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Preface

During the 20th century, physics experienced a rapid expansion. A gen-
eral theoretical physics curriculum now consists of a collection of separate
courses labeled as classical mechanics, electrodynamics, quantum mechan-
ics, statistical mechanics, quantum field theory, general relativity, etc., with
each course taught in a different book. I consider there is a need to write
a book which is compact and merge these courses into one single unified
course. This book is an attempt to realize this aim. In writing this book, I
focus on two purposes. (1) Historically, physics is established from classical
mechanics to quantum mechanics, from quantum mechanics to quantum
field theory, from thermodynamics to statistical mechanics, and from New-
tonian gravity to general relativity. However, a more logical subsequent
presentation is from quantum field theory to classical mechanics, and from
the physics principles on the microscopic scale to physics on the macro-
scopic scale. In this book, I try to achieve this by elucidating the physics
from quantum field theory to classical mechanics from a set of common ba-
sic principles in a unified way. (2) Physics is considered as an experimental
science. This view, however, is being changed. In the history of physics,
there are two epic heroes: Newton and Einstein. They represent two epochs
in physics. In the Newtonian epoch, physical laws are deduced from exper-
imental observations. People are amazed that the observed physical laws
can be described accurately by mathematical equations. At the same time,
it is reasonable to ask why nature should obey the physical laws described
by the mathematical equations. After wondering how accurately nature
obeys the gravitational law that the gravitation force is proportional to the
inverse square of the distance, one would ask why it is not found in other
ways. Einstein creates a new epoch by deducing physical laws not merely
from experiments but also from principles such as simplicity, symmetry

vii



viii Principles of Physics

and other understandable credos. From the view of Einstein, physical laws
should be natural and simple. It is my belief that all physics laws should
be understandable. In this book, I endeavor to establish the physical for-
malisms based on basic principles that are as simple and understandable
as possible.

The book covers all the disciplines of fundamental physics, including
quantum field theory, quantum mechanics, statistical mechanics, thermo-
dynamics, general relativity, electromagnetic field, and classical mechanics.
Instead of the traditional pedagogic way, the subjects and formalisms are
arranged in a logical-sequential way, i.e. all the formulas are derived from
the formulas before them. The formalisms are also kept self-contained, i.e.
the derivations of all the physical formulas which appear in this book can
be found in the same book. Most of the required mathematical tools are
also given in the appendices. Although this book covers all the disciplines
of fundamental physics, the book is compact and has only about 400 pages
because the contents are concise and can be treated as an integrated entity.
In this book, the main emphasis is the basic formalisms of physics. The
topics on applications and approximation methods are kept to a minimum
and are selected based on their generality and importance. Still it was not
easy to do it when some important topics had to be omitted. Since it is
impossible to provide an exhaustive bibliography, I list only the related
textbooks and monographs that I am familiar with. I apologize to the
authors whose books have not been included unintentionally.

This book may be used as an advanced textbook by graduate students.
It is also suitable for physicists who wish to have an overview of fundamental
physics.

I am grateful to all my colleagues and students for their inspiration and
help. I would also like to express my gratitude to World Scientific for the
assistance rendered in publishing this book.

Jun Ni
August 8, 2013
Tsinghua, Beijing
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Chapter 1

Basic Principles

We start from the following five basic principles to construct all other phys-
ical laws and equations. These five basic principles are: (1) Constituent
principle: the basic constituents of matter are various kinds of identical
particles. This can also be called locality principle; (2) Causality principle:
the future state depends only on the present state; (3) Covariance principle:
the physics should be invariant under an arbitrary coordinate transforma-
tion; (4) Invariance or Symmetry principle: the spacetime is homogeneous;
(5) Equi-probability principle: all the states in an isolated system are ex-
pected to be occupied with equal probability. These five basic principles
can be considered as physical common senses. It is very natural to have
these basic principles. More important is that these five basic principles are
consistent with one another. From these five principles, we derive a vast
set of equations which explains or promise to explain all the phenomena of
the physical world.






Chapter 2

Quantum Fields

2.1 Commutators

2.1.1 Identical particles principle

We start from the constituent principle. Matter consists of various kinds
of identical particles. Since particles are local identities, this principle can
be considered as the locality principle. A particle is characterized by its
position and other internal degrees of freedom which are denoted as A. Such
a particle is called to be in the A state which is denoted by |A\). The symbol
| } is called ket, which was introduced by Dirac. |A) means that there is a
particle characterized by A. |A) is also called a single-particle state. An N-
particle state is denoted as [A;--- A; - An). Here 7 labels the ith particle.
A state of a system corresponds to a configuration of the particles. We
denote |0) as the vacuum state, which contains no particles. When there
is creation, there should be annihilation. For a vacuum state |0), we can
introduce its dual state (0] by

(0/0) = 1. (2.1)

Eq. (2.1) means that (0| annihilates the state |0). Similarly, for any state
[A), we have its dual state ()| defined by

(A = 1. (2.2)

Eq. (2.1) means that (A| annihilates the state [A). The symbol ( | is called
bra.
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2.1.2 Projection operator

We can define a projection operator for single-particle states by |A){}|,
which projects any state |\’) onto the state |)), resulting in a state

A (AN, (2.3)

When the states |\') and |\) are different (A # )'), the projection of the
state |\') onto the state |A) will be zero. We have

XY = xn. (2.4)

When a particle is in the A state, the projection operator for the X state
projects the state onto itself. When a particle is in the X # X state, the
projection operator filters out this state. Eq. (2.4) is called the orthonormal
relation of states. We also call (AN} as the scalar product of two states.
When X is a continuous variable, the Kronecker delta should be replaced
by the delta function.

We can add the projections |A)(A| of all states together. Since a particle
at least is in one state, we have

SN =1 (2.5)
A

Eq. (2.5) is called the completeness relation of single-particle state.

2.1.3 Creation and annihilation operators

We introduce creation and annihilation operators to describe the particle
state. We define the creation operator as the one mapping an N-particle
state onto an (N-1)-particle state. For the vacuum state, we can add

particles using the creation operator &f\. A can be position of a particle.

When A is the position, &f\ means creating a local particle at A position. If

we create a particle characterized by A, we have a state
al]0) = | ). (2.6)
&:r\ can also be denoted as
A ®. (2.7)

@ means that df\ is operated on a state. ® is often omitted for simplicity.
Thus Eq. (2.6) can be rewritten as

al[0) = |x) @ |0) = ). (2.8)
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The N-particle state [A;--+ ;- An) can be formed using N creation
operators,

AL An) =al, ---al, [0)
= \)® - [An) ®]0).

In exchanging the two creation operators, we exchange the labels of the
two generated particles. We denote F;; the operator that exchanges the
labels of the particles i and j. For example,

Pia|Ar = (x1, A1), A2 = (X2, A3)) = [A2Ay). (2.10)

(2.9)

|A1A2) means that there is a particle at x; position characterized by the
internal degrees of freedom A] and a particle at X position characterized
by the internal degrees of freedom A;. |A2A;) means that there is a particle
at X position characterized by the internal degrees of freedom A5 and a
particle at x; position characterized by the internal degrees of freedom
Al. If the two particles are fundamental, there will be no other internal
degrees of freedom to distinguish them, which means that A has all the
parameters to characterize a particle. The particles are identical. Then the
states |A1A2) and |A2A;) describe the same state, i.e. a state with a particle
at x; position characterized by the internal degrees of freedom A} and a
particle at x; position characterized by the internal degrees of freedom ;.
Thus when we exchange the two particles, we have the same state. When
we execute the exchange operator two times, the particles return to their
initial labels and we recover the original state. Thus P? =1 and P = +1.

Because P = +1, we have two cases. (i) The two creation operators d;r\l and

6&2 commute, &L&K? = &LZ&LI, which corresponds to P = 1; (ii) The two
creation operators &I\l and dI\Q anti-commute, &f\ldlz = —&12&11, which
corresponds to P = —1.

Ifay, and &12 commute, we call the particles bosons. For bosons, we
have the commutation relation

t At 1 st AT 1 al At At At _
[ail,alz]_ = [ah,akz} =a, a,, —a,,d, =0. (2.11)
If dll and &L anti-commute, we call the particles fermions. For fermions,
we have the anti-commutation relation

N N (= - _ a1 At S N
[agl,a;2]+ = {agl,a;,z} =a &), +al,al, =0. (2.12)

Thus any two creation operators &Ll and &f\z commute or anti-commute

depending on the types of particles. For fermions, in the case of A; =
Az = A, the anti-commutation relation Eq. (2.12) becomes 2&1&1 =0, lLe.



6 Principles of Physics

a /\&f\ = 0. Thus two fermions can not be accommodated in the same state,
which is known as the Pauli exclusion principle.

Now we introduce annihilation operator a,. The annihilation operator
maps an N-particle state onto an (N-1)-particle state. The annihilation
operator ay thus annihilates the particle characterized by A. In the simplest
situation, we have

ax|A) = 10), (2.13)

which means that after annihilating the single-particle state, the state turns
into the vacuum state.

Similar to the creation operators, we have the following two types of
commutation relations for the annihilation operators. For boson, the anni-
hilation operators commute,

[@x,,dx,]— = 0. (2.14)
For fermions, the annihilation operators anti-commute,
[@xy;ax, ]+ = 0. (2.15)
Similar to the creation operators, we can denote ay as
(Nl = ((0la})- (2.16)

The bracket means that ! acts on the left. Then Eq. (2.13) can be rewrit-
ten as

aalA) = @A) ® [0)
= (AlA) ©10)
= 10). (2.17)

Since (A|0) = 0, we have
@x[0) = 0. (2.18)

Eq. (2.18) means that when there is no particle for annihilation, the anni-
hilation operator should be zero. Eq. (2.18) has a more general version

da |A2) =0, Ap # Ao (2.19)
From Eq. (2.16), we have
(0/axlN) = (AIN) = (V]A) = (V]al[0) = buw- (220)

Thus @y can be considered as the adjoint operator of df\.
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The state |A) forms the Hilbert space H. |A} is called an orthonormal
basis of H. The N-particle state are described in the Hilbert space Hy,
which is the IV tensor product of the single-particle Hilbert space H.

Hy=HOH® - @ H. (2.21)

The N-particle state |A;--- Ay} is the tensor product of the single-particle
state.

P ANy = A ®1A2) @ ® [ An). (2.22)

Since the particles are elemental and no particle is a part of other parti-
cles, the state [A; - Ay) are orthonormal. |A;---Ay) form the canonical
orthonormal basis of H . It should be noted that the states with different
particle number are also orthonormal. All particle states form the Fock
space.

2.1.4 Symmetrized and anti-symmetrized states

In order to describe the symmetry properties of the states of bosons and
fermions, we introduce the symmetrization operator Pg and the anti-
symmetrization operator Pr.

1
Pl Ay) = mZMPl - Apy) (2.23a)
TP
1
PpAL---An) = ﬁZ(“l)SPP‘H APy ), (2.23b)
‘P

where P is the permutation of (1,2---,N), which brings (1,2--- ,N) to
(P1,P---,Py). Sp is the number of the transpositions of two elements
in the permutation P that brings (1,2--- ,N) to (P, P---,Pn). For
example, for two particles,

PalAnhe) = 5(Aska) + adi)) (2.242)
PrXida) = 3 (Arke) = o). (2.24b)

The states of bosons are symmetric. We can use PglAy --- Ax) to describe
the state of bosons regardless of the symmetry of |A; -+ Ay). The states
of fermions are antisymmetric. We can use Pr|A;---An) to describe the
state of fermions regardless of the symmetry of |A; -+ An). The states of
bosons form the Hilbert space of bosons By, while the states of fermions
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make up the Hilbert space of fermions Fy. Eq. (2.23) can be rewritten in
a compact form as

1
P{i’}‘)‘l"')‘N>ZmZESP|)\P1"')\PN>v (2.25)
P

where £ = 1 for Pg and £ = —1 for Pp.

P,5, can be shown to be the projections that project Hxy onto the
Hilbert space of bosons By and the Hilbert space of fermions Fy, respec-
tively. For any N-particle state of H, we have

Pis A1---AN) €57 €57 Apyp, - Apypy ). (2.26)
{7} N'N' = %

We introduce @ = P'P. Since ¢57/+5F = ¢Serp and @ corresponds to P’
one by one, we have

P{?}‘Al"“m

1 1
= ﬁZﬁZﬁSQP\Ql“‘)\QW
I £ NI &

1 1
:ﬁz ﬁz&SQP‘QV"AQA’)
M 'S

1
- 1 2 Fegy e

P
= Prsy M Aw). (2.27)

Eq. (2.27) holds for any state. Thus P{g} are the projection operators

projecting Hy onto { ~ )
Using these prOJectlon operators, we can define the symmetrized or anti-
symmetrized states as

A, A2, - An)s

= \/N!P{?}p\h)\%...)\m
1
= T LT PR B R @@ ey (229)
P

It is usually convenient to use the normalized symmetrized or anti-
symmetrized states. The scalar product of the two same symmetrized or
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anti-symmetrized states is given by

s{AL, A2, - AN AL Az, - AN s
= N'<)\17)\25AN|P{2?}|)\17)\27)\N>

= N!()\L,)\z,'-->\N|P{g}l)\1,)\2,"~)\N)

=Y &% (aap Hazlar,) - (anlapy). (2.29)
P

According to Eq. (2.4), the only non-vanishing terms in the summation of
Eq. (2.29) are the ones with

)\1:)\]317)\2:)‘1327”' ,)\Nz)\PN. (230)

For fermions, there is at most one particle with the same A. A; in the
set (A1,---,An) are all different. There is only one nonzero term which
corresponds to Sp = (. Thus we have

5{A 1. A2, - AN|AL A2, - An)s =1 for fermions, (2.31)

which means that |Aq, Ag,- - An)g is already normalized.

For bosons, particles with the same A are allowed. Any permutation
which interchanges the particles with the same A contributes to the sum
in Eq. (2.29). If the state |[A;, Az, - An) contains n; bosons with A = o,

ny bosons with A = ay, - -+, np bosons with A = a,,, where all the a; are
different, the scalar product Eq. (2.29) is given by
s(AL Az, AN[AL A2, - AN)s = nalngl - ony! (2.32)
with
> na=N. (2.33)

Since n; = 1 for fermions, Eq. (2.32) is also applicable for fermions. Thus
we obtain the normalized symmetrized or anti-symmetrized states defined
by

1

VI, ne!

