to the mathematical similarity, one can define L = (gαβẋ
αẋβ)

1
2 as the

Lagrangian and consider S in Eq. (H.4) as the action for particle motion in

the Riemann spacetime.

The variation equation Eq. (H.9) leads to the Euler-Lagrange equation

∂(gαβẋ
αẋβ)

1
2

∂xν
− d

dλ

∂(gαβẋ
αẋβ)

1
2

∂ẋν
= 0. (H.10)

We can take the parameter λ as the distance of s, then

gαβẋ
αẋβ = gαβ

dxα

dλ

dxβ

dλ
= gαβ

dxα

ds

dxβ

ds
= 1. (H.11)

Eq. (H.10) can be rewritten as

∂(gαβ ẋ
αẋβ)

1
2

∂xν
− d

dλ

∂(gαβ ẋ
αẋβ)

1
2

∂ẋν

=
1

(gαβ ẋαẋβ)
1
2

∂gαβ
∂xν

ẋαẋβ − d

dλ

(gαν ẋ
α + gβν ẋ

β)

(gαβ ẋαẋβ)
1
2

. (H.12)
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Using Eq. (H.11), we have

1

2
gαβ,νẋ

αẋβ − d

ds
(gαν ẋ

α) = 0 (H.13)

or

gαν
d2xα

ds2
+ (gαν,β −

1

2
gαβ,ν)

dxα

ds

dxβ

ds
= 0. (H.14)

Using the relations

gαν,β
dxα

ds

dxβ

ds
= gβν,α

dxβ

ds

dxα

ds
= gβν,α

dxα

ds

dxβ

ds
, (H.15)

Eq. (H.14) becomes

d2xµ

ds2
+

1

2
gµν(gαν,β + gβν,α − gαβ,ν)

dxα

ds

dxβ

ds
= 0. (H.16)

Using the relation between the connection Γαµν with the metric gµν

Γαµν =
1

2
gαλ(gµλ,ν + gνλ,µ − gµν,λ), (H.17)

we have

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0. (H.18)

Eq. (H.18) is just the geodesic equation Eq. (H.3).
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SU(N) symmetry, 32
SU(N) symmetry transformation, 90
1PI, 147

1PI four-point function, 157
1PI vertex Feynman diagram, 155

abelian, 90
abelian gauge boson field, 120
abelian gauge symmetry, 106

abelian gauge transformation, 118
abelian group, 89
absolute fluctuation, 288
absolute temperature scale, 279
acceleration, 213
action, 19, 20, 27, 28, 33, 47, 48, 66,

76, 83, 84, 94, 97–100, 102, 103,
105, 109, 110, 112, 132, 153, 165,
166, 189

action in quantum mechanics, 213

adiabatic compressibility, 271
adiabatic heat capacity, 271
adiabatic process, 267, 271
adjoint spinor, 37
advanced propagator, 129
amplitude probability, 129

amputated Green’s function, 148,
162, 163

angular coordinate, 236
angular momentum, 48, 49, 76, 201,

203

angular momentum operator, 201,
202, 237, 241

angular momentum tensor, 76
annihilation operator, 4, 6, 10, 12, 24,

26, 29, 30, 32, 56, 57, 63, 73, 78,
86, 124, 175–178, 196, 197, 232–234

anti-causal propagator, 129
anti-commutation relation, 5, 67, 104,

391–394
anti-commutator, 59
anti-commuting number, 391, 393
anti-hermitian, 39
anti-symmetrization operator, 7, 179
anti-symmetrized state, 7–9
antiparticle, 32, 56, 59, 63, 64, 71,

114, 129, 171
antisymmetric, 7, 41, 43, 48–51, 76,

111, 178, 179, 295
antisymmetric Levi-Civita symbol,

41, 90, 202
antisymmetric matrix, 43
antisymmetric tensor, 48, 50
area coordinate, 344
associate Laguerre polynomial, 250
associated Legendre function, 243

asymptotic flat condition, 344, 345
attractive force, 314
average value, 217, 218, 224, 256, 294

backward light cone, 125
bare field, 160

bare Lagrangian, 160
bare mass, 160
BEC, 318
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Bianchi identity, 347, 382, 383
black body, 319, 321
black body radiation, 319, 320
black hole, 338
Bohr formula, 249
Bohr radius, 249
Boltzmann distribution, 261, 285
Boltzmann entropy relation, 252
Boltzmann theorem of equipartition

of energy, 299
Born interpretation, 223
Bose distribution, 283, 319
Bose gas, 312–315
Bose system, 282, 283
Bose-Einstein condensation, 318
Bose-Einstein distribution, 283
boson, 5, 6, 32, 38, 79, 104, 115, 119,