To simplify the notation, we use |ny) to denote |A; = A, -+ Ap, = A).
For bosons, N-particle state should have the following normalized sym-
metric form,

|/\17)\27"'/\N>SN = ‘)‘17)‘27"')‘N>S' (234)

SN SRR W)

1 ~ A A
= — T |(a:r\1)”>‘1 (af\z)n/\z . (af\p)”*N 10> (235)
SNRIIITY OV
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2.1.5 Commutators between creation and annthilation
operators

When we apply df\ to the symmetrical N-particle boson state, we have

—t

=vn,\+1|n,\+1). (2.36)

The annihilation operator @, is the adjoint operator of the creation opera-
tor. Thus we have

(na = 1laalna) = (nalallna — 1) = vax(nalna) = Vax.  (2.37)

Therefore, we have

d,\|n,\) Z\/TL,\|TL,\—1>. (238)
Using Egs. (2.36) and (2.38), we have

CALJI\&,\|TL,\> = n,\|n,\), (239)

axal|na) = (ny + 1)|ny). (2.40)

Subtracting the two equations, we obtain
[ax,al] = 1. (2.41)

Now we derive the commutator of ¢ and d:r\, with A # X. Using
Egs. (2.36) and (2.38), we have

d,\df\,]n-n,\-wn,\/---)
= mavny + 1] (ny = 1) (nx +1)---) (2.42)
and
df\,&,\|~~-n,\~--n,\/---)
=i + 1| (ny—1) - (ny +1)---).  (2.43)
This leads to
[ax,al] =0, A#N. (2.44)

Thus we obtain the commutation relation for the annihilation operator dy,

and the creation operator df\z

(5,5 8),] = Gxsae- (2.45)
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Now we consider fermions. Fermions obey the anti-commutation rela-
tions. Thus &f\&i =0 and axa, = 0. n) can only be one or zero. Therefore,
we have the following relations:

alloy = [(1)x), all(1)r) =0,

axl(1)x) =10), @xl0) =0. (2.46)

In order to deduce the commutator [dy, &f\,}, we consider the following
state

@), )™ (@], - (@] )™=10) = [nagna, - ma) (2.47)
If ny, = 0, the direct evaluation of &f\s InA M, - ML) Gives
a}, Inamag - o) = (—1)54(@] )™ (@] ) - (@) )™ [0), (2.48)
where the factor S, is defined by
Ss=ny, +na, + 0, (2.49)
Thus, we have
&if\s\n,\ln,\2 ceemaL)
= (=1)%|ny, o (na, + 1) ona,) (i, =0).  (2.50)
When n,, = 1, we can exchange df\s to the position Ay and get a factor

@} al_, which leads to

&l [mama, ma) = 0. (if na, = 1), (2.51)

Now we consider the annihilating operator ax,. When n,, = 1, since a,,
is the adjoint of operator &;s, we have

<n)\1 ...(n)\s _1)...n/\x‘&/\s|n/\1 ceem, ...n/\x>

= (na, - na, ...nAx‘&Uml celny, = 1) oma)

= (ny, -~ -, ---n,\x|(—1)55|n,\1 cmy, ML) = (_1)55. (2.52)
Thus, we have

Gx,[may o M, L)
= (=1)%|ny, -+ (na, = 1) -ny) (ifna, =1).  (2.53)

If ny, =0, we can similarly get
Jnay coena, coona ) =00 (ifny, =0). (2.54)

In summary of the results given by Egs. (2.50), (2.51), (2.53) and (2.54),
we can easily obtain

ay

{&/\1?&;2} = 6A1A2- (255)
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The above commutation relations are for the operators at the same
time and are called the equal-time commutation relations (ETCR). There
are also the commutation relations at different times [dy, (1), df\z(t’ )]+. In
order to calculate the commutation relations at different times, we need to
know the equations of motion. We will discuss the commutation relations
at different times [45, (1), d;z (t')]+ after we derive the equations of motion.

We introduce d(x,t) and a'(x,t) by taking A in d:r\ and 4, as position
x. Then &:f\ takes the meaning of creating a particle at position x and a5y
annihilating a particle at position x. d:f\ and @y become éf(x,t) and a(x,t)
respectively. Since A = x as position is a continuous variable. 4,5, in
Eq. (2.55) should be replaced by a delta function §3(x; — x3). Then we

have
[a(x,t),a' (x',t)] L = 8%(x — x), (2.56a)
f(x,t),a" (2, )]+ = [a(x, 1), a(x’,t)]1 = 0. (2.56Db)

With the help of the creation and annihilation operators, we can define
the particle-number density operator

A(x,t) = a'(x,t)a(x, t) (2.57)
and the total particle-number operator
N(t) = /d?’xﬁ(x, t) = /d%&f(x,t)d(x, t). (2.58)

2.2 The equations of motion

2.2.1 Field operators

Now we discuss the particle dynamics. For bosons, we define two field
operators

(67 (x,t) + a(x, 1)), (2.59a)

(@'(x,t) — a(x, t)). (2.59b)
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and also
[b(x,1), (x', )] = [F(x, 1), #(x,1)] = 0. (2.61)

For fermions, we can not use the definition Eq. (2.59), which will lead to
{¢, %} = 0. If we define # = \/Li(?ﬁ + ) = i¢!, we can have Eq. (2.60).
However, QS and # should be independent. Thus qAb should not be a real
operator. We can use two real field operators ¢; and ¢, corresponding to

a doublet of particles to form a complex field. We define

¢ = ’1—2(le +ida), (2.62a)
¢ = %(le —~ig2) (2.62b)

with
Bilx.t) = —=(a!(x,6) + alx. ). (2.69)

V2

Then we have two independent complex field operators and we can treat (;3
and # = i¢' as independent field operators. The field operators ¢ and #
for fermions obey the following commutation relations

{d(x,1). #(x',t)} = i0%(x — X) (2.64)
and
{0(x,1), 6(x', 1)} = {#(x,1), (X', )} = 0. (2.65)
# is called the conjugate field operator and is equivalent to
= —iﬁé. (2.66)
Then we have
(g|7) = (271_10)%- exp [ié/dzxﬂ(x)qb(x)} . (2.67)

We can derive Eq. (2.67) directly from the commutation relations
Egs. (2.60) and (2.64). The eigenstate of ¢ is defined by

3(x)19) = ¢(x)]9)- (2.68)
For bosons, using the commutation relation Eq. (2.60), we have
(60, 7 (x)] = in#" " (x)3% (x - ') (2.69a)

[#(x), " ()] = —ind" 1 (x)8%(x — x'). (2.69b)
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Using the Taylor expansion, we have

x) exp {—z/al3 } )P

~ 60x).exp |- / P90 )< 10}

— oyexp =i [ 22070110 (2.70)
Thus the eigenstate of ¢ for bosons is given by

) = exp i [ Pastor(x] 0 (21)

Similarly, we can show that the eigenstate of 7 is given by

|7} = exp [i/d%w(x)q@(x)} [0} . (2.72)

Then we can calculate (/7).
i) = (0 exp i [ Parx)in| 10,
—exp i [ an(xloo] o).
~exp i [ an(x)o)| dolep i [ astx)i0)| 01,

3 :
~ exp [ / 2 (900 | 00 (2.73)

+(0]0) is just a constant for normalization, which we will take as 1/(27C)3.
Thus we get Eq. (2.67). C' is a factor in the following functional §-function
expression

/ Pri(p(x)) = 57—15 / Dr(x) exp [z / d3:v¢(x)7r(x)]. (2.74)

We express the orthonormal relation in terms of the functional §-function.

(#16) = o{0] exp {—i [ #atotx) - ¢'<x>>fr<x>} 10)5
@' = D)o

$(0
= [ a6 - o). 275)

I
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where 4(0]|0) is normalized as

4{0]0)¢ = /d3:c5(0). (2.76)

Since
[ Dr@innlo) = [ Drosex { [ @er0( 09 - a0
= [ 286 - o)

= (¢'|#), (2.77)
we have the completeness relation
/D7r|7r)(7r| =1. (2.78)
Similarly we have
[ pelsei=1. (279)
We can obtain the similar results for fermions.
(6]m) = (Erlc—)%—exp [—i / d3r7r(z)¢(r)] . (2.80)

Generally the particle could have internal degrees of freedom. The par-
ticle number is a scalar. Then a'(x,t)a(x,t) should be a scalar. However,
the field operator ¢ can be, for example, vector or spinor, in addition to
scalar.

2.2.2 The generator of time translation

In order to consider the dynamics of particles, we introduce the time trans-
lation operator O = eiCtt, where G4(%,¢) is the generator of translation
transformation of time ¢. By definition of the generator of time translation,
we have

[an él] = iat(lg: (281&)
7, Gy = 0,7 (2.81b)

The equations (2.81) are called the equations of motion, which is formally
solved by

d(x,t) = Gt d(x, 0)e Gt (2.82)
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Eq. (2.82) is the transformation for a finite translation of time . Eq. (2.82)
can also be proved using the general operator identity

[A,[A,B]]+. (2.83)

From the commutation relations for the generator of time translation
Eq. (2.81), it can be seen that the right-hand side of Eq. (2.82) is just
the Taylor expansion of the operator function ¢(x,t) for .

eiGt ff;( X, ) —iGet
B(to) + [iGet, B(to)] + [iGet, [iGit, d(to)] +

d(to) + t—d>‘ Lt

awsl
Pt +to), (2.84)

which shows that ét is the generator of the transformation of time
translation.

The field operator dAJ(x,t) has a set of time-dependent eigenstates
satisfying

B(x, )]0, t) = B(x,1)|6,1). (2.85)

The time dependence of the state vector |¢,t), expressed in terms of the
constant state vector |¢) (also called the Heisenberg vector) is determined
by

16,t) = e'F%|p, 0) = 'Ct|gp). (2.86)

2.2.3 Transition amplitude

Now we can determine the scalar product of two state vectors taken at
different times (@', ¢'|#, ), which is also called the transition amplitude be-
tween the two state vectors. Using Eq. (2.86), we have

(@', ¥, 1) = (¢/|e™ (' ~1Ce|g). (2.87)

This amplitude is also named as the Feynman kernel. This is the amplitude
for making a transition from the field configuration ¢(x) at time ¢, leading
to the field configuration ¢(x’) at time #'.
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2.2.4 Causality principle

Now let us discuss the properties of the generator of time translation Gy.
All the time evolution processes should obey the causality principle, which
is the most basic principle of physics. The causality principle can be ex-
pressed as follows: The future state is only determined by the present state.
Therefore, the generator of time translation G, can be expressed solely as
a function of the field at ¢ without any time derivatives of ngS and 7 because
the time derivatives depend on the quantities in the future. This statement
does not mean that one can not have an expression of ét with time deriva-
tives of ngS and 7 in it. It says that one can find an expression of ét without
time derivatives of gz3 and # in it. Now we express G, as a function of the
field operators

G, = / d*zG, (7, ). (2.88)

gAt(ﬁ',qAﬁ) does not contain the time derivatives of gz3 and #, while spatial
derivatives are allowed.

2.2.5 Path integral formulas

We can construct the path integral formulas to calculate the transition
amplitude. We divide the time interval (t,t') into many small slices with
equal length.

tn =1+ ne (2.89)
with
t—t
= 2.90
=2 (290)
We insert a complete set of basis states |¢,t) at each of the grid points
th(n=1,. —1) in the Feynman kernel.

(@16, = [ Dow- [ pex [ Doy

(¢ | on—1,tn_1) - (2, taldr, t1) (o1, ta]@, 1), (2.91)
Using Eq. (2.87), each of the kernel elements under the integral can be
rewritten as
<d)n+lvtn+ltd)nvtn> = <¢1L+l|e‘ict(%y¢)€!¢n>- (2~92)
When ¢ is small, the time evolution operator can be approximated by a
Taylor expansion

(nr1stnss[Bny tn) = (Gnaa|[1 = iGe(F, D)el[dn) + O(¢).  (2.93)
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Since the generator Gy depends on 7 and (;AS, we also insert a complete
set of state |m,). Using the completeness relation Eq. (2.78), we have

(bnt1|Ge(F, 9)|6n) =/Dﬂn<¢n+1l7rn>(7rn|é't(ﬁ7$)I¢n>- (2.94)

The operators 7 and ¢ can act to the left or to the right on their eigenstates.
We have

<7rn|Gt(7Ar7 ¢>|¢n> = <7T”LI¢TL>Gt(7rn, ¢7L)' (295)
One might use a more symmetric prescription, so-called Weyl’s oper-
ator ordering.  {(mp|¢n)Gi(mn,dn) in Eq. (2.95) can be replaced by
(T | ) G (T, 2(¢n+1 + ¢7)). We will use the notation Gy(m,, ¢,) in the
following so that we can choose ¢, = ¢, or ¢, = (¢n+1 + ¢y ) for the
convenience of usage.
Using Eq. (2.67), we have

<¢n+l,tn+1|¢n7 >

= QD—C—eXp|: /dsmﬂ'n ¢n+1( ) ¢n(x)):1
x [1 = iGy(7n, bn)e] + O(€2). (2.96)

Taking the limit € =+ 0 or N — oo, we have

Dﬂ'n
(@ )0, t) = hm/HDc;sn [ 56

€

X exp [Z Z'/d3$€7rn(x)¢n+l($) - (bTL(m)}
n=0

N-1
x [] 1= iGe(mn, dn)el. (2.97)

n=0
We can reform Eq. (2.97) by using the representation of the exponential

function
N-1

N-1
: Tn\ _ .1
Jim (1) = (lenw ¥ ) - e

Then Eq. (2.97) becomes

D7r
t = 1 Dé,, =
(¢,t'|g,t) = lim /H <p 271'C’

X exp i€ /deﬂ'n M—(——)———d)n—(m - Gt(ﬂ'n,q—ﬁn))}.

€

(2.99)
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In the limit N — oo, the sample values beconie continues. The summation
is then replaced by the integral. We introduce the notation of path integral

/j:[:Dan - /qu and /iij:Dqﬁn — /D?T. (2.100)

In the limit € — 0,

Prt1(z) — Pn(x) N

€

N-1 t
H(tn) and €Y f(tn) — / drf(r). (2.101)
n=0 t
Then we obtain the path integral expression for the Feynman kernel (the
transition amplitude) in Eq. (2.87).
Z = (¢ t'|p,¢)

:N/qu/Dwexp [2 /tt, dT/dsx(TrBtaﬁ—gt(w,qﬁ))} (2.102)

with the boundary condition

o(x,t") = ¢'(x), (2.103a)
B(x,t) = B(x), (2.103b)

where A is a constant factor, which is generally omitted for the simplicity
of expression.

2.2.6 Lagrangian and action

We define the Lagrangian density £’
L:, Eﬂat¢—gt(ﬂ7¢) (2104)

and the action S’
S = / d*zL’. (2.105)
Eq. (2.102) becomes

Z= / D¢ / Drexp {z / d%ﬁ’(w,qﬁ)} (2.106)

From Eq. (2.102), after integrating over [ Dr, we have
@16, =N [ Do [ Drexp {z [ dtatwois - Gt ¢)}
=N / D¢ exp [z / d*zL(o, qé)] (2.107)
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Instead of L'(w, ¢), we have the function £(¢,¢) as Lagrangian density.
Using the Lagrangian density L£(¢,¢), we can define the action S of the
field by

S = / d*zL(¢, ). (2.108)

Thus we have two types of formulas for Lagrangians. We will show
that one corresponds to fermions and the other corresponds to bosons. It
should be noted that we need use Grassmann algebra (a brief introduction
on Grassmann algebra is shown in the Appendix D) in the path integration
for fermions.

2.2.7 Covariance principle

In the following, we assume that the path integral should satisfy the prin-
ciple of general covariance stating that the physics, as embodied in the
path integral, must be invariant under an arbitrary coordinate transforma-
tion. Generally, we shall consider any curved spacetime. First we discuss
the flat spacetime, which is applicable to the case of vacuum state. For
a Riemann metric, we can always find a local Minkowski metric. We will
show in a later section that when the field is weak, as in the case of near
vacuum state, we can use the Minkowski metric. In order to satisfy the
causality principle, time can only be one-dimensional. We have assumed
that space is three-dimensional. There are several reasons for a three-
dimensional space. At the present stage, we can only assume that the
space is three-dimensional. Matter, space, and time should be considered
as an integrated entity, as Einstein proposed. If time and space are indepen-
dent, the interaction between particles will be instantaneous, which is not
consistent in concept with the causality principle. Because of the causal-
ity principle, a flat spacetime can only be Minkowski-type. An Euclidean
type spacetime will not be consistent with the causality principle because
it extends time into the four-dimensional. The Lagrangian density £’ or £
should be scalar in the Minkowski metric. We use a Minkowski metric n**
with signature [+, —, —, —] in this chapter. By now, only a few forms of
Lagrangian densities are found to satisfy both the causality principle and
the covariance principle. Because G;(r, ¢) depends only on time locally, it
does not depend on the time derivative of field functions. It can depend
on the spatial derivatives of field functions. As we have shown, there are
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two cases: (1) £’ is Lorentz covariant; (2) £ is Lorentz covariant. For the
first case, from Eq. (2.102), we can see that £’ depends on é linearly. In
order to get a covariant Lagrangian density £, G:(w, ¢) should depend on
the spatial derivatives linearly. We will show that this case corresponds to
the spinor fermion field in the later section. For the second case, we need to
carry out the integration over field function 7. When G,(r, ¢) is a quadratic
function of 7, we can get a ¢? term in L(¢, ¢) after completing the Gaus-
sian integration over 7 in the path integral formulation in Eq. (2.107). The
¢32 term can match with other spatial derivative terms to form a covariant
Lagrangian density. Thus G;(w, ¢) should also contain the quadratic spatial
derivatives of field functions. After integrating out the field function 7, we
obtain the Lorentz-covariant Lagrangian L(¢, d)) in the Minkowski space-
time. We will show that one can get two types of covariant Lagrangians in
this way. They correspond to the scalar and vector bosons. For G,(m, ¢)
with other orders of spatial derivative of fleld functions or power functions
of m, we can not find any covariant constructions of Lagrangian. Although
this is not a strict proof, it is plausible that there are no other types of
Gi(m, ¢) that can lead to covariant Lagrangian £ or £'. In addition, we will
show later that the energy is conserved due to the homogeneity of space-
time. Then the Hamiltonian operator should commute with the generator
of time translation, which also excludes other possibility. From Eq. (2.106),
we can see that there is only first order derivative ¢ in the Lagrangian £’
and L. Therefore, Lagrangian can only depend on the first order derivative
¢. In the L(¢,d), there is only ¢? term. ¢? may be transformed into ¢
through integration by parts. Therefore, Lagrangian can only contain ¢ or
$? (or equivalently d)) terms linearly. This constrains the form of covariant
Lagrangian stiffly. We will see that there are only very limited forms of the
covariant Lagrangians.

2.3 Scalar field

The Lagrangian should be a scalar in the Minkowski spacetime due to the
covariance principle. Since the simplest field is the scalar field, we first
consider the scalar field. It should be noted that the underlining principle
is independent of the types of the fields contained in the Lagrangian.
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2.3.1 Lagrangian

Since the derivatives can only be quadratic, the general form of covariant
Lagrangian for a scalar field has the form

£ = 5 1(@)8,00"6 — U (). (2.109)

f(¢) can be put into the metric g, when we use the curved spacetime for-
malism, which we will discuss in detail in the section on the curved space-
time. U(¢) is generally divided into the mass term $m?¢? and interaction
term V{(¢).

U(6) = 5m** + V(9), (2110)

where m is called the mass and V(¢) is the self-interaction. Thus the
general form of Lagrangian density in the Minkowski spacetime for a scalar
field is given by

L= 30,99"9 — sm*6” ~ V(). (2.111)

We have chosen the proper unit of field function such that the first term
in Eq. (2.111) has the form without any parameter. We can also put A?
in the first term and reformulate the first term as %2—8}@8%25 to make the
unit transformation easier, where % is called the Planck constant. All the
terms in Eq. (2.111) are scalars in the spacetime. Thus the Lagrangian in
Eq. (2.111) is Lorentz covariant. The corresponding function Gi(7,¢) is
given by
1, 1 2, 1 9.9

G = 57 §(V¢) +5m o° + V(¢), (2.112)
which does not contain the time derivative terms. We can get the La-
grangian density in Eq. (2.111) by inserting Eq. (2.112) into Eq. (2.107)
and integrating over 7 using the Gaussian integral formula Eq. (C.21) in
the Appendix C. Thus the generator of time translation corresponding to
the Lagrangian Eq. (2.111) is given by

G, = /d3m sz + %(wS)2 + %m%Q +V(9)] (2.113)

2.3.2 Klein-Gordon equation

Now we consider the scalar field as the boson field that ¢ and 7 satisfy
the commutation relations for bosons in Egs. (2.60) and (2.61). We will
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show later that we can not construct a consistent formulation for scalar
fermions with anti-commutation relations. Calculating the commutator
[p(x,t), Gi(F, 9)] of ¢(x,t) with Gy, we have

[6(x.t), Ge(#, 9)] = i (2.114)
Comparing Eq. (2.114) with Eq. (2.81a), we can see that

Using commutation relations Eq. (2.81b), we have
= —i[f(x,t), Ge(#,0)] = (V? = mP)o(x,t) ~ V'(¢).  (2.116)
In deriving Eq. (2.116), we have used the relation
[7(x, 1), V'o(x', t)] = V[ (x,t), p(x', 1)] = =i V"6 (x —x) (2.117)
and also an integration by parts. Neglecting the interaction term and com-

bining Eqs. (2.115) and (2.116), we find that the field operator for free
scalar bosons satisfies the following equation

d(x,t) = (V2 = m?)o(x.1). (2.118)
Eq. (2.118) is called the Klein-Gordon equation.

The derivation of the Klein-Gordon equation is based only on the causal-
ity principle and the covariance principle. It should be noted that if we use
the anti-commutation relations for ¢ and #, we get [q@(x, t), Ge(#, d))] = 0.
G given by Eq. (2.113) can not be the generator of time translation in this

case. Therefore, the Lagrangian Eq. (2.111) can only be used to describe
the scalar bosons.!

2.3.3 Solutions of the Klein-Gordon equation

Eq. (2.118) is a wave equation. Thus we have the particle-wave duality for
the scalar bosons. We can solve the operator equation (2.118) by expanding

~

@(x,t) with respect to a basis. We usually use the set of plane waves
up(x) = Npe'P™ (2.119)

for solving the wave equations. Then we have
b(x,t) = / d*pNye®>a, (1), (2.120)

1One can also use microcausality to prove that only the boson field can be used in the
Lagrangian Eq. (2.111) (W. Pauli, Phys. Rev. 58, 716 (1940); M. Fierz, Helv. Phys.
Acta 12, 3 (1939)). But here we consider that microcausality is just a result of causality
principle. One can prove that the microcausality is satisfled by the scalar boson field
with the Lagrangian Eq. (2.111).
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where Np is the normalization constant. Inserting Eq. (2.120) into
Eq. (2.118), we get the equation of motion for the operators dp(t):

a(t) = —(p® +m?)ap(t). (2.121)
The solution of Eq. (2.121) is given by
Gp(t) = ale™ et 4 a2 etwrt, (2.122)
&) (

. L (2 _— -
where Gp’ and ap) are the constant operators in time. wy, is given by the
dispersion relation

wp = vV P? +m? (2.123)

According to Eq. (2.59a), the field operator (;3 is hermitian, ¢! = ¢. The
constraint gives

(2.124)

&S)T =5

Then the basis expansion Eq. (2.120) becomes

P(x,t) = / d°pNplaf) e P=wet) 4 g(TemilPxmwetl) - (2.195)

Denoting @S) simply by dp, we have

~

d(x,t) = / d*pNplape’PX=wpt) 4 gl g=iPX—wpl)] (2.126)

Because 7 = g?), the basis expansion of the conjugate field is given by
#(x,t) = —i/dgprwp[&pei(p'x_“Pt) - d;(,e‘i(p'x“””t)], (2.127)

which is consistent with Eq. (2.114).

2.3.4 The commutators for creation and annihilation
operators in p-space

The operators dp, and &I, can be shown to fulfill the commutators for the
creation and annihilation operators, i.e.,

lip,al,) = 0%(p — p) (2.128)
and
lop, Gp] = [a], 81,] = 0. (2.129)
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The commutation relations Eqgs. (2.128) and (2.129) for dp and &L in the
expansion of the field operators can be derived as follows. We introduce
p = (wp, P) and define the normalized plane waves as

- 1
up(x,t) = Npe % =

Y. 2wp(2m)3

where we have used the normalization factor

g Hwpt=px) (2.130)

Np = ——i——— (2.131)
Then Egs. (2.126) and (2.127) become
b(x,t) = / d*plapup(x,t) + ahus(x, t)], (2.132a)
#(x,t) = —i/dspwp[épup(x,t) — &Tpu;(x, t)]- (2.132b)
Projection of the field operator qA’)(x, t) on up and ug, gives
ip :i/dszu;(x,t)s(;ag(x,t) = (up, §) (2.133)
and
d; = —i/d:‘wup(x,t)s(;q%(x, t) = —(u;,é). (2.134)

We have defined the scalar product of two Klein-Gordon wave functions ¢,
and ¢9 as

(61,02) = i / 5263 (x, 1) B (. ), (2.135)
where
Erd
ASUB = A(8oB) — (8, A)B. (2.136)

We can easily verify that the plane waves form an orthonormal set with
respect to the scalar product Eq. (2.135)

(uprs up) = i / B, (x,t) 5 up(x, 1)

=8(p-p) (2.137)
and
(up,up) = —83(p-p). (2.138)
Similarly,
(upr>up) = (up, up) = 0. (2.139)
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Now we evaluate the commutator
PN ) 3 3 Ik N * / o /
[Gp,dp] =1 /d x/d ' Tug, (X, 1) 0o p(x, t), ugy (X', 1) G (', )] (2.140)

The functions up(x, ¢) are ¢ numbers and commute with the field operators.
We have

x,t), d(x, 1)]. (2.141)

Using the commutation relations of (;AS and 7, we get
] = /f[<xw 1) = iy (5, 1)
- / (%, 1) Bl (%,1) = —(up,uly) = 0. (2.142)

Similar calculations give
al,al,] = 0. (2.143)

Now we calculate the commutator [ap, ,]. Using the projection formulas
Egs. (2 133) and (2.134), the cormnutator becomes

l4p, & —z/d3/d3’ (x,£) 80 B, 1), upr (', 1) T (X', 1)) (2.144)
According to Eq. (2.136), we have
5 (%,£) By B, ), 1y (', 1) By (', )]
= up(x, up (X, t)[(z’(&t) H(x', )]
t),
)

><

— up (%, t)ip (X', t)[¢ ( o(x', )]
— i 0, Bty (¢, DB, 1), 6, )]

+ g (%, D)ty (¥, D) [ ), (', 1)]. (2.145)
Using the commutation relations of <;3 and #, we obtain

O , * S '
{ap,aL,] = z/dsx[up(x,t) Oo up (X, 1) = (up,up) = 83 (p —p’). (2.146)

Thus we get all the commutators for creation operator &L and annihilation
operator dp.
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2.3.5 The homogeneity of spacetime
2.3.5.1 Noether current

Now we use the symmetry principle that demands the homogeneity of space-
time. The action should possess the symmetry of spacetime translation.
We transform the field via ¢(z) — ¢(x — a), where a” is a constant four-
vector. For an infinitesimal translation da”, ¢(x) — ¢(x) — 6a* 8, ¢(x), we
have §¢(z) = —0a”0,¢(x). If we make an infinitesimal change ¢(x) —
¢(x) + dé(x) in the field function, we have L(x) — L(z) + 6L(x), where
dL(x) is given by the chain rule,
0L (x) .
5(L(z)) = 0(2) do(x) + m@mqﬁ(x). (2.147)
Taking 6/6¢(z) as a functional derivative, we have
68 / 4 0L(y)  OL(x) oL(x)
so@) ~J “Voela) ~ Fo(a) T 8(B,4())
We use the above equation to make the replacement
oL(x) o 0L(z) 58
op(x) " O(0us(x))  d9(x)
in Eq. (2.147). Then we obtain
0L(x) 48

When we transform the fields with an infinitesimal spacetime transla-
tion §a”, we have £L(z) — L(z — da), and then §(L(z)) = -2 0, (L(x)) =
—0,(6a”L(x)). Combining with the first term on the right side of
Eq. (2.150), we find

0L(x)

(2.148)

(2.149)

(S;—(i)—éqﬁ(x) =-0, {%%(—M”@uqﬁ(x)) + da*L(z)| . (2.151)
We introduce the Noether current for the energy-momentum
Mz) = %(W@mm) —da"L(z) = 6a”O(z)  (2.152)
with
ot = K0 5 o) —nis(a). (2.153)

v 0(0u0(x))
Ok(zx) is called the energy-momentum tensor. Then Eq. (2.151) becomes

%5(}5(1‘) — 8,5 = Bu(6a"0"(x)). (2.154)
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2.3.5.2 Conservation of energy-momentum

The action should possess the symmetry of spacetime translation. Under
an infinitesimal spacetime translation, the variation of the action should be
zero. We have 65 = 0. Then from Eq. (2.154), we have the conservation
of energy-momentum

8,0%(z) = 0. (2.155)

Eq. (2.155) is the Noether’s theorem for the case of the symmetry of space-
time translation.
Now we look at the physical meaning of ©#%. We define

P, = / d320%(x) (2.156)

as the energy-momentum vector. ©Y is called the Poynting vector. Using
Eq. (2.153), we have

P,L=/d3x [8(9L(¢()) Ouo(z) —nSL(z)| . (2.157)

Expressing Eq. (2.155) in terms of the time and space components,
Eq. (2.155) becomes

6@0( )
t = 2.15
T + V;0;, (2.158)
Using Gauss’s theorem, we have
dP,
= 0. 2.15
o (2.159)

Thus P, is the conserved four-vector.

2.3.5.3 Hamiltonian operator

For the scalar bosons, inserting the Lagrangian density in Eq. (2.111) into
Eq. (2.157), we have

R= [ B(@J@Z +5(V9) 4 Jm¥? 4 V(aﬁ)} . (2160)

Py is defined as the energy of the field ¢ and is also called the Hamiltonian
of the field. When we replace the field function ¢ with the field operator
¢, we call the corresponding operator as Hamiltonian operator.

H=P = / &Pz [ (Boh)? (Vq@)2+%m2<f>2+V(q3)]. (2.161)
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2.3.5.4 Heisenberg’s equations of motion

Replacing 8¢ in Eq. (2.161) with #, we have
G, =H. (2.162)

Therefore Athe generator 9f time tfanslation ét is equal to the Hamiltonian
operator H. Replacing G, with H in Eq. (2.81), we have

106 = [9, H), (2.163a)

0% = |, H]. (2.163b)
Eq. (2.163) is called Heisenberg’s equations of motion.

According to Eq. (2.159), we have

[Py, Gy =0. (2.164)

We can see that Eq. (2.162) is consistent with Eq. (2.159).

2.3.5.5 Hamiltonian operator of free scalar bosons

We can express the Hamiltonian of free scalar bosons in terms of the cre-
ation and annihilation operators d;‘) and Gp. Inserting the expansion formula
for the field operators gf) and 7, we have

L1 . .

=2 /d% [ﬁZ +(Vo)? + m2¢>2}

1
= §/d3x[—/d3p’wp/(dp/up, —dL,u;,)/dBpwp(dpup —afus)

- /d?’p/p'(dp,up/ — d;«u;r) . /dgpp(dpltp et CALI)U;;)

+ /dSp’m(dp/up/ + dL,u;,) /dgpm(dpup +alur )] (2.165)
The integration over x can be carried out, which gives the delta function.
1 .
/dgxu;‘), (x, t)up(x,t) = —3&*(p — p'), (2.166a)
2wp
1 ot o
/d3a:up/ (x,t)up(x,t) = 2—6_2’“’Pt03(p+ p). (2.166b)
Wp
Using Eq. (2.166), we get
v 1 s Wi Ziwot At s s oot ot At 2dwpt
H= 5[— d pﬂ(a_pa e TPt —apap —dpag, +al,dpe* ")

2 . .
+ / d%%(a_pape*mpf +alap + apal + @ipa;e”%f)} . (2167)
P
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The terms involving a and a'a! are multiplied by a factor (—w? +p? +m?)
which is zero. The remaining expression for the Hamiltonian is given by

H= % / d*pwp(afdp + apaf)
= / d>pwp [a;ap + %63(0)}
= / d*pupdlap + Eo (2.168)
with
Ey= %/dspwpéa(O) = %/%d%wp. (2.169)

Ey is called the vacuum energy. Since there is an infinite number of modes,
the vacuum energy Fjy is divergent. Because physical observables involve
energy differences rather than the absolute value of the energy, the divergent
zero-point energy Fy can be dropped out. Then the Hamiltonian can be
rewritten as

H=H—Fy= /d3pwpa;ap. (2.170)

In the Hamiltonian Eq. (2.170), the creation operator is on the left of the
annihilation operator. We call this arrangement of operators as normal
ordering or normal product. We denote a normal product of the operators
A and B by : AB :. Thus Eq. (2.170) has the form

H= %/d% : [7“72 +(V¢)? +m2$2} :
= /d3pwpaLap, (2.171)

We can see that wy, is single-particle energy.