181, 185, 282–285, 287
boson field, 22, 23, 67, 90, 104, 106,

112, 114, 160, 256
boson field operator, 128
boson particles, 5
boson space, 181
boson state, 10
bound state, 246

Campbell-Baker-Hausdorff formula,
293

canonical distribution, 253, 254, 262,
294

canonical energy-momentum tensor,
47, 194

canonical ensemble, 272, 289, 306
canonically conjugate momentum,

214
Carnot engine, 266
Carnot theorem, 266
Cauchy’s theorem, 151
causality, 377
causality principle, 1, 17, 20, 23, 38,

66, 88, 95, 97, 102, 113, 192, 242,
344, 368

central potential, 201, 236, 246
centrifugal term, 244
chain rule, 27, 34, 99, 403
Chandrasekhar limit, 359

characteristic function, 268
characteristic temperature, 307, 310,

326
charge, 36, 51, 63, 64, 72, 197, 207,

244, 246
charge conservation, 36, 51
charge of vacuum, 64
chemical potential, 255, 269, 270, 276,

305, 315, 318, 319, 324, 325, 354
chirality, 62
chirality operator, 62
Christoffel symbol, 339, 376, 378
circular polarization vector, 79
classical action, 165, 167
classical approximation, 165
classical Dirac equation, 52
classical energy-momentum tensor,

329
classical field, 160, 161
classical Klein-Gordon equation, 165
classical Lagrangian density, 165, 167
classical limit, 167, 169, 171, 187, 189,

197, 200, 201, 224, 291, 294, 296
classical partition function, 293, 296
classical potential, 167
Clausius inequality, 267
Clausius principle, 261
Clausius relation, 264
Clifford algebra, 37
coefficient of thermal expansion, 271,

273
commutation relation, 5, 6, 10, 12,

13, 58, 63, 67, 78, 80, 81, 84, 90,
94, 104, 125, 126, 185, 202, 208,
227, 232, 291, 292, 399

commutation rest, 226
commutator, 10, 11, 23, 26, 31, 67,

104, 127, 174, 226
completeness relation, 4, 15, 18, 54,

70, 71, 87, 177, 179, 181, 208, 209,
215, 292, 295

complex field operator, 175
complex scalar boson, 51
complex scalar boson field, 32, 36
complex scalar field, 32, 37
composite fermion, 185
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compressibility, 271

configuration space, 204, 296, 297

conjugate field, 13, 24, 72, 102

conjugate field operator, 13, 57

connected generating functional, 133,
135, 143, 161

connected Green’s function, 133, 139,
142

connected n-point function, 148

connected proper vertex function, 147

connected vertex function, 155

conservation law, 33, 36, 49, 50, 110,
112, 188, 224

conservation of angular momentum,
49, 201, 203

conservation of energy, 201, 223, 265,
266, 334

conservation of energy-momentum,
28, 33, 47, 100–102, 105, 134, 329,
332, 347, 384

conservation of mass, 334

conservation of momentum, 152, 206

constant of motion, 201, 214, 228

constant temperature, 270, 271, 319

constituent principle, 1, 3

constraint condition, 260, 277

continuous symmetry, 116

continuous symmetry transformation,
36

contraction, 367, 383

contravariant tensor, 366, 368

contravariant vector, 365, 366, 369,
375, 376

coordinate operator, 210

coordinate representation, 178, 180,
208

correlation function, 130, 131

cosmological constant, 101

Coulomb energy, 195

Coulomb gauge, 84

Coulomb interaction, 197

Coulomb potential, 204, 245, 246

counter Lagrangian, 157

counter term, 157

coupled field, 187

covariance principle, 1, 20, 21, 23, 48,
85, 89, 242

covariant derivative, 98, 110, 171,
376, 378

covariant Lagrangian, 21, 22, 36, 65,
67, 79, 81, 83, 85

covariant Lagrangian density, 21, 32,
37, 65, 81

covariant tensor, 366, 368, 377
covariant vector, 366, 369, 376, 381
covector, 366
creation operator, 4–6, 10, 12, 24, 26,