2.3.5.6  Momentum operator of free scalar bosons

Now let us turn to the momentum of the field.

P, = /d%@g = /d% (wa% — ngc) : (2.172)

Pt is defined as the momentum.

P—_p—_ /d%ﬂgﬁ. (2.173)
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In vector notation
P=- / d*zwV . (2.174)
The momentum operator of the field is given by
P=- / B (x,6)Ve(x,1t). (2.175)
It is more natural to use a symmetric form of momentum operator

P

; / LoV + V), (2.176)

which guarantees that P is a hermitian operator.
Using the commutator of ¢ and 7, we have

[6, P] = 10k, (2.177a)
[, Bx] = 0. (2.177h)

Therefore, the momentum operator P is the generator of space translation.
Using Eq. (2.83), we have

eiﬁ”ié)(xo, to)e—z‘ﬁizi _ qg(xo + X, tp), (2.1784a)
eiﬁﬂiﬁ(xo,to)e_i‘f’”i = (%0 + X, to)- (2.178b)

Thus eif3*" is the operator of space translation.
We use the expansion formulas for the field operators and get

- 1
P=-§/dsm{—i/dsp’wp,(&p,upf—dl, )/d3 (—ip)(apup—ajuy)

/ &®p(~ip)(apup—ahus)(—i) / d3p'wp,(ap,up,—a;,u;,)]

1 1 Y TR .
=——/d3p———wp(pa_pape et —palap—papd),

2 2wp
+p&T_dee2i“’Pt—+—pa plpe —Ziwpt —pa Gp~ papcfr +pa_p“r giwrt)
1 st s s
=§/d3pp(agap+apa;). (2.179)

It should be noted that the contribution involving d.pd, and aIpaL are
dropped out since the integrand is an odd function of p. We can see that p
has the meaning of single-particle momentum. The particles generated by
&L are also called the field quanta, which carry the momentum p and energy

wp = (p? +m?)Y/2, and are counted by the number operator 7ip = &L&p.
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2.4 The complex scalar field

2.4.1 Lagrangian of the complex boson field

We have discussed the scalar boson field with one component. This field
describes the simplest boson particles. The equation of motion for the
field is the Klein-Gordon equation. For the scalar boson field with one
component, there is a problem in its solution Eq. (2.125) of the equations
of motion. The terms corresponding to the annihilation operator 4(x,t)
and creation operator &' (x,t) are complex, which is not consistent with the
properties of particles without internal degrees of freedom. This problem
can be solved by introducing the complex scalar field with the internal
degrees of freedom. The equations of motion for the complex scalar field
have the solutions with the real annihilation operators &;(x,t) and creation
operators dj (x,t). We consider the scalar boson field with two components.
This field is equivalent to the complex field ¢ # ¢*, which corresponds to
a doublet of particles and antiparticles.
The covariant Lagrangian density, which is a real-valued function,
should be given by
*
00706 _

Oz, OzH

m*¢* ¢, (2.180)

where ¢ and ¢* can be treated as independent fields. This can be seen by
transforming ¢ and ¢* into two real field functions ¢; and ¢, with

1 *
$1 = —\/—5[(;5 + ¢, (2.181a)
¢ = —E[aﬁ - ¢*]. (2.181b)

Then we can go to the real valued fields and use the same procedure to
derive G; as in the last section. These two kinds of particles have the same
mass m and the Lagrangian density exhibits an internal symmetry under
phase transformation.

¢ = ge ™, (2.182a)
¢*' = pret® (2.182b)
with real phase a. The complex scalar boson field is important because it is
the basic constituent to construct boson fields with the SU(N) symmetry

and we can add interaction terms with other types of fields with the gauge
invariance.
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We have shown that the symmetry of spacetime translation is related
to the conservation of energy-momentum. In the following, we will show
that any continuous symmetry transformation such as Eq. (2.182) leads to
a conserved quantity.

2.4.2 Symmetry and conservation law

Suppose we have an infinitesimal transformation defined by the transfor-
mation in coordinates

', =z, + 0z, (2.183)
and the transformation in the field ¢,(x)
' (&) = a(2) + 0ha(2). (2.184)

If the transformations Eqgs. (2.183) and (2.184) leave the action integral
invariant, we say that the system possesses the symmetry defined by the
transformations Egs. (2.183) and (2.184). We introduce a variation that
keeps the value of the coordinates x fixed

§a(z) = ¢/4(2) ~ dal). (2.185)
8o (z) is also called the total variation, while the variation Spo(z) =
¢ . (&') — ¢a(z) is called the local variation. The two types of variations
have the following relation

8¢a(z) = ¢/ 4(z) — ¢/ (2) + ¢/, (2') — balz)
= 0¢a(z) — (¢/4()) = ¢/ o(2))

¢/,
= 8¢a(x) — Sgn 02"
= §¢pa(z) — gj“ Sz, (2.186)

In the derivation of Eq. (2. 186) azu is approximated by 5% because their
difference contributes only higher order terms. According to the definition
Eq. (2.185), we have

0 = N a¢a
@(SCﬁa(CE) =4 (——> . (2187)

dxH
Thus § commutes with differentiation 5%. The symmetry transformation
leaves the action invariant.

68 = / d*z'L'(z') — / d*zL(x)

= /d4m’5£(x) +/d4a:'£(:c) —/d%ﬁ(a:)

=0, (2.188)
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where
8L(z) = L'(z') ~ L(x). (2.189)

The transformation of the volume element in Eq. (2.188) is determined by
the Jacobi determinant

112
d4I/ — 8(‘T ) d4.’E
O(zH)
8(6z° 8(6z°
Ly
o(ee’) | o(sat)
= 6?0 ‘6z1 . dz
8(62%)
. 1+ J(%T
A6zt
=Q+ gﬁ)ﬁm (2.190)

The terms of higher orders have been neglected in Eq. (2.190). Thus
Eq. (2.188) becomes

w:/#mam+/&u@ﬁ$ﬁ

= /d4:c <5£(I) + wéw”) +/d4:c£(:c) 9(6z")

p AzH
= /d4:c {55@) + (E(:c)5z“)}
0. (2.191)

Oz
9
Ozt

dL(z) is given by the chain rule.

Sam:mmk%w+aamgc%>
L

9¢a

~ [%5280u0) - 5 (el bt

a OL(x . z) 0
dom (8(54)) Pale) + a%:qﬁi) 5o (00u())
OL(x) a oL(x =
-5 -0 ()i
[ 22 ] 1
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On the other hand,
68 = / ,d4x'£'(x’)— /Q d*zL(x)
- / dol(z) - / 4o L(z)
— / dz (L () - L(2)]
= / dizdL(x). (2.193)

In the derivation of Eq. (2.193), we have used Q" = , which is also appli-
cable to the case that the volume is large enough that the boundary part is
not important and the integration over ' is equal to the integration over
Q. Taking %f(—x) as a functional derivative on S = [ d*yL(y), we have

_ 68 _ /d4y SSE(y) _ 0L(x) 0 ( 0L(x)
0¢pa(z) dpa (1) Opa(x) Ozt \ 0(0,04(x))
We use the above equation to make the replacement
0L(x) N 0L(x) _ 48
0¢a(x) ”8(8u¢a($)) S¢pa()
in Eq. (2.192). Then we obtain
= a [ 8L(z)

0L(z) = 5= -——8(8@&)5%@)_ +

) . (2.194)

(2.195)

5S .
= S¢a(z
Tou@) )

_ 0 [ O (5¢a(x)- +68

" 9z |99t
Since the range of the integration can be chosen arbitrarily, the integrand
of Eq. (2.191) should be zero when 6S = 0. Thus we have

3¢a(x)- . (2.196)

£ [828 v
- a% [a?iib (6¢a(x) - %M”) —I—E(:v)&r“}
=0. (2.197)

We define the current density j*,

9L (z) (@) e N
50,00 7" (8(au¢>a)axv e £ ))‘5 . (2198)

T
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Then we have the equation of continuity
0 .

Eq. (2.199) is called Noether’s theorem, which states that each continuous
symmetry transformation corresponds to a conservation law. Expressing it
in terms of the time and space components, Eq. (2.199) becomes

% (2) + V- j(z) = 0. (2.200)

Then
J= /dSij(m) (2.201)

is a conserved quantity because of Gauss’s theorem.

2.4.3 Charge conservation

For the complex scalar boson field, the Lagrangian density has an internal
symmetry under the transformation Eq. (2.182). The infinitesimal form of
the transformation Eq. (2.182) is given by

¢'(z) = ¢(z) — iag(z), (2.202a)

o' (z) = ¢* () +iap* (z), (2.202b)
where a is an infinitesimal parameter. It is conventional to scale the in-
finitesimal parameter a out of the current j.

Noether’s theorem for this continuous symmetry transformation leads
to a conserved quantity we now call the charge

or . oL
J#sste == [ s (G550~ o)

= —i / Po(d 6 — o) =i / @o(6" 50 6). (2.203)

i

Q

2.5 Spinor fermions

2.5.1 Lagrangian

Now we turn to another way of constructing the covariant Lagrangian. We
use Eq. (2.106) directly without carrying out the integration over w. The
Lagrangian contains only linear time derivative term. Dirac had found
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out the covariant form for this type of Lagrangian in a genius way. The
covariant Lagrangian density has been found to be

L=p(ivhd, — myp = ipl + il Vo —myify,  (2.204)

where we have omitted the prime ' for the Lagrangian in Eq. (2.204) to
simplify the notation and use the conventional v, instead of ¢, to repre-
sent the field function for the spinor field. The field function v has four
components and satisfies the transformation laws of a relativistic spinor.
The adjoint spinor is defined as ¢ = ¢Ty°. * (1 =0,1,2,3) are the four
Dirac’s matrices, satisfying the algebra

YEAY 4 AP = 2pPY. (2.205)

and
AT =40, (2.2062)
A (2.206b)

We have also introduced o and 3 defined by 8 = 7% and & = 4%y. A set of
objects obeying the relations Eqs. (2.205) and (2.206) is said to construct
a Clifford algebra.

According to Eq. (2.104), we have

™= gz =iy’ (2.207)
and
G =m0 — L(T, ). (2.208)

Eq. (2.207) gives ™ = i%)’. Since 7 and v should be independent field
functions, ¢ should not be a real function. Similar to complex scalar field,
we need two independent real field functions ¢; and ¢,. We define

Y= 7 (¢ + id2), (2.209a)

Y= —(¢ —1i¢2). 2.209b
Then we have two independent complex field functions and we can treat
v and m = %' as independent fields. This is why the wave functions of
electrons are complex functions.
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2.5.2 The generator of time translation

The spinor 4 and ' = —ir are treated as independent fields, each having
four components. Using Eqs. (2.204) and (2.207), Eq. (2.208) for G,
becomes

G =91 (—ie- V + Bm)y
=7m(—a-V —ifm)p. (2.210)
Transforming ¢ and 7 in Eq. (2.210) into operators, we get the generator
of time translation

Gi(#, ) = /d%fr(—a.v—zﬂm)@, (2.211)

which does not contain the time derivative term and fulfills the causality
principle.

2.5.3 Dirac equation

For the spinors with internal variables, when we write out the indices
explicitly, the commutators Egs. (2.64) and (2.65) become
(Ya(x,1), 5(x, 1)} = i6a50°(x — X'), (2.212)
{(ha(x,1),a(x', 1)} = {#a(x, 1), Fa(x', 1)} = 0. (2.213)
This choice corresponds to the fermions. We will show later that the
alternate choice of boson commutators would lead to inconsistencies in the
formulation.
Using Eq. (2.81), we can derive the equations of motion

do(x,t) = i / P [{1e(x,6), Pl Dty - (X, 1)

— Fa(X ) atas - V/{Uo(x,1), ¥p(x, 1)}
+ im{%(xa t)? fra(x’, t)}ﬂaﬁlzjﬁ (xlv t)
— i (%', 1)as {0 (%, 1), P (x', 1)}

= /d%’ [—50063(x —xXNaas  V'iha(x',t)
— iMBad3(x ~ X)Bap (X', t)}

= (—a- V — imB)asls(x,b) (2.214)

or, in compact form,

o) a

i =, Gi] = —ia Vi + Bmap. (2.215)
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Similarly we have
or A R .
i— = [#,Gy] = —iV7- o — fm#. (2.218)
Thus
;00
ot
We can see that Eqgs. (2.215) and (2.217) are consistent. If one takes hermi-
tian conjugate operation on both sides of Eq. (2.215), Eq. (2.215) becomes
Eq. (2.217). Multiplying Eq. (2.215) by v = 3, we obtain the Dirac
equation in the operator form

=—z’V¢Jr o — mufﬁ (2.217)

(v, — m)db = 0. (2.218)
Introducing operator
v =9, (2.219)
we have for Eq. (2.217)
Diyh D, +m) =0. (2.220)

The arrow indicates that the partial derivative acts on the function of the
left.

2.5.4 Dirac matrices
From Eq. (2.205), we have
()% =1 and (v')*=-1, (2.221)

which shows that the eigenvalues of the matrix 4° are +1 and those of 4*
are +4. In order to be consistent with the condition that the eigenvalues
of 7% are =1 and those of 4* are +i, we take 4° as hermitian and ~' as
anti-hermitian. This selection is consistent with the condition that the
Hamiltonian operator is hermitian and has real eigenvalues, which can be
seen easily when we obtain the Hamiltonian for Dirac fermions later.

Eq. (2.205) also gives

7= (2.222a)
7 ==y (2.222b)

Taking the trace on both sides of Eq. (2.222), we obtain
Try = Tr(v"7%") = = Tr+", (2.223a)

Trvy' = —-Tr(v°v'7%) = -Tr+", (2.223b)
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which leads to
Tr+* = 0. (2.224)

The trace of a matrix is the sum of its eigenvalues. Trvy* = 0 means that
7%(+*) shall have as many eigenvalues of +1(+i) as those of —1(—i) so that
the sum of them is zero. Therefore, the order N of the matrix v* should
be an even number. For N = 2, we have the unit matrix

1 0
= (1 0) .
and three Pauli’s matrices

ol = ((1) é) , of= (? "é) , 0% = <(1) _?) (2.226)

as a set of independent basis. However, they are not enough to construct
~*. Thus the smallest possible order is N = 4. There are 16 independent
4 x 4 matrices. The representation of v# in 4 x 4 complex matrices is called
the spinor representation and correspondingly 1 is the column matrix with
four components, which is called the Dirac spinor.

2.5.5 Dirac-Pauli representation

The 16 independent matrices I'* can be constructed using v* and the unit
matrix I in the following way. We consider all the possible ways of multi-
plying v* together. Since (v#)? is equal to 41 or —1, we need only consider
the multiplications v#7*, y#v+y* and Y#y¥4*y? with p # v # X # p.
There is only one product of four matrices, which we denoted as ~v°

75 = iy ly 28, (2.227)
+5 anti-commutes with v* (4 =0,1,2,3),
{y*,7*} =0. (2.228)

There are four different products of three gamma matrices. They are v#+°
(1 =10,1,2,3). Since ¥" anti-commutes with each other, we have six prod-
ucts of two gamma matrices

o = %WWV]. (2.229)
Together with the unit matrix and four v*, we have the complete set of 16

matrices

{I.4*, 0" y*45, 45} (2.230)
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The most used representation of «y,, is so-called Dirac-Pauli representa-
tion which has the form

I 0 : 0 o
0 _ i ] . .