29, 30, 32, 56, 57, 63, 73, 78, 86,
124, 175–178, 181, 196, 197,
232–234

critical temperature, 318
current, 27, 36, 48, 76, 100, 110, 111
current density, 35, 51, 187, 188, 205
curvature, 113, 332, 335, 338
curvature coordinate, 344
curved spacetime, 20, 22, 66, 97, 375,

377, 381

d’Alembert equation, 192
d’Alembert operator, 111, 339, 397
Darwin term, 175
De Broglie relations, 221, 224
De Broglie wave, 221
degeneracy, 250, 259, 272, 279, 301,

306, 310
degenerate gas, 311
degree of divergence, 152, 153
delta function, 4, 12, 29, 56, 129, 130
density matrix, 254, 256, 272, 294
diagonal, 181, 183, 197, 353
diagonal representation, 182, 196
differential Gibbs-Duhem relation,

277
dimensional regularization, 153
Dirac current, 187
Dirac equation, 38, 39, 42, 52, 171,

187
Dirac fermion, 39, 175, 195, 242
Dirac fermion field, 51, 171, 187, 195,

242, 393
Dirac index, 44
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work, 257, 258, 265, 266

Yang-Mills action, 92
Yang-Mills gauge boson, 95
Yang-Mills Lagrangian, 106

Yang-Mills Lagrangian density, 92, 95

zero temperature, 325, 326
zero-point energy, 30, 234
zeroth law of thermodynamics, 278
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Fermi gas, 312–314, 322, 325, 326,
353, 355

Fermi momentum, 355, 360
Fermi surface, 355
Fermi system, 283
Fermi temperature, 326
Fermi-Dirac distribution, 284
Fermi-Dirac statistics, 360
fermion, 5, 284, 285, 287, 325, 355
fermion field, 21, 89, 90, 112, 114,

185, 187, 256, 395
fermion field function, 391
fermion field operator, 128
fermion particles, 5
fermion space, 181
Feymann’s path integral, 208
Feynman diagram, 137–139, 143, 145,

147, 149, 152
Feynman Green’s function, 130
Feynman kernel, 16, 17, 19, 210, 212,

213, 215, 216
Feynman propagator, 127–130, 136,

137, 140, 145, 398
Feynman rule, 137, 143, 146
finite Lorentz transformation, 371,

373
finite rotation, 373
first law of thermodynamics, 257, 258
flat spacetime, 20, 104, 338, 339, 343,

368
fluctuation, 288–290
fluid, 346–348
flux density of energy, 330
flux density of momentum, 330
flux of momentum, 330
Fock space, 7, 81, 181
force, 206, 207, 330, 331, 351
forward light cone, 125
four-dimensional momentum, 125
four-momentum, 341
four-momentum vector, 59
four-point function, 149, 150, 153,

155, 156, 159
four-velocity, 331, 332, 335, 369
Fourier transformation, 146
free 1PI two-point function, 148

free complex scalar field, 123
free Dirac equation, 52, 62
free energy, 268, 270, 275, 276, 305
free field, 123, 128, 134–137, 140, 145,

146
free Klein-Gordon equation, 170
free propagator, 128, 146
free scalar boson, 137, 139
free scalar boson field, 113
free scalar field, 135, 136
freedom number, 279
fugacity, 275, 315, 323
functional derivative, 27, 35, 99, 100,

134, 136, 137, 163, 164, 385, 394
functional integral, 93, 140, 212, 256
functional integration, 386, 390
fundamental thermodynamic relation,

265, 276, 277

gas, 279, 301, 311, 312, 322, 352
gauge boson, 94, 119, 120
gauge boson field, 106
gauge covariant derivative, 89, 90, 106
gauge field, 92
gauge interaction term, 110, 119
gauge invariance, 32, 89, 118, 171, 191
gauge Lagrangian density, 94
gauge symmetry, 83, 88, 89, 106, 110
gauge transformation, 83, 84, 89, 90,

92, 94, 118, 119, 191
Gauss’s theorem, 36, 50, 190, 195,

330, 333, 334, 380
Gaussian functional, 94
Gaussian integral, 22, 387–390, 393,

395
Gaussian integration, 21, 67, 212,

215, 389
general relativity, 101, 329, 359
generalized angular momentum

tensor, 48
generalized coordinate, 258
generalized force, 258, 264, 274
generalized theorem of equipartition

of energy, 299
generating functional, 133, 135, 136,

140, 143, 163, 397
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generator of space translation, 31

generator of time translation, 15–17,
21–23, 29, 38, 47, 66, 68, 85, 88, 91,
94, 95, 102–104, 106, 123, 176, 183

geodesic, 345, 405

geodesic equation, 334, 337, 342, 343,
405, 407

ghost field, 93, 95

Gibbs formulation of entropy, 263

Gibbs free energy, 268, 270

Gibbs phase rule, 279

Gibbs’s paradox, 305

Gibbs-Duhem relation, 269, 270, 276

Goldstone boson, 117, 119

grand canonical distribution, 255

grand canonical ensemble, 255, 256,
290

grand partition function, 256, 273,
275, 283–285, 312, 313, 315, 321,
322, 354

grand potential, 275, 277, 354

Grassmann algebra, 20, 391–393

Grassmann integral, 393

Grassmann variable, 93, 391–394

gravitational acceleration, 346

gravitational constant, 101, 106

gravitational effect, 105

gravitational field, 343, 345

gravitational force, 337, 351

gravitational mass, 337, 350, 360

gravitational potential, 336, 337, 343,
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gravitational radius, 338

gravitational redshift, 345

gravitational wave, 339, 340
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Green’s function, 130, 134, 140, 194
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139, 151, 234, 235, 249, 252, 257,
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ground state energy, 113, 325

group, 90, 92, 120

group velocity, 221–223

Hamilton’s equations, 213, 214

Hamiltonian, 28–30, 39, 59, 68, 103,
175, 176, 200, 211, 212, 215, 218,
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Hamiltonian operator, 21, 28, 29, 39,
47, 58, 59, 63, 74, 78, 81, 87, 104,
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228, 232, 233, 253, 291, 294, 306,
308, 309, 353

harmonic coordinate, 338

harmonic function, 231

harmonic gauge, 338–340

harmonic oscillator, 231, 232, 234

heat, 257, 258, 265

heat capacity, 271, 289, 304, 307, 308,
311, 313, 314

heat machine, 265, 267

heat reservoir, 261, 265, 266, 270

heat transfer, 257, 271

Heisenberg representation, 216–218

Heisenberg state vector, 209

Heisenberg uncertainty principle, 224,
226, 227

Heisenberg vector, 16

Heisenberg’s equations of motion, 29,
104, 218

helicity, 62, 79

helicity operator, 62, 77, 79, 88

helicity vector, 79

helium, 356

Helmholtz free energy, 268, 322

Hermite polynomial, 235

hermitian, 39, 91, 175, 188, 226, 229,
232, 390

hermitian operator, 31, 226

hermiticity, 188, 199

Higgs boson field, 119

Higgs mechanism, 114, 118–121, 139

Hilbert space, 7, 8, 177, 179, 180,
208, 209

homogeneity of spacetime, 21, 27,
99–101

Hooke’s law, 231

hydrogen, 250

hydrogen atom, 244–246, 249, 301
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identical particle principle, 3
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281, 282, 285, 295, 296, 310
improper Lorentz transformation, 45
inertial frame, 338, 339
inertial mass, 337
infinitesimal generator, 44
infinitesimal Lorentz transformation,

43, 48, 49, 76, 369, 371
infinitesimal parallel transport, 375
infinitesimal rotation, 45, 371, 373
infinitesimal spacetime translation,

167
infinitesimal transformation, 33, 110
infinitesimal translation, 27, 28, 47,

99, 100
infinitesimal velocity, 370
inner product, 367
interaction, 20, 22, 23, 32, 64, 65, 83,

88, 105, 106, 109, 118, 120, 139,
142, 151, 152, 157, 165, 171, 195,
219, 221, 279, 287, 301, 319, 322,
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interaction factor, 143
interaction potential, 197, 204, 231,

308
interaction representation, 216,

218–220
interaction vertex, 152, 153
internal degrees of freedom, 3, 5, 15,

32, 81, 84, 94, 301–303, 305, 306,
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internal energy, 302, 311, 313, 354
internal line, 147, 152
internal part, 111, 112
internal propagator, 152
internal symmetry, 32, 36, 51, 71
invariance, 112, 138
invariance principle, 1
invariant commutation relation, 123
invariant Lagrangian, 105
irreversible process, 261, 265
isentropic compressibility, 271
isobaric process, 270
isochoral process, 270

isolated macroscopic system, 259
isolated system, 1, 251, 259, 261, 265,

267, 270, 277
isothermal compressibility, 271, 273
isothermal heat capacity, 271
isothermal process, 270, 271