In this representation, 7' is diagonal. There are also other representations
which are equivalent to each other. If we choose v° as diagonal matrix, it
is called the Weyl representation.
Comparing Eq. (2.206) with Eq. (2.222), we have
At = O a 0 (2.232)
Thus the hermitian conjugate of o is

ot = 40gHv a0, (2.233)

The explicit form of ¢#* in the standard representation is given by

) ) y] .

o% =407 =4 (f] %) =id, (2.234a)
.. . ik o'k 0 ikwk
o =iy (1 — 6;5) = €7 0 ok ) = €L (2.234Db)
with
k

k — ov 0

Xt = (0 ak>’ (2.235)

where €% is the antisymmetric Levi-Civita symbol, which is totally anti-
symmetric with €123 = 1. ¥ is the double Pauli’s matrix, which can be
expressed in a vector form

0o

z= (" O) . (2.236)

From Eq. (2.234a), we have

) J
o = <fj ‘B) . (2.237)



42 Principles of Physics

2.5.6 Lorentz transformation for spinors
Now we consider the covariance of the spinor fermion Lagrangian density
in Eq. (2.204).2

A Lorentz transformation is expressed as

(2 = A*, 2", (2.240)

The spinor fermion Lagrangian density and Dirac equation should be co-
variant for any Lorentz transformation. Since Dirac equation is linear, the
transformation relation between ¢’(z') and () should be linear. Then we
have

W'(2') = S(A)y(), (2.241)

where S(A) is a 4 x 4 matrix. The components form of Eq. (2.241) is given
by

¥ o (2) = Sap(A) (). (2.242)
Covariance requires ¢/(z') to be a solution of the Dirac equation.
(i 0, — mpy' (') = 0. (2.243)

Multiplying the Dirac equation Eq. (2.218) from the left by S
S8, —m)p(z) = S(iv*8,57'S — m)y(z)
= (iSy*S718, — m)y'(z')

= (iSy"S7'AY 8, — m)y' ()

= 0. (2.244)
Comparing Eq. (2.244) with Eq. (2.243), we have
SyHSTIAY, = 4. (2.245)

Eq. (2.245) can be rewritten as
STIyHS = AF 4V, (2.246)

2The reason that Dirac demanded ~* obeying Eq. (2.205) is as follows: Since it is not
easy to see directly that the Dirac equation is covariant, it is natural to do some trying.
Multiplying the operator (iv#8, 4+ m) on the Dirac equation gives

2
If v# obey Eq. (2.205), Eq. (2.238) becomes

1
=00+ ) = = |1 000, | =0, (2209

(68" + my = 0, (2.239)

which is Lorentz covariant.
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An infinitesimal proper Lorentz transformation is given by
AF, =00, + Awty, (2.247)
where Aw#, is antisymmetric
Awt, = —Aw, M. (2.248)
Eq. (2.248) can be easily derived using the relation

AN A =6, (2.249)

Inserting Eq. (2.247), we have
A ALY = (8, + Awt ) (627 + AwyY)
= 52,007 + 02 AwyY + 6\ AW,
=34+ Aw,” + Aw”),

=0, (2.250)
which gives
Aw,” + Aw”, =0 (2.251)
or
A = —Aw"H. (2.252)

Under an infinitesimal Lorentz transformation, S{A) should have the
form

S(A)=1- iAw’“’ow, (2.253)
where o, is a 4 X 4 antisymmetric matrix.
Ouv = —Opp. (2254)

The factor —% in Eq. (2.253) is introduced for simplicity in notation, which
will become clear later. From Eq. (2.253), we have

STYA) =1+ iAw“”UW. (2.255)
Inserting Egs. (2.253) and (2.255) into Eq. (2.246), we have

(14 380 oas)y*(1 = 38w P00g) = (8,4 + A )y, (2.256)
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Neglecting the quadratic terms in Aw*", we have

v

%Aw“ﬁ(aag’y“ —Yoag) = Awtyy
= 0", Aw
= —ALUga(S“afyﬁ
= —Awﬁ"é“a'yﬂ

1
—g(Awﬁaaﬂwﬁ — Aw®P 5 )
1
= ~§Awﬁa(6“a’yﬁ — " 57a)

- %Aw"ﬁ (6" a5 — 8" va). (2.257)
Thus we obtain the relation
2i(6¥ av8 — 0¥ gva) = [v*, 0agl- (2.258)
The solution of Eq. (2.258) is given by

i
5 [ vs]- (2.259)
This solution of Eq. (2.258) for o,s is the same as that defined by
Eq. (2.229), where we have intentionally used the same symbol. Thus the
operator S(A) for an infinitesimal proper Lorentz transformation has the
form

Uag =

1
S(AwH) =1+ g[yﬂ,fy,,]Aw“”. (2.260)
We can also introduce the infinitesimal generators given by
) 1
(IuV)aﬁ = _g(alw)uﬁ = Z['Y;u”)’u]v (2-261)
where u,v = 0,---,3 are Lorentz indices and o, 8 = 1,--+,4 are Dirac

indices. Then Eq. (2.260) becomes
1

S(AwH) =1+ 2L Awh. (2.262)
2.5.7 Covariance of the spinor fermion Lagrangian
From Eq. (2.233), we have
ST =~087140, (2.263)
Since v'' (') = yt(z) ST, we have
P(@) = 0 (@)1 = 0T (@1°1°8"° = d(a) ST (2:264)
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Using Eq. (2.263), we have
F (@) (z') = ¢ (@) (@)
= ¢ (2)S" Sy(x)
= N (z)7°S7 Sy (x)
= (z)(z), (2.265)

which shows that 1) is a scalar. Similarly we can show that ¥v*¢ is a
Lorentz vector. Using Eqgs. (2.246) and (2.263), we have

@y () = 9 @y (@)
= ¥1(2)8"1°7#Sy(2)
= U(x)S™I 7S ()
= A Q(x)y ¥ (), (2.266)

which shows that ¥ (z)v*¢(z) is a vector. Since ¥(z)¥(z) is a scalar and

P(z)y*(x) is a vector, the Lagrangian given in Eq. (2.204) is a Lorentz
scalar and thus Lorentz covariant.

2.5.8 Spatial reflection

In addition to the scalar ¥ and Lorentz vector ¥y, we can also define
pseudo scalar and pseudo vector related to the spatial reflection.
A spatial reflection is defined by the following transformation

x' = —x, (2.267a)
t' =t. (2.267b)
The corresponding transformation matrix is
1 0 00
AP, = 8 _é _(1) 8 . (2.268)
0 0 0-1

The spatial reflection is one of the improper Lorentz transformation
because it can not be generated by means of infinitesimal rotations. We
denote the corresponding spinor transformation S(A) as P (P is for parity).
According to Eq. (2.246), we have

P7lyHp = A 4. (2.269)
Comparing with Eq. (2.268), we have
Ay =1, (2.270)
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Then we have

AFA\AM Y = PAH AV P (2.271)
which gives
3
ot =P Z nHr ¥ Pl (2.272)
v=0
or equivalently
Pyt p = phink, (2.273)

It should be noted that there is no summation on the right hand of
Eq. (2.273). The solution of Eq. (2.273) for P is

P =e¥q0 (2.274a)
Pl =740 (2.274b)

where ¢ is a phase factor. Using Eq. (2.232), we have
Pl =e7%A0 = p~1, (2.275)

The explicit form of the spinor transformation under the spatial reflection
is given by

W (X, t) = ¥'(—x,1) = Py(x) = 7 %%(x, ). (2.276)
Using Eq. (2.274), we have
PP = APei?n0 = _iPn0,5
= —P~® = det|A|P® (2.277)
or
P14 P = det|A]y. (2.278)

For a proper Lorentz transformation, S(A) contains only o,,. We note
P+ = i1 iy IRy =0, (2.279)
which leads to

1
" om] = 5 (Y =) — (Y =A% = 0. (2.280)

Since S(A) contains inly Oy, We have
[S(A),~°] =0, (2.281)
which gives
S(A)T15S(A) =45, (2.282)

Combining Eq. (2.278) with Eq. (2.282), we see that v° behaves as a pseudo
scalar.
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2.5.9 Energy-momentum tensor and Hamiltonian operator

The action should possess the symmetry of spacetime translation. Under
an infinitesimal spacetime translation, the variation of the action should be
zero. We have 5 = 0. Then similar to the derivation of Eq. (2.154), we
have the conservation of energy-momentum

9,08(x)=0 (2.283)
with the canonical energy-momentum tensor ©,, given by

oL oL
= Ihdadiiy~TOVA
55500+ g0t~

= J)m&/ll) - nuuz/;(i'yaaa - m)ll) (2~284)

O =

Using Eq. (2.284), we get the conserved energy-momentum vector
B = [0l = [ @aiinonn —ilino, ~mpw). (2259
The time component of this vector is the energy
Py = / Bz (i7°8) — i7°8y — iv - V + m)y
= /d%w*(—m -V + Bm)y. (2.286)

When we replace the field functions ¥ and %! by the operators 1[] and
¥!, we get the Hamiltonian operator

H=F = / Pz (=i - V + fm)ip. (2.287)
Using Eq. (2.207) and replacing the field functions by the corresponding

operators, we can see that Eq. (2.287) becomes Eq. (2.211). Therefore, the
generator of time translation G, is the Hamiltonian operator H.

Gy =H. (2.288)

From Eq. (2.285), we get the momentum vector

P=—i / BTV = — / dExx V. (2.289)
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2.5.10 Lorentz invariance

Since the action is a scalar due to the covariance principle, the action
as a scalar is invariant under Lorentz transformation (see Eq. (A.20) in
Appendix A). Under an infinitesimal Lorentz transformation, we have

dz" = dwFz, (2.290)
and )
6 = — 0w, (). (2.291)

Under an infinitesimal Lorentz transformation, §S = 0. According to
Eq. (2.198), we have the conserved current

oL '
Julz) = 6(65‘2) (—%5&),,,\0”)‘1/)(:5)) —@,ﬂ,&u”’\x,\, (2.292)

where we have omitted the derivative term containing a( 3# because it

is zero. Since dw¥* is antisymmetric, the last term in Eq. (2 292) can he
written as

1
0, 0w ey = §5w“(@wm - O,2Ty). (2.293)
Thus Eq. (2.292) becomes
. 1.,
Ju(@) = 500" Miua(2) (2.294)

with
OL(x) i
5@7’) (—-Q—GU)\) ’l/)(.z‘) (2295)

The conserved quantity is the antisymmetric tensor

MVA E/Mou,\dgill

= /dsx [90»% - Onzx + géiz,)) <—%Uu,\) @9(93)} . (2.296)

M,y is called the tensor of generalized angular momentum.
M, consists of two parts

Mx/)\ = Lu)\ + SV)\ (2297)

Mw//\(x) = Q[LAJ:F/ - em/m)\ +

with
L, = /d3$(90A$u — Opuy)

; 8 )
/d aa%( Y e ‘“@M

‘ 0 0
= z/d3x2p' (wy@ - m@) 0 (2.298)
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and

oL i 1
Su)\ = /dsmaao’(/} (—%Uy)‘> ’(/) = 5 /dS.T'(/)TUU)"(/). (2299)

The conservation of the angular momentum reflects the spatial rotation
invariance. For a spatial rotation, the indices take the values 1,2,3 for
and A. Since both L;; and §;; are antisymmetric, we can use vectors to
represent them. We define

1,
L* = 5€ KLy (2-300)
and
1,
Sk = 5€ 7k Si;. (2.301)

LF is called the vector of orbital angular momentum and S* is called the
vector of spin angular momentum. Using the vector symbol with compo-
nents L;(S;) = —L¥(S*), we have the three-dimensional vectors of orbital
and spin angular momentum

L=—i / Brpix x Vi, (2.302a)

1
S=-3 / Bt Ty, (2.302b)

() ()= (3) () 3-30+3). o

we define a spin § = % for Dirac fermions

For scalar bosons, ¢ is a scalar and thus d¢, = 0 under an infinitesimal
Lorentz transformation. Therefore, there is no spin for scalar bosons or
equivalently S = 0 for scalar bosons.

Since

2.5.11 Symmetric energy-momentum tensor

Noether’s theorem leads to conservation law. The density and currents ob-
tained in this way are not fixed uniquely because one can add some four
dimensional divergence terms without influencing the equation of conti-
nuity. For the canonical energy-momentum tensor ©,,, we can define a
modified tensor through

T (@) = O (x) + 0" Xcp, (2.304)
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where X, is an arbitrary antisymmetric tensor with respect to the first
two indices.

Xeupy = —Xpwv- (2.305)

The conservation law remains unchanged for the transformation
Eq. (2.304).

DT = 090, + OH 0 Y
1
= 8”6;111 + Eapam(me - X;u-w)
= 9"0,,
— 0. (2.306)

Also the total energy and momentum are not affected by the transformation
Eq. (2.304).

P, = /d%TS
= /dBm(®,°,+80x00V— ix"). (2.307)

Since xxuy is antisymmetric, x°%, = 0. Also we use Gauss’s theorem and
neglect the surface integral terms. Then we obtain
P, = [d*z00 =P,. (2.308)

The transformation Eq. (2.304) allows us to construct a symmetric energy-
momentum tensor T,,,,

Tuu = TI//J,y (2309)

which can be achieved in the following way. Since dw”? is any antisymmetric
tensor, the equation of continuity Eq. (2.199) can be written as

9, M** = 0. (2.310)
M#X in Eq. (2.295) can be written as
M# () = @M g” — @Vt 4 THv, (2.311)
We introduce
TIHY == IV VR (2.312)

Since x**¥ is antisymmetric in its fist two indices, 77" is antisymmetric in
its last two indices. Thus we have

PR R _ ). (2.313)
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Then x can be expressed in terms of 7.
1
an,u — 5(7_'9;11/ Lophvs Tuny). (2314)
Thus Eq. (2.304) becomes

1
T#(z) = O(x) + SOu(r + T4 — 7/%), (2.315)

Since X**¥ is antisymmetric in its last indices, we can set

TR = T, (2.316)
Then
TH(z) = 0" (x) + %8,;(2"‘“’ + XHvE B, (2.317)
Using Eq. (2.313), we have
THY —TYH = " — OYF 4+ 9, 5", (2.318)

Inserting Eq. (2.311) into Eq. (2.310), we obtain
DM = OHY — @YH 4+ §, L = 0. (2.319)

Comparing Eq. (2.318) with Eq. (2.319), we have
THY =TV, (2.320)

Thus T#¥ given by Eq. (2.317) is the symmetric energy-momentum tensor.