Jacobian, 403
Jacobian determinant, 380, 393, 403

Kelvin formulation, 265
Kepler’s second law, 203
kinetic energy, 172, 212, 343, 345
kinetic energy operator, 176, 182
kinetic term, 64, 90–92, 99, 105, 106,

135, 157, 287
Klein-Gordon equation, 22, 23, 32,

126, 129, 130, 169, 171
Klein-Gordon operator, 130
Klein-Gordon wave function, 25
Kronecker delta, 4, 367, 368

ladder operator, 238
Lagrange multiplier method, 260
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67, 81, 83, 85, 88–91, 97, 104, 106,
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36, 51, 64–68, 83, 85, 89, 94, 97–99,
115, 117–121, 135, 139

Lagrangian function, 212, 213, 216
Laplace equation, 194
Laplacian operator, 192, 236, 339
Legendre polynomial, 243
Legendre transformation, 214, 268,

269, 276
Levi-Civita connection, 98, 336, 376,

378
Lie algebra, 90
line element, 343
local flat frame, 382
local flat metric, 167, 329, 378
local flat rest frame, 333–335
local inertial frame, 345
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local observable, 126
local rest frame, 331, 335, 369
local variation, 33
locality principle, 1
longitudinal component, 94, 119
longitudinal polarization, 78
longitudinal polarization vector, 70
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Lorentz boost, 370, 371, 373
Lorentz covariance, 88, 106
Lorentz covariant, 21, 22, 42, 45, 60,
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Lorentz force, 207
Lorentz gauge, 191, 193, 339
Lorentz index, 44
Lorentz invariance, 48, 123, 125
Lorentz invariant, 76, 123, 125, 156
Lorentz scalar, 45
Lorentz transformation, 42, 125, 189,
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Lorentz-covariant Lagrangian, 21
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macroscopic motion, 331
macroscopic quantity, 252
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257, 258, 261, 262, 277, 278, 288,
289, 305, 318

magnetic field, 85, 86, 173, 191
Mandelstam variable, 156
many-body operator, 195
many-body potential operator, 176
Many-body Schrödinger equation, 218
many-body state, 295
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348, 356, 358, 359, 361–363

mass center, 245, 246, 301–304, 309
mass center coordinate, 245, 308
mass center motion, 306
mass density, 331
massive boson, 83, 117, 119
massive boson field, 79, 119
massive vector boson, 65, 79, 80, 119
massive vector boson field, 119
massive vector field, 65
massless boson field, 89, 106, 117
massless photon, 221, 223
massless spin-1 boson, 81
massless vector boson, 83–85, 87, 88,

110, 118, 119, 319
massless vector boson field, 118, 187
massless vector bosons, 79
massless vector field, 65, 79
matrix element, 131, 196, 234, 241
matter action, 105
Maxwell equations, 190, 193
Maxwell relations, 269, 273
mean value, 199, 200, 226, 254, 255
mean-square deviation, 224
metric tensor, 97, 329, 335, 368, 378
micro-canonical distribution, 251, 280
micro-canonical ensemble, 251, 253
microcausality, 126, 127
microscopic distribution, 262
microscopic scale, 161, 166, 169, 224,
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microscopic state, 251, 252, 259, 260,

262, 277, 280, 282, 283, 286
Minkowski metric, 20, 100, 101, 105,
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Minkowski spacetime, 21, 22, 97, 100,
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405
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mixed tensor, 366
momentum, 30, 59, 60, 62, 76, 79, 87,

213, 221, 223, 224, 226, 287, 295,
320, 330

momentum density, 330
momentum eigenstate, 208, 211, 215
momentum operator, 30, 31, 59, 76,

78, 87, 185, 200, 205, 208, 232, 291,
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momentum representation, 134, 146,

149
momentum space, 134, 146, 212, 215,

353, 398
momentum vector, 47, 75
moving basis, 209

n-body interaction, 197
n-point correlation function, 130
n-point function, 136, 137, 139, 145,

150
n-point Green’s function, 130, 140
n-point vertex function, 148
Nambu-Goldstone boson, 117
natural variable, 268
negative frequency function, 125
negative temperature, 253
Nernst’s theorem, 272
neutron star, 353, 359, 360, 363
Newton’s equation of motion, 213,

337
Newton’s first law, 201, 206
Newton’s law, 205, 330, 351
Newton’s second law, 200, 206
Newton’s third law, 206
Newtonian approximation, 337, 347
Newtonian equation, 357
Newtonian gravitation, 334, 336, 341
Newtonian gravitational equation,

337, 350, 351, 362
Newtonian gravitational law, 338
Newtonian gravitational potential,

338
Newtonian gravitational theory, 358,

359, 362
Newtonian star, 350
Noether current, 27, 100, 111
Noether’s theorem, 28, 36, 49, 110,
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non-degenerate condition, 284, 285,

301, 311
nonabelian, 90, 107
nonabelian gauge boson field, 120
nonabelian gauge symmetry, 90, 106
normal ordered form, 75, 197

normal process, 265
normal solution, 359, 361
normalization, 14, 24, 25, 54, 56, 144,

213, 216, 235, 238, 242, 250, 255,
292

normalization condition, 90, 229, 242,
244, 254, 261, 279, 280, 291, 292,
294

normalized anti-symmetrized state, 8,
9

normalized symmetrized state, 8, 9
number operator, 31, 81, 232

observable, 30, 126, 127, 184, 208,
226, 254–256, 273, 288, 294

one-body operator, 182
one-body potential operator, 176
one-form, 366
one-particle reducible, 147
one-particle-irreducible, 147
operator functional, 134
operator of space translation, 31
operator of time translation, 175, 219
operator representation, 134
orbital angular momentum, 49
orbital angular momentum operator,

173, 202
orthogonal, 59, 70, 87, 344
orthogonal basis, 71, 78
orthogonality relation, 54, 74, 81
orthonormal, 7, 25, 70, 229, 295
orthonormal basis, 7, 177, 178, 180,

253
orthonormal relation, 4, 14
outer product, 367

parallel transport, 376
parity, 45
particle-number density operator, 12
particle-wave duality, 23, 52, 69, 85,

221
partition function, 253, 255, 256, 261,

263, 275, 285, 286, 293, 295, 297,
302, 303, 305–307, 310

partition function of single particle,
286, 301, 304
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Pauli equation, 172
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Pauli’s matrix, 40, 41, 171, 202
Pauli-Jordan function, 123, 129
Pauli-Villars regularization, 153
periodic boundary condition, 256
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perturbation, 105, 134, 135, 139, 220
perturbation expansion, 140, 152, 218
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phase factor, 46, 229, 242
phase transformation, 32, 51
phase transition, 115, 314, 318
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319–321, 345, 346
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plain Lagrangian, 109, 110
Planck constant, 22, 165, 169, 213
Planck law, 320
plane wave, 25, 52, 57, 69, 73, 193,

208, 221, 222, 340
plane wave basis, 69, 105, 134
plane wave expansion, 52, 56, 86
Poisson bracket, 214
Poisson equation, 193, 336, 341
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polarization vector, 69, 70, 72, 81
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potential, 115–117, 164, 200, 208,
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potential operator, 176
power law, 362
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332, 335, 349–353, 355–358,
360–362

principal quantum number, 248
principal-part propagator, 129
principle of entropy increase, 261
principle of least action, 189
probability, 1, 204, 205, 223, 254, 255,

257, 260–262, 280
projected commutation relation, 84
projection operator, 4, 8
propagation speed of wave, 193
propagator function, 127, 129, 130
proper Lorentz transformation, 43,

44, 46, 369
proper surface element, 380
proper time, 369
proper volume, 331
proper volume element, 380
pseudo-Riemann spacetime, 378

quanta, 31, 76, 79, 185
quantum collapse, 224
quantum correction, 291, 296, 297
quantum correlation, 284, 286, 296,

312, 314
quantum field, 3, 97, 99, 123, 126,

150, 169, 218, 232, 242, 257
quantum gas, 301, 311, 326
quantum mean value, 254
quantum mechanics, 169, 175, 178,

183–185, 199, 207, 208, 210, 216,
227, 231, 256, 301, 305

quantum number, 229, 240, 241, 250,
285, 301

quantum phase, 318
quantum state, 257, 262, 282, 283,

286, 316, 318
quasi static process, 266, 267

radiation, 191, 319, 321, 339
radiation field, 320
radiation gauge, 84, 85
Rayleigh-Jeans law, 320
redshift, 346
reduced mass, 245, 306, 308
reflection symmetry, 116
regularization, 153
relative coordinate, 245, 246, 308