2.5.12 Charge conservation

The Lagrangian density of Eq. (2.204) has an internal symmetry. It is
invariant under the phase transformations ¢ — e and ¢! — yfe=i,
This leads to the conserved current-density j, in a similar way that leads
to the charge of complex scalar bosons.

e ., 0L oL
Ju =" GaugY ~ Gongt
We have included a factor e to conform with the ordinary definition of

electrical current of the Dirac fermion field. e can be considered as a unit
factor. The conserved quantity is thus the total charge

¥ = ey (2.321)

Q= /d%jo(x, t) = e/d%ww. (2.322)
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2.5.13 Solutions of the free Dirac equation
2.5.13.1 Plane wave expansion

The Dirac equation is a wave equation. Thus we have the particle-wave
duality for the Dirac spinor fermions. The solutions of the free Dirac equa-
tion for the field operator @(x,t) can be expanded in a complete set of
plane wave functions. First, we consider the solutions of the classical Dirac
equation which is the equation obtained by replacing the operators with
the field functions in Eq. (2.218). The solutions are given by

v 0) = (2n)H [T ()it 2. (2329)
P

The index r denotes the four independent solutions. » = 1,2 correspond
to the solutions with €, = +1, while » = 3,4 correspond to those with

¢, = —1. Inserting the plane wave solutions into the Dirac equation, we
have
(8, — m)¢) (x,1) =0, (2.324)

which gives
("*pu — erm)wr(p) =0, (2.325)

where p, = (wp,p). With a special notation 4 = +*A, designed for the
calculations involving Dirac fermions, Eq. (2.325) can also be expressed as

(# — erm)w,(p) = 0. (2.326)

The existence condition of a nontrivial solution to Eq. (2.326) is det(p —
e-m) = 0, which gives

m? +p* —ps =0. (2.327)
Thus we have

wp = Vm? + p2. (2.328)

2.5.13.2  Dirac unit spinors

wy(p) (r = 1,2,3,4) in Eq. (2.325) are called the Dirac unit spinors. In
the rest frame of particle, p = 0. Eq. (2.325) becomes

(I —e)l 0

m(y°’ — e )w - (0) =m < 0 —(l+e

) I) w(0)=0. (2.329)
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We can express the Dirac four-component spinor w, in terms of two
two-component spinors £ and n. The spinors £ and 7 are usually called the
Pauli spinors. The solution of Eq. (2.329) is given by

1+e¢,
U(O) = 1 _2 €r
2

For r = 1,2, ¢, = 1. The solution has the form

o= (%) .

There are two degenerate solutions for £. We usually choose two indepen-

dent Pauli spinors
1 0
£ = <0> and & = <1>, (2.332)

which obeys the normalized condition

6;65’ = 553’- (2333)

£
n

(2.330)

For r = 3,4, ¢, = —1. The solution has the form

o= (%) 231

The two degenerate solutions for 1 are usually chosen as the following two
independent Pauli spinors

m = G) and 72 = (_01> (2.335)

which obeys the normalized condition

Mins = bss. (2.336)
£, and 7, are related conventionally by n; = —ic2¢,. Then we have four
unit Dirac spinors in the rest frame
1 0 0 0
0 1 0 0

wy(0) = ol w2(0) = ol w3 (0) = ol wq(0) = | (2.337)
0 0 1 0

They are also the eigenfunctions of

a3 0
U3 =012 = <03 UB) (2.338)
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with the eigenvalues of +1.
Eaw,(0) = (£1)w.(0). (2.339)
For r = 1,4, the eigenvalue is +1, while for r = 2, 3, it is —1.
Now we consider the solutions for p # 0. For r = 1,2, Eq. (2.325) has
the form
(wp —m)§ —o - pn =0, (2.340a)
o - pé — (wp +m)ny = 0. (2.340b)
The solution of Eq. (2.340) is

-_9Pp
" Wp +m

3 (2.341)

Then we obtain the Dirac unit spinors in terms of the Pauli spinors

£T‘
w(p)=N|_o-P

wp +m

(2.342)

&)’

where N is the normalization factor. Similarly, we have the Dirac unit
spinors w,(p) for r = 3,4

o-p
we(p) =N' | wp + m'" (2.343)
N

with 7/ =r — 2.
With the appropriate choice of the normalization factors, the Dirac unit
spinors obey the following orthogonality and completeness relations:

wl, (P (6rp) = 26,1, (2.344a)

Wy (P)wr(P) = €-0rpr, (2.344b)
4

;wra(erp)wilg(fv-p) = %5(1[-}, (2344C)
4

Y €rwra(D)irs(p) = bas. (2.344d)

r=1

To fullfill Eq. (2.344), the normalization factors should be chosen as

N=N = ,/%. (2.345)
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The explicit forms of Egs. (2.342) and (2.343) are then given by

where

1

— 0

_ wP m Pz
wi(p) = V. 2m wp +m
_P+
wp +m

_ Jwpt+m jm
wa(p) = 2m wp +m

—D=z

wp +m

_ Jwp+m [ TP+
wlP) =\ "o | wptm

-1

D+ = Pz £ 1ipy.

They can also be expressed in a compact form

&p+m

wr(p) = 2m(wp +m)

D
Wp +m
wp +m 2
w3(p) = “om wp +m

wr(0).

(2.346)

(2.347)

(2.348)

(2.349)

(2.350)

(2.351)

One can easily check that Eq. (2.344) guarantees the correct normaliza-
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tion to delta function

/ Byl T () (x)

1 m2 ' '
:/d3$(2ﬂ')3 Wpr e‘l(frwp‘er’wp’)teq‘(erp_erlp )ij‘/(p,)wr(p)
p'“p
m? —i(erwp—ewp )t £3 "ol !
_ — e rWp € Wp! )T § (e,rp — €P )wr,(p )wr(p)
pWp’
m2 —i(erwp—€rwyr )t £3 7/ 1
_ — e rWp =€ pl )t § (p —ETETfp)wr/(erer’p)wT‘(p)
p¥p’
5 (p — p), (2.352)

where €2 = 1 is used.

2.5.13.3 Plane-wave expansion of field operators

Since ¢, = 1 in y’)l(,r)(x,t) forr =1,2 and ¢, = —1 for r = 3,4, in compar-
ison with Eq. (2.126), l()r)(x,t) for r = 1,2 correspond to the expansion
functions for annihilation operators while @bg) (x,t) for r = 3,4 correspond
to the expansion functions for creation operators. We form the plane-wave
expansion of the field operators by

2 4
P(x,t) = /dsp {Zé(pm)wﬁf)(x,t) + > di(p. )l (x,t)

r=3

-/ (;?)) \/? (3 oo (e
P =1

+ Z dAT(p,r)wr(p)e‘ierp'z}. (2.353)

b and bl are the operators for particles. d and d' are the operators for
antiparticles. The names of particles and antiparticles are just the conven-
tion. We have two kinds of particles and we need two names to distinguish
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them. The hermitian conjugate field operator is given by

100 = [ |30 e 000+ 3 )

2
=/ %\/;[ZE P ) (P e
2

+ Z d(p, r)wr(p)fyoe“rp'z]. (2.354)

r=1

2.5.13.4  Creation and annihilation operators in p-space

We can invert the expansion by projecting on a plane wave using Eq. (2.352)

/ Pz (x, (. 1)

= /d%’[i: b(p',r') + 24: ciT(p',r')} /d%@[)“”(x t)w( (x,t)

r'=1 =3
2
/da/[z (p,r") +ZdTp’ } 8,108%(p — P)
= TJ_3
| b(p,r) for r=1,2
- {CZT(p, r) for r=3,4 (2.355)

or

Bz [m . b(p,r) for r=1,2
terp T rT =< L (2.3
/(%);21 e (P)¥(x.1) {df(pvr) for r=34 (2.356)

Similarly we get

Ep,r) for r=1,2 - (2.357)



58 Principles of Physics

Then the commutation relation of b and b is given by
{b(p,r), b (0", ")}
= [ [ ol o uG 6 a0, 3106 0)
/d3 DT (%, )05 ) (%, )5
= §. 83 (p — p'). (2.358)

Also we have

{d(p,r),dl(p', ")} = 6,1 6% — ). (2.359)

Similarly, other anti-commutation relations can be deduced.
(b(p,),b(p’, ")} = {b!(p, ), b1 (", 7")} = 0, (2.3602)
{d(p,r),d®’, ")} = {d'(p,7),d"(p',7")} = 0. (2.360D)

2.5.14 Hamiltonian operator in p-space

We can express the Hamiltonian operator by b, bf, d and df. From
Eq. (2.287), we get

H= /d‘o’xQZ)T(x, t)(—ic - V 4 Bm)(x, t)

/ds /d3’ DIRCES r>/d3w§;'”(—m-V+5m)¢g>

rri=1,2
+ Y d,dp.r) / Pzv N —ia- V4 pmyug)]
rr/=3,4
/d3 /d3 / Z bt (p’,r") )erwp/d%wf,’;'”(x)wff)(X)
rri=1,2
+ Y d@, ) (p,r)erwp / d3xwf,7,”()c)w§f)(><)}
rr/=3,4
/d3 Z wp p, Z wp (p,r)d'(p,r)). (2.361)
r=1,2 r=3,4

In the derivation of Eq. (2.361), we have used Eq. (2.324), which can be
rewritten as
(—ia- V + sm)p{(z) = i6oy () (2) = wpypl(z).  (2.362)

The terms involving }-,_; 53 ,/_3, do not contribute due to &, in
Eq. (2.352).
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2.5.15 Vacuum state

To make Hamiltonian operator a positive-definite, we use the anti-
commutator Eq. (2.359) and get

A= /d3 pr (p,7 Zw (5(0) - d'(p.7)d(p, )|

/d3 {pr (p,r p, +prdT (p,r )J(p, r)] + Ep, (2.363)

where

Eo = —8(0 /depr / :;:3 /d%iwp. (2.364)

E, is the energy of vacuum, which is unobservable and can be subtracted
from the Hamiltonian. The physical vacuum is defined to be the state which
contains neither particles nor antiparticles

b(p,7)|0) = 0, for r =1,2, (2.365a)
d(p,r)[0) =0, for r =3,4. (2.365b)

For the momentum operator, we have
P= -—i/d%zﬁf(a:)VzZ)(a:)
=Y [ @pp(E 0. )p.5) + d' (0. )b ), (2.366)

which means that each particle created by ET(p, ) or antiparticle created
by d'(p, s) carries a momentum p.

2.5.16 Spin state

We consider the operator ¥°1f, where n is an arbitrary space-like unit vector
(nuyn* = —1) being orthogonal to the four-momentum vector p, i.e.

pun* = 0. (2.367)

In the rest frame, p = 0. Eq. (2.367) gives n® = 0. Then n-n = +1.

We take the z-axis of the rest frame to be in the n direction. Thus n#* =
(0,0,0,1). In the standard representation of the v matrices, we have

g3 0
2ok = Py = ( o 3> . (2.368)

g
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The meaning of Eq. (2.368) is that the spin z direction assigned to the n

direction. Using Eq. (2.368), we have

5 _Jw(0) =13
Ve (0) = {—w,.(O) r=2,4"

(2.369)

Since v51t is a pseudo scalar, which is Lorentz covariant, Eq. (2.369) should

hold in any frame. We have

5 _Jw(p) r=13
Vw, (p) —{ 94"

’“wr(p) r=4,

When the momentum p # 0, we can choose n as

n:(lg,w_pg)
m’ m |p|

Using (v - p)? = —p?, we have

Yot =+°(7"no — v - n)

P wp P
=" (ﬁ/‘)'——h’y-—p“)

m m |p|
57,012 P Wwp 5.0 1 2
=)y = — (P
plm 7 o'’ P

- P 1
=777 e’ e )
_y.P?
p|m

In the derivation of Eq. (2.372), we have used the relation

ol
E: :50‘
(7 0) ="

According to Eq. (2.326), we have
Py

P
. —wy =¥ —cw-(p)
ol (P) (p)

p|
Comparing with Eq. (2.370), we have

we(p) r=1,4

p _
> —wr(p)—{—wr(p) r=2,3

|

(2.370)

(2.371)

(2.372)

(2.373)

(2.374)

(2.375)
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Using Eq. (2.375), we can evaluate the operator of the spin projection in
the direction of motion.

5. P _1 [ 5 it s P
S =3[ s P

/d‘”‘p—[z b (p,#")b(p. r)w], (p)E-%wr(P)

r=1.2

+ Y o) el @)% L (p)

oyl pl
=34

d*pbt(p, 1)b(p, 1) — b’ (p, 2)b(p, 2)
_an> (p,3) +d(p,4)d" (p, 4))
2 d*plbt(p, 1)b(p, 1) — b' (p, 2)b(p, 2)

+d'(p.3)d(p.3) — d'(p,4)d(p,4)] + So. (2.376)

where Sy is the total spin of vacuum and can be subtracted. Eq. (2.376)
shows that » = 1,3 gives positive sign for spin and r = 2,4 gives negative
sign.

—

3)
b

\

To make consistency with the notation using spin s, we introduce a set
of new operators

b(p.s) = b(p, 1), (2.377a)
b(p,—s) = b(p,2), (2.377b)
d'(p,s) =d'(p,3), (2.377¢)
d'(p,—s) =d'(p,4). (2.377d)

We also introduce u(p, s) and v(p, s) for the unit Dirac spinors

u(p, s) = w1(p), (2.3784)
u(p, —s) = wa(p), (2.378b)
v(p, ) = ws(p), (2.378¢)
v(p, —s) = wa(p)- (2.378d)

In the new notation, the anti-commutation relations are given by

{6(}), 3)» BT (p/7 Sl)} = 653’63(13 - P/)-,
{(i(p, 3)& df (p/) S/)} = 635’63(1) - p/)'
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The solutions for the field operators become

Y0 = Z/ <§;§) \E

[b(p, s)u(p, s)e™*< + d' (p, s)u(p, s)e*]. (2.380)

Pl(x1) = Z/ JZN?,:

b (p, s)u(p, s)7°e™® + d(p, s)v(p, s)7y°e~""7]. (2.381)

and

The unit spinors satisfy the following free Dirac equations

(p —m)u(p,s) =0, (Hp+mv(p,s)=0 (2.382)

and
u(p,s)(p—m) =0, o(p,s)(p+m)=0, (2.383)
where p = p*y,.

2.5.17 Helicity

In terms of u and v, Eq. (2.375) takes the form

- ﬁu(p, s) = su(p, 3), (2.384a)
3. %v(p, s) = —sv(p, s). (2.384b)

with s = £1. We call %E . % the helicity operator for a spin % particle.
Eq. (2.384) shows that u(p, s) and v(p, s) are the eigenstates of the helicity
operator. The eigenvalues of the helicity operator are :I:%.

The eigenstates with the positive (h = +%) helicity are called the right-
handed states and those with the negative (h = —1) helicity are called
the left-handed states. When the spin is oriented opposite to the direc-
tion of momentum, we get the opposite helicity. Thus u(p, 1) and v(p, —1)
(or equivalently u(—p,~1) and v(—p,1)) are right-handed states, while
u(p,—1) and v(p,1) (or equivalently u(—p,1) and v(—p,—1)) are left-
handed states.

2.5.18 Chirality

v5 is called the chirality operator. Since (v®)? = 1, the eigenvalues of ~°
are =1. The eigenstate of 7> with eigenvalue of +1 is said to have a positive
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chirality (right-handed) and that with eigenvalue of —1 is said to have a
negative chirality (left-handed).

Since v°[(1+7°)¢] = (1+7°)p and ¥°[(1-1°)¢] = (1 =%y, (1£9°)0
are the eigenstates of v°. We denote

1

vr = (1L +7")0, (2.385a)
1 _
vr =301 -7). (2.385b)

The Dirac spinor ¢ can be decomposed into the left-hand field ¢ = %(1 -
+?) and the right-hand field ¥ = %(1 +~5)1. 9 and g are called the
Weyl spinors.

2.5.19 Spin statistics relation

It should be noted that if we use the commutation relations for bosons,
through the similar deduction for Eq. (2.359), the commutation relation
for d and d' becomes [d(p,r),d! (p',7")] = —6,+6%(p — p), which gives a
wrong sign. It seems that one can change d into creation operator and d'
into annihilation operator to eliminate the wrong sign problems. However,
it would make dAJ contain only annihilation operators and P! contains only
creation operators which contradicts with the definition of ¢ and ' given
by Egs. (2.62) and (2.63). Thus spinor particles can only be fermions.

There are also the positive-definite problem for the Hamiltonian opera-
tor if we use the commutation relations for bosons. Hamiltonian

H= Z/dspwp[z’T(PvS)’;(P,S) —df(p, 5)d(p, 5)] (2.386)

can not be transformed into a positive-definite operator by reordering d
and df, which is unphysical in some sense.

2.5.20 Charge of spinor particles and antiparticles

From Eq. (2.209), we can see that both spinor particles and antiparticles
are composite. We will show that they carry the opposite charge.

The charge of the particles and antiparticles can be calculated using
Eq. (2.322). The conserved charge is given by

Q= / Bri®(z) =€ / Szl (2.387)
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Inserting Eqs. (2.380) and (2.382) into Eq. (2.387), we have
d3 / m2
3
_e/deZ/ / .
x (b1, )l (', ) + d(p Syt (07, )]

x [b(p, s)u(p, s)e~"= + d' (p, s)u(p, s)e™*]
=€ ZZ/dspwﬂ[BT(pysl)B(p,S)UT(p,sl)u(p’ S)
s s P

+d(p,s)d!(p,s)v!(p, s )v(p, s)
+ b (~p, )l (p, s)ul (=, & )v(p, 5)e?

+d(-p )b( )UT( 8 )u(p, s)e” 2]

D3 / 95, (o) + d(p. 5)d(p. )]

=3 [ lb o, ip0) o, )p ] + Qo (2359)

wef@for o

Qo is the charge of vacuum, which is not observable. Eq. (2.388) shows that
a spinor particle carries a charge of 4+-¢ and a spinor antiparticle a charge
of —e. Their charge are opposite.

with

2.5.21 Representation in terms of the Weyl spinors

We have seen that the Dirac spinor field 4 with four internal variables can
be decomposed into two fields with two internal variables, the left hand field
Y¥r = 1/2(1 — 4°)y and the right hand field ¢ = 1/2(1 + v°)1». We have
¥ =1 + ¥gr. Using the Weyl spinors, the kinetic term in the Lagrangian
density Eq. (2.204) can be expressed as

Yiy" O, = Yrivt 0,1, + ViV O, ¥R (2.390)

If we consider only the kinetic term and do not include the mass term which
is similar to the interaction term, the Lagrangian density Eq. (2.204) can be
expressed as a summation of the terms, having the same form as that using
Dirac spinor field functions, contributed by the two types of independent
Weyl spinor field functions ¥y, and r. All the derivations for Dirac spinor
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fields can thus be similarly applied to the Weyl spinor fields. Using the
Weyl spinor fields, the mass term in the Lagrangian density Eq. (2.204)
can be expressed as

mh = m{YLr + YrYL). (2.391)

The mass term describes the interaction between the left hand field v,
and the right hand field ¥g. Therefore, the mass term should also be
considered as the interaction term. The Weyl spinor fermions are the more
basic particle units. The Dirac spinors have the order N = 4. The spinors
with the order N > 4 can be consider just as the composite of the Weyl
spinors or Dirac spinors.

2.6 Vector bosons

Now we consider the vector fields. First we turn to the massive vector field,
which is simpler than the massless vector field.

2.6.1 Massive vector bosons
2.6.1.1 Lagrangion

There is a possibility of constructing covariant Lagrangian defined in
Eq. (2.107) by using vector field. The only possible covariant Lagrangian
density for massive vector fields without interaction term is given by

1 1

L= —ZFWF‘“’ + §m2A”A“, (2.392)

where A* is a vector function in spacetime.
FBY = grAY — 0¥ AX. (2.393)

Other forms such as

c=-lo, 4000 £ 24,40 2.394
= 7%y +§m i (2.394)
is equivalent to the Lagrangian density in Eq. (2.392) because it can be

shown that , A* = 0 (Eq. (2.416)) for the field described by the Lagrangian
Eq. (2.392). We add a term —%(8,4#)? to the Lagrangian in Eq. (2.392).
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The Lagrangian density in Eq. (2.392) becomes
1 , 1 , 1,
L= —ZF,,,,F“ — —2—(8#14“) + ;m AL AF

1 1
= —-EaﬂAua“A“ + §8HAL,8”A“ - %BMA"&,A“ + %mQA,LA“

—%B,LAVEWA” + %8,L[AL,(8"A“) —(9,A)AH] + %mzAMA“
1 1
= =50, A, 0" A + EmzA#A“. (2.395)

In the derivation of the last line of Eq. (2.395), we have omitted the term
30,[A, (0" A*)— (3, A”) A¥] because it is a four-divergence and does not con-
tribute to the action integral. Thus the Lagrangian density in Eq. (2.394) is
equivalent to the Lagrangian density in Eq. (2.392). One may put a factor
(A, A*) before F,, FF*¥. But this factor can be merged into the metric
g, when we use the curved spacetime.

2.6.1.2 The generator of time translation
We will show that the Lagrangian density Eq. (2.392) is related to the
following generator of time translation G,

Go= [way [ﬁ2+<vw>2+m%z+#<vﬁ>2 L (2:39)

which does not contain the time derivative term and thus satisfies the

causality principle. ¢ in Eq. (2.396) is a vector operator in three-

dimensional space. It should be noted that ¢3 can not be a four-dimensional

vector in spacetime because there is no Ag term in the Lagrangian density

Eq. (2.392). Thus we consider the case of & as a vector in three-dimensional

space and construct a four-dimensional vector A¥ in the following way.
First we define a vector E which satisfies the following equation

. 1

¢é=-E+ WV(V -E). (2.397)
We then introduce the four-dimensional vector

A¥ = (AO,A) = (AO,¢)) (2.398)
with

A= -—=V.E. (2.399)
m
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We have changed the notation ¢ to A in Eq. (2.398) because the vector field
describes the photon field when mass term is zero and A is the notation we
usually used. Using notation A, we write G; as

1 1
G = /d3x§ {71'2 +(V x A)? +m?A? + W(V ~m)?| . (2.400)
In terms of A, Eq. (2.397) has the form

: 1
A=-E+-—V(V-E). (2.401)
m

2.6.1.3 Deriwing the Lagrangian from G

Now we prove that G; in Eq. (2.396) leads to the Lagrangian given by
Eq. (2.392). We have three internal variables for the field operators, The
commutators for the vector boson field are

[Bi(x,t), 7;(x, £)] = i0:;8% (% — x), (2.402a)

[(fgi (X, t)a éj (xlv t)] = [frl (X, t) s ﬁ-_'] (xlv t)] =0. (2402b)
We have used the commutation relations for bosons. If we use the anti-
commutation relations for fermions, similar to the scalar field, we can show
[6i, G¢] = 0. Then we can not obtain an equation of motion from ét. Thus
the vector fields can only be boson fields.

We will show that after carrying out the integration over 7, we can get
a covariant Lagrangian. From Eq. (2.401), we have

E=-VA4, - §A. (2.403)
We also define
B=V x A. (2.404)

We can express Lagrangian density £ in terms of E and B
1 1
L= 5(E2 -BY) + 5nz?(Ag —~ A?). (2.405)

Inserting G, into Eq. (2.107) and integrating over 7 using the Gaussian
integration formula, we have for L

1., 1 1
L= [dz|-=E-A-=-B? - —m?A?
/dz( 5 5 M

1 1 1
= [diz |—--E. (-E— VAy) — -B? — —m?A?
/dw{ 5 ( 0) 5 2mA
=/d4w 1E~VAO+11~32—1B2—1m2A2 (2.406)
2 2 2 2 ' ‘
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In the derivation of the first line of Eq. (2.406), we have used Eq. (2.401).
Using

E- VA=V (E4y) — Ay(V-E) =V (EAy) + m242, (2.407)

we have

L:/d%[

1 1.
= /d4x {iEz - §B2 + %mz(A?) - AZ)}

1
V. (EAy) - SE? - 5B+ L2z - Az)}

[N

2 2

1
_ / d'o (—4FWF“ + §m2A,LA“> . (2.408)

The divergence term V - (EAg) has been dropped out because it yields
only surface contribution. Therefore, Gy given by Eq. (2.400) leads to the
Lagrangian density £ in Eq. (2.392).

2.6.1.4 The equations of motion

Using the generator of time translation G, given by Eq. (2.396), we can
obtain the equations of motion. Using Eq. (2.81) and V x V x A =
V(V - A)—VZ2A, we have

OA . . (. 1 X
o = [A, G =1 (7\' - —W?V(V . w)) , (2.409a)
i%—? = [#,G) = i(V2A - V(V - A) - m?A). (2.409b)

Comparing Eq. (2.409a) with Eq. (2.401), we can see that # = —E.

We can define a four-dimensional vector 7, = (0, —FE;). Then 7# =
(0, E*). The four dimensional vector 7# = (0, E?) is the one used in the
ordinary field theory on the vector field.

2.6.1.5 Hamiltonian

Now we consider the energy density

ac

_ 00 _
H=0 000 A,

A,~L
Op A 1 uv 1 o n
=—_F IJ'+ZFP'VF —§m AP'A

=-E-A- é(E2 - B?) - —;—mz(Ag — A%, (2410
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We have used the following formula in the derivation.
oL

B0y A

Using E = —V Ay — dsA and Eq. (2.407), we have

=-F%=F" (2.411)

1.
H=-E (-E-V4)+ 5(—E2 + B* +m2A?) - %mZAg
1
= 5(E2 + B2+ m2A? + m?A2) + V - (EA). (2.412)

Dropping out the divergence term because it yields only surface contribu-
tion, we have

H= /d%% {EQ +(V x A2+ m?A% + #(V : E)Z} . (2.413)
Comparing Eq. (2.413) with Eq. (2.400), we can see
Gi=H-= /d%% [Ez +(V x A2 +m2A% + #(v : E)Q] . (2.414)
Applying V- on both sides of Eq. (2.409b), we have
V.E=V.(m?A), (2.415)
which gives

8, A" = 0. (2.416)

2.6.1.6 Fourter decomposition solution

The equations of motion for vector bosons form a wave equation. Thus we
have the particle-wave duality for vector bosons. We can use the following
plane wave basis to expand the solutions of the equations of motion.

AL (kN z) = Nye 7t =kex)e (0 3) (2.417)

with
1

- V2w (2m)3

where k is the wave vector and wy = V k? + m2. The four dimensional
vector is defined as k = (wk, k). €,(k, A) denotes a set of four-dimensional
polarization vectors that plays a similar role as the unit spinors » and » in
the plane-wave decomposition of the spinor field. In the four polarization

(2.418)

vector €,, there are three space-like and one time-like ones. It is general to
define the polarization vectors with respect to the direction of wave vector
k.
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2.6.1.7 The polarization vectors

Without losing generality, we demand that the polarization vectors are
orthonormal, satisfying

€ulk, Ne" (k, X) = man. (2.419)
We select two space-like transverse polarization vectors
e(k,1) = (0,e(k, 1)), (2.420a)
e(k,2) = (0,e(k,2)) (2.420b)
with the condition
ek,1) - k=¢€k,2)- k=0 (2.421)
and
e(k,i) - ek, j) = d;;. (2.422)

We choose the third polarization vector A = 3 to be in parallel to the
direction of the wave vector k. To specify the zero component of e(k, 3), we
impose the condition that the four-vector e(k, 3) is orthogonal to the wave
four-vector k,

k*e.(k,3) = 0. (2.423)
The components of this longitudinal polarization vector is given by
k| k ko
£,3)=(—,——). 2.424
(9) = (o i) (2424)

For the fourth time-like polarization vector with index A = 0, we can use
the vector k to construct it
1
e(k,0) = Ek' (2.425)
Apparently, e(k,0) is orthogonal to the other three space-like polariza-
tion vectors €(k,7). The completeness relation for the polarization vectors
is given by
3 1
D ek, New (b, A) = 1,0 (2.426)
A=0 ,
Eq. (2.426) is a tensor equation. Thus we need only show that Eq. (2.426)

holds in the rest frame because a transformation would generalize it to any
frames.
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In the rest frame of the particles, the only nonzero component of k* is
the time component. Only €,(k,A) with A = 0 has a time-like component.

Thus
gnm#(k, Neu(k, A) = (é)u (é)y - 23: (Sl>u (2); (2.427)

=1

(i) If 4 = 0 and v = 0, the right hand of Eq. (2.427) is equal to +1. (ii)
If o =0 and v = i(or p = i and v = 0), the right hand of Eq. (2.427)
is zero. (iii) If both indices are spatial(y = ¢ and v = j), the right hand
of Eq. (2.427) becomes — S5, €;(k, 1)e;(k,1). The ordinary completeness
relation for a orthogonal basis in three dimensional space gives

3
> ek, ek, 1) = 6. (2.428)
=1

In summary of the results in (i), (ii), (iii), Eq. (2.426) holds for all x and v.
For the three physical polarization states, the completeness relation con-
tains an extra term and reads

3
> eulk, Dey (k1) = — (mw - #k#k,,) . (2.429)

=1

Using the basis functions A*(k,A;z), the field operator A* can be
expanded as

/dakz aA*(k,l;x) + A“*(k,l;:v)]

/ Z [axie” (k, De™ ™ + al et* (k, )e=]. (2.430)
\/20.11.( 27‘(

A*(z) constructed by Eq. (2.430) is hermitian, which corresponds to a
real-valued field. If one wants to describe a vector field containing multi-
components with internal symmetry such as charged vector field, we need
to replace it by the expansion

3
A (z) = /d3k S oAt (e, bz) + b AR (e L), (2.431)
=1

where the operators d;y and BLZ describe particles and antiparticles, respec-
tively. In the following, we will concentrate on the neutral field described
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by Eq. (2.430). The treatment can be easily applied to the charge field
described by Eq. (2.431). The operators as three-dimensional vectors for
the vector bosons have the following expansion:

Br S .
= [ ———= ek, (e + a) e 2.432
| o > el (o ) (2432)
where e(k, !} are the polarization vectors described by the spatial part of

Egs. (2.420), (2.421) and (2.424}. the corresponding canonical conjugate
field 7r is given by

ﬁ(m) = aoA + VAO
Z —iwe(k, 1) + ike®(k, )]

Ay

» (akle ik-z _&Ll zk~m)

“ke _ale T, (2.433)

/\/szkekl dyre
k

where €(k, () is the modified polarization vectors given by

ek, 1) = e(k,1) — ikeo(k, )

Wk
= e(k,l) — £k e(k,!). (2.434)
wi
The relation
k-elk,l) =wie® —k-€=0. (2.435)

has been used in the above derivation. Eq. (2.435) is called the transver-
sality condition.