October 17, 2013 16:1 BC: 9056 - Principle of Physics ws-book9x6junni

Index 423

relative fluctuation, 288–291

relativistic kinetic correction, 175

remainder of commutation, 226

renormalization, 150, 151, 153, 157,
160, 167

renormalized Lagrangian, 159, 160

renormalized mass, 160

repulsive force, 314

rest energy, 172, 343

rest frame, 52, 53, 59, 70, 331

rest mass, 334, 360

retarded propagator, 129

reverse process, 265

reversible process, 266

Ricci identity, 382

Ricci scalar, 335, 383

Ricci scalar curvature, 98, 383

Ricci tensor, 98, 336, 340, 383

Riemann curvature tensor, 98,
381–383

Riemann metric, 20, 336, 378

Riemann spacetime, 88, 97, 98, 101,
106, 167, 332, 334, 339, 343, 344,
377, 378, 380, 381, 405, 406

Riemann Zeta function, 316

Rodriguez formula, 235, 243

room temperature, 304

rotation inertia, 309

rotational degrees of freedom, 310,
311

S matrix, 220

Sackur-Tetrode equation, 305

saddle-point approximation, 165

scalar boson, 21, 79, 120, 123, 142,
170

scalar boson field, 32, 118, 119, 123,
127, 169

scalar field, 67

scalar potential, 191, 194

scalar product, 4

scale invariance, 105, 109, 110, 112,
113, 120, 121

scale transformation, 109, 110, 112

scaling dimension, 109

Schrödinger equation, 170, 173, 175,
176, 183–185, 199, 203, 204, 209,
210, 216, 227, 229, 232, 236,
244–246, 301

Schrödinger representation, 216, 217
Schrödinger state vector, 209
Schwarzschild mass, 352
Schwarzschild metric, 348, 349, 359
second law of thermodynamics, 259,

261, 265, 267
second quantization, 232
self-energy, 147, 149, 151, 153, 154,

158
self-interaction, 22, 92, 95, 97, 115,

118, 120, 121, 139, 144, 147
semi-classical condition, 284
semi-classical distribution, 284, 285,

301
sign (or signum) function, 125
single-particle energy, 30, 279, 285
single-particle momentum, 31
single-particle state, 3, 4, 6, 7, 178,

355
Slater determinant, 180
Sommerfeld expansion, 324, 325
source term, 129, 130
Spatial reflection, 45
spatial reflection, 45, 46
spatial rotation, 49, 372, 374
spatial rotation invariance, 49
special relativity, 374
specific heat capacity, 271, 272, 321,

326
speed of light, 121, 169, 222, 223, 335,

340
speed of sound, 351
spherical coordinate, 192, 203, 236,

309, 343
spherical coordinate representation,

241
spherical harmonics, 241, 243
spherical potential, 175
spherical solution, 343
spherical surface, 343
spherical symmetry, 203, 343, 344,

348
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343–345

spherically symmetric spacetime, 343
spin, 49, 60–62, 77, 87, 88, 172, 173,

223, 319, 320
spin angular momentum, 49
spin degeneracy, 173, 312, 320, 354
spin matrix, 77
spin operator, 76, 77, 88, 173, 202
spin projection, 61, 79
spin state, 59
spin statistics relation, 63, 79
spin-orbital coupling, 173, 175
spin-orbital interaction, 175
spinor, 15, 37, 38, 42, 53, 171
spinor fermion, 36, 79, 89, 106, 109,

114, 120, 121
spinor fermion field, 21, 89, 90, 112,

114, 187
spinor fermion Lagrangian, 44
spinor fermion Lagrangian density, 42
spinor field, 37, 65, 69
spinor particle, 63, 64
spinor representation, 40
spinor transformation, 45, 46
spontaneous symmetry breaking, 115
static fluid, 346
static weak field limit, 334
stationary phase approximation, 165,

189, 213
stationary Schrödinger equation, 228,

246
stationary state, 228
statistical average, 254, 288
statistical mechanics, 115, 251, 257,

269, 291, 301, 346
Stefan’s constant, 321
Stefan-Boltzmann law, 321
step function, 130
Stirling formula, 260
stress tensor, 330, 332
stress-energy tensor, 346
superconductivity, 318
superfluidity, 318
surface element, 330, 331
susceptibility, 272

symmetric energy-momentum tensor,
194

symmetrization operator, 7, 179
symmetrized state, 7–9, 179, 197
symmetrized wave function, 179
symmetry, 7, 33, 83, 89, 105, 106,

109, 110, 112, 113, 115, 117,
119–121, 138, 223, 347

symmetry breaking, 109, 114, 118,
119, 121

symmetry breaking transition, 115
symmetry factor, 143, 147, 148
symmetry of spacetime translation,

27, 28, 33, 47, 99, 100, 105
symmetry of vacuum, 117
symmetry principle, 1, 27
symmetry transformation, 33, 116

tadpole diagram, 144, 147, 148, 154
temperature, 252, 253, 257, 266, 267,

273, 278, 291, 297, 301, 307, 308,
310, 311, 314–318, 321, 323, 324,
326, 327, 335, 346

tensor equation, 70, 332, 334, 347,
383

tensor product, 7, 178, 367
tensor transformation, 331, 375
theorem of equipartition of energy,

298
thermal de Broglie wave length, 297,

311, 312
thermal engine, 266
thermal equilibrium, 251, 278
thermal expansion, 271
thermal pressure coefficient, 271, 272
thermal reservoir, 251–253
thermal velocity, 335
thermodynamic limit, 273
thermodynamic transformation, 265
third law of thermodynamics, 272
time reversal symmetry, 344
time-dependent Schrödinger equation,

228, 229
time-ordered product, 127, 130
Tolman-Oppenheimer-Volkov

equation, 349
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torsion tensor, 377, 381
total action, 99, 100, 102, 105
total angular momentum operator,

237
total energy, 50
total Lagrangian, 106, 112, 120, 151
total mass, 245, 356
total momentum, 50
total momentum operator, 205
total particle-number operator, 12
total spin of vacuum, 61
total variation, 33
TOV equation, 349–352, 358, 359, 361
transfer matrix, 211
transformation matrix, 45
transition amplitude, 16, 17, 19, 100,

210, 215, 256
transition matrix element, 130, 131
transition temperature, 314
translation invariance, 134
transversality condition, 72, 84, 94
transverse component, 84, 94, 119
transverse delta function, 84
transverse mode, 86
transverse polarization, 78
transverse polarization vector, 70, 86,

87
transverse projection operator, 84, 94
tree approximation, 167
triple point, 279
two-body interaction, 197
two-body operator, 195
two-body potential, 196
two-point function, 131, 137, 143,

145–147, 150, 151, 153, 158, 159
two-point Green’s function, 130
two-sphere, 343, 344

uncertainty principle, 224, 227
unitary transformation, 209

vacuum, 75, 100, 113, 114, 117, 119,
144, 145, 194, 222, 223, 348

vacuum energy, 30, 59, 113, 114
vacuum expectation value, 161, 164
vacuum metric, 348

vacuum process, 144
vacuum solution, 348
vacuum state, 3, 4, 6, 20, 59, 124, 161
vacuum term, 144
variation, 28, 33, 47, 100, 189
vector boson, 21, 65, 69, 72, 76, 77,

79, 89, 106, 109, 118, 119, 121
vector boson field, 67, 77, 91, 112
vector field, 65, 67, 71
vector potential, 191
velocity, 206, 223, 331, 341, 351, 352
velocity operator, 200
vertex, 147, 152, 156
vertex correction, 156
vertex function, 147, 149, 157, 160,

161
vibration, 306–309, 327
vibration frequency, 306
volume element, 331, 351, 379

wave equation, 23, 52, 69, 85, 192,
221, 340

wave function, 37, 178–180, 183, 184,
204, 208–210, 217, 220, 223, 235,
236, 241, 242, 244, 246, 249, 250,
296, 297

wave length, 297
wave number, 221, 222
wave operator, 339
wave packet, 222–224
wave vector, 69, 70, 77
weak field, 335, 339, 340
weak field approximation, 339
weak field limit, 334, 336–339, 341,

345, 350
weakly degenerate quantum gas, 312,

323
Weyl representation, 41
Weyl spinor, 63–65
Weyl spinor fermion, 65
Weyl’s operator ordering, 18, 211
white dwarf, 353, 356
Wick rotation, 131, 132, 135, 397
Wick’s theorem, 136, 137
Wien law, 320
Wigner function, 293
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work, 257, 258, 265, 266

Yang-Mills action, 92
Yang-Mills gauge boson, 95
Yang-Mills Lagrangian, 106

Yang-Mills Lagrangian density, 92, 95

zero temperature, 325, 326
zero-point energy, 30, 234
zeroth law of thermodynamics, 278
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