2.6.1.8 Commutation relations

Now let us derive the commutation relations of aix; and dll. We define a
scalar product of A(z) by

(A(z), A'(z)) = i / 00 AP (x) B AL (), (2.436)

where

ABy A = A(ByA") — (B A)A'. (2.437)
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The scalar product of two plane wave components is given by

et (k1) eulk,l) ik’-z‘gge—ik-z

(A(K, 1), Ak, 1)) =i [ d°z

V2w (27)3 /2wy (27)3
= 83 (k" — k)e* (k. 1e,(k,1)
= &K — k). (2.438)
Similarly, we have
(A* (K, 1), A*(k, 1)) = —8* (K = K)nu, (2.439)
and
(AK, 1), A*(k, 1)) = (A* (K, 1), A(k,1)) = 0. (2.440)
Using the above relations and 7y = —1, we can project out the annihi-
lation and creation operators
i = (A(K, i / SpAM (k) Ay(z)  (2.441)
and
al, = (A*(k,0), =i / Prat (kD)o Ay (z).  (2.442)

Inserting the plane wave, we get

dkl = —i/dsx[A“* (k, Z)aoAu (:E) — 80A“*(k, Z)A”(x)}
. dS‘r ik-z A . A
=~ | ———==e*(k, )" [0 Au(x) — iwkA,(z)].  (2.443)
V2w (2m)3
We should express the expansion in terms of the three-dimensional field
operators A and #:

/ d*z

—i | ———e¢

V2w (27)3
x (eoang —€- 80A - iwkeOAO + TWKE - A) (2.444)

Using 84g = —V - A and —&A = —# + V 4, Eq. (2.444) becomes

ik-T

/ dS.'E ik-z
-1 | ———=e
\/ ka(27r)3

x (—"V A —e-#+e- VAg — iwne® Ag + dwye - A). (2.445)
Then we integrate Eq. (2.445) by parts, which gives —°V - A — —ie%k - A.
Since k- € = 0, we have

€- VAy —iwe® Ay — (i€ - k — iwe®)Ag = 0. (2.446)
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Thus the expansion components of the field operators become

*2 (e — k) - A + i€ - 7]

i = / __de
it = \/2wk(27r)3e
= /—éwi:éT)aeik'm[wké(k, 1)-Alz) +ie(k,l) - 7e(x)].  (2.447)

Similarly we have

d3z . .
At ik = . N
i, = | ——————=¢€ wi€(k,l) - Az) —ie(k,l) - (x)]. (2.448
= [ e el ) Alw) — etk ) 7(w)). @408
Now we can derive the commutation relations of @y and &Ll
immediately,
f o ] / d3z' d3z ik’
ar’ /7(], =
KT V2w (2m)3 /2wy (2)3

X (W€ - A +ie -7 wié- A —ie- )

—ik-x

1 . " . )
- / ot T T e e e -8
_ %[E(k, V) - ek, 1) + e(k, ') - &(k, D)]5* (i — k), (2.449)

where Eq. (2.402) has been used in the derivation of Eq. (2.449). The
vectors € and e satisfy the following orthogonality relation:

e, ) - ek, 1) = e(k, 1) - e(k, 1) — wie()(k, k- e(k, 1)

=e(k,U') ek,l) — eo?k,l')eo(k,l)
= —e(k,l") ek, 1) = —mpy = . (2.450)
Thus we obtain
lawrr, &),] = 6116° (k' — k). (2.451)

Other commutation relations can be derived similarly, we have

laxerr, i) = [af,,81] = 0. (2.452)

2.6.1.9 Hamiltonian operator in k space

We can express the Hamiltonian operator in terms of dy; and &Lz' The
Hamiltonian operator is given by

. 1 - “
H= /d3x— [ﬁ'z +m*A+(VxA?+ —1—(V ). (2.453)

2 m?
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The normal ordered form should be used in Eq. (2.453) to eliminate the
possible divergent vacuum contribution. Inserting the expansion for A and
7, we obtain an expression of H in terms of ay; and dL. The expression of
H contains various factor combination of éy and df,. As an example, we
consider the terms containing afa, which are given by

d3k’ >k
/ E / e’(k k)Iak,l,akl
V2w (27)3 /2wy (2m)3

i

- 1 -

X [wwwie €+ (K x €) - (kx €)+mPe e+ ;n—gwk/wk(k’ -€)(k-€)]

d koo
=z Z akl/akl
w
~ 2 -~

X [wie - €+ (kx €)- (k x €) +m?€ - €+ %}%(k -€')(k-€&)]. (2.454)

Using the vector identity
(K x€e) - (kxe) =k’ e— (K -€)k-e), (2.455)

Eq. (2.454) becomes

_Z/ d’ kakl/akl

iw

-~ 2 ~
X {wﬁe' Etwie e~ (k-€)k-€)+ %(ke’)(k-é}

1 3k JEIIN
= 52/@(—2@)%@{(1/%
174

3
1 ,
= 52 / & kwidl b (2.456)
l==1

In the derivation of the second line of Eq. (2.456), we have used Eqs. (2.434)
and (2.435). The terms contains aa' gives the same result as that in
Eq. (2.456). Similarly we can calculate the terms containing aa and atal.
Both of them vanish. Thus we have

3
A=Y / & kwid] b (2.457)
=1

For the momentum vector, we have

Pi = / 3T = — / >z’ A9 A,. (2.458)
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Similarly, in terms of dyx; and &Ll, the momentum operator P is given by

3
P=% / dPkka) . (2.459)
=1

The quanta for the vector bosons carry energy wy and the momentum k.
Thus we also call k as the momentum of the vector bosons.

2.6.1.10 The spin operator

Now we discuss the angular momentum tensor for vector bosons. The action
is Lorentz invariant because it is a scalar. Under an infinitesimal Lorentz
transformation,

1F

o' =t + Swhe,. (2.460)
The transformation of a four vector A* is given by

A2y = A (z) + w™ A, (z). (2.461)
We can also use the general form of an infinitesimal Lorentz transformation
given by

v

A() = AM(z) + %maﬁuaﬁ)“ A(z). (2.462)

Comparing Eq. (2.461) with Eq. (2.462), we have

Swap | = (I —perpfr| = 0. (2.463)

1
2
Since dwap is antisymmetric, we can choose (I%#)"” to be antisymmetric
for o and 3, i.e. (I*¥)* = —(I%%)" because the symmetric part cancelled

out after contraction with the antisymmetric dwqg. Thus the solution of
Eq. (2.463) gives

(I90) = g — povyfn, (2.464)
According to Eq. (2.198), we have the conserved current

, 0L(z oY Y
Julz) = a(T(A)A)awag(I YT A (x) — ©,,0w . (2.465)

Similar to Eq. (2.294), Eq. (2.465) becomes

: 1
J#('T) = §6wyl\M;uJ/\ (:L') (2466)
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with
OL(z o
M(z) = Oz, —O,x) + 5(5%)-(]”/\) A (z)
=0z, —0,Txy + Fus (7 — 0. M)A (z).  (2.467)

Thus, similar to the derivation of Eq. (2.297), we have the spin matrix of
the vector boson field.

Sij = / d®x(Fo; Ai — FoA;j). (2.468)
We can use a vector to represent it. We define
1 ..
sk = §ewksij. (2.469)
Using the vector symbol, we have

S= / d3zE x A. (2.470)

2.6.1.11 Spin 1

In the following, we show that the vector boson field is a spin 1 field.
According to Eq. (2.470), the spin operator of vector bosons has the form

é:/d%:f«:xA:. (2.471)

Inserting Eqs. (2.432) and (2.433) into Eq. (2.471), we have
3

S = 3¢ i &k —iw )EK 1) x €
S—/d /\/wk,(%)B/\/zwk(%)sZ( K EK 1) x e(k, 1)

=1

R -yt . 3 .
: (ak:l:e_’k z a‘lt(lllezk -:c) (akle—zk T al‘r‘lezk.x> .

: 3
i . At St
=3 / Bk [k, 1) x e(k, D) (b — b
w=1
+E(=Kk, 1) x e(k, ) (—a_jdure 2 + a4l 2. (2.472)
We define the helicity operator
~ a4k
=S —,
I
which gives the projection of the spin in the direction of wave vector. Using
Eq. (2.472), Eq. (2.473) becomes

(2.473)

) 2
s k . At s ST
A= §/d3kl5 K [€(k, 1) x e(k,1)] (aLlaklz - aLl,akl). (2.474)

=1
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In Eq. (2.474), the summation does not contain the longitudinal polar-
ization term (! = 3) because é(k, 3) and e(k, 3) is parallel to k. For the
transverse polarizations (I = 1,2), €(k,{) = e(k,!). Since the terms with
O _xax and dT_kl,dId in Eq. (2.472) change their signs when we exchange
the labels | < I’ and k +» —k, they vanish. Thus only the terms containing
aklakp (1,1’ =1,2) remain.

We choose the unit vectors €(k, 1) and e(k,2) in such a way that the
unit vectors €(k,1), €(k,2) and ex = ﬁi—l form a right-handed orthogonal
basis. Thus Eq. (2.474) becomes

A=i / d*k (8] pi — @) dnen). (2.475)

To diagonalize the operator A, we introduce a new set of operators

1
Oy = —= (A1 — 10x2), 2.4763,
k+ \/5( ki1 k2) ( )
1
Ox_ = — (k1 + 1dx2), 2.476b
K \/5( K1 k2) ( )
ako = k3. (2.476c¢)
The inverted relations are
1 .
a1 = —2(&;(_1_ + ak‘), (2.477&)
7
ko = —=(Axs — x_), 2.477b
K2 \/5( k+ — Ok—) ( )
ax3 = ako- (2.477c)

The operators dy, dk—, dkxo and their hermitian conjugate operators satisfy
the commutation relations.

~

[&k'+7dL+] = [a’k’—aa _} = [a’k’Oaa’LO} = 63(k - kl) (2478)

=+

and all the other commutation relations are zero. Thus dx+, dxk— and ayg
are the annihilation operators, while &L o &L_ and &LO are the creation
operators.

The Hamiltonian operator and momentum operator remain diagonal
when they are expressed in terms of the new set of operators dx, and d;’w
(U =+, -, 0)

Z / dakwkakgako (2.479)

o=-—,0,+
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and
P= / d*kka] _dno. (2.480)
o=—,0,+
Expressed with the new set of operators, the helicity operator in
Eq. (2.475) becomes

A= /d3k(&L+&k+ —af_dx). (2.481)

The quanta created by &La are called the circularly polarized particles with
the energy wyx and momentum k. Thus the quanta created by &L + have

the helicity of +1 and those created by &LA have the helicity of —1. Since
the spin projection in the direction of momentum is +1 for the circularly
polarized quanta, the vector bosons are spin 1 particles.

Since both scalar bosons and vector bosons have integer spin while
spinor fermions have half-integer spin, one may summarize the spin statis-
tics relation as follows: The particles with integer spin are bosons and those
with half-integer spin are fermions.

We can also define the circular polarization vectors (also called helicity
vectors) by

ek, +) = %[e“(k, 1) % i€k (k, 2)], (2.482a)
et (k,0) = e*(k,3). (2.482D)

The field operators can be expanded in terms of the circular polarization
vectors defined by Eq. (2.482).

2.6.2 Massless vector bosons

2.6.2.1 Differences between massive boson field and massless
boson field

In the previous treatment of massive spin-1 vector bosons, we have intro-
duced the 0-component of A, by Ag = —1/m2V - E. Then we can use the
four-dimensional vector A, to construct a covariant Lagrangian L. How-
ever, for massless particles (m = (), this method fails, which leads to some
difference. We can not construct the Lagrangian —iFwF‘“’ in a similar
way used for the massive vector bosons. One may ask why we can not
construct a vector boson theory with Lagrangian —%(‘LA,,@“A” by ordi-
nary procedure. We will try to construct this Lagrangian using ordinary
procedure in order to understand what the underlying difficulty is.
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In order to maintain the covariance of Lagrangian L, we use J,A* =0
for the introduction of artificial components of A#. We can then do similar
deduction as for the massive vector bosons. The fourier expansion of the
field operator is given by

|:ak)\€ k‘)\ —ik-z

1) / \/2wk 27r Z
+al, e (k. )\)e””]. (2.483)

The difference is that wyx = kg = |k| because of the vanishing mass. The
field ## = A* is given by

H(x,t) = [ak,\e (k,N)e ke

—al, ek, ,\)e“”}. (2.484)

The commutation relations for the operators ax, and d;r(/\ follow from the
commutation relations of A* and 7*.

Oxx = i77,\,\/d32:fi"*(k, )\)ggfi“(x)

e Te (k, \) (AF (x) — iwned#(x)).  (2.485)

77AA \/ka(21r)3

Similarly, we have

8L, = —inw / BrAr(k, ) 5y A* (%)

. Pz ik ; s
= —m,\,\/——e kb (k, \)(AH(x) + iwe A* (%)), (2.486)
V2w (27)3
In order to remain covariant form, we need to choose the artificial compo-
nent of operators A* and 7* to satisfy the following commutation relations.

[AK(x,1), 77 (X, 1)] = =i 83 (x — x), (2.487a)
[AK(x,1), A (x,1)] = [#*(x,1), 7" (x,1)] = 0. (2.487b)

The commutation relation for flo(x, t) has the wrong sign. The commuta-
tion relation for ax, and dlfv‘ then becomes

[aw v, afy] = =83k = K)manvaret(k, N)eu(k, A). (2.488)
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Covariant form in Eq. (2.487) is crucial to get the factor e*(k, A"}, (k, A) in
Eq. (2.488), which enables us to use the orthogonality relation of the four-
dimensional polarization vectors e*(k, A )e,(k, A) = naa. Thus we have

[y @] = =63 (k' — K)nan (2.489)
and
[Axn, dic] = [0 80] = 0. (2.490)

The operators ayo for the polarization A = 0 satisfy the commutation re-
lation with the wrong sign. Wrong sign will cause problem if one tries to
construct the Fock space for dyxg. The norm of one-particle state is

(i 1i) = (Olanoi,|0)
(0](—nood> (k' — k) + dltgflko)}m
—7008°(0){0]0). (2.491)

I

Thus the norm of the state for the A = 0 case is negative. The number
operator for A = 0 obtain a wrong minus sign nyg = —&Lodko, which is
inconsistent with that the particle number should be positive. This also
leads to a wrong sign in the Hamiltonian operator H = — f dskwkdloéko.
Therefore, we can not construct a covariant Lagrangian for massless spin-
1 bosons with three components. However, we can construct a covariant
Lagrangian for massless bosons with two components. Since we have two
artificial components, one with positive sign and one with negative sign, we
can manage them to cancel out each other.

2.6.2.2 Faddeev-Popov method

We consider the particles with two internal degrees of freedoms. We have
Al and fiz. We introduce two artificial variables 4g and As in order to
construct a covariant Lagrangian. Then we integrating out the artificial
variables and leave only A; and A, variables using the Faddeev-Popov
method. We start with the covariant Lagrangian density

L= —EFH,,F’“’. (2.492)

There are four variables and we need to integrate out the redundant vari-
ables. It should be noted that the covariance should be maintained in the
integration of the redundant variables. We note that there is a transfor-
mation 4, -+ A, — 9,A = A,(A) leaving the Lagrangian invariant. Thus
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we factor out the redundancy by the integration over A using the Faddeev-
Popov method. We first define

@) = [ DAglfaw))L (2.493)
Then
4) / DAS[F(A(A)] = 1. (2.494)
Now we consider the path integral
Z= / DAeSA) (2.495)

We can multiply A(A) [ DAS[f(A(A))] on the right side of Eq. (2.495) and

get
_ /DAez'S(A)A(A)/DAd{f(A(A))]

/ DA / DASS® AASLF(AA))]. (2.496)

We change 4 — A( = A + 9,A, which is equivalent to A(A) = A.
Z=[DA/J DAeS(A) is 1nvar1ant with this transformation. We have also

A(A(A)) = A(A — 9,A)

[/DA(S AN +A))]

-1

(2.497)
Then Eq. (2.496) becomes

( / DA) / DA A(A)S[f(A)]. (2.498)

The integrand does not depend on A and the factor { f DA) can be thrown
away in Eq. (2.498). We then choose f(A4) = A — o, where ¢ is a function
of z. Eq. (2.493) becomes

A = /DAé(auA/‘ — 9*A - 0). (2.499)

Since A(A) is multiplied by §(f(A)) in Eq. (2.498) and we use A(A) only in
evaluating Eq. (2.498), we can set f(A) = 9,A" —o =0 in Eq. (2.499) and
get A(A)~' = [ DAS(9?A). It can be seen that A(A) does not depend
on A. Thus we can throw A(A) away in Eq. (2.498). Since Z does not
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depend on ¢, we can integrating Z with an arbitrary functional of o which

we choose as
exp [—é d41‘02(z)} , (2.500)

where £ is a parameter. Thus we have

Z= / Doexp {_2% / d%?(;«)} / DAexp(iS(A))5(8, A" — o)

= /DAexp [z‘S(A) - ;—g/d‘lx(auA“)Q}. (2.501)
From Eq. (2.501), we can see that the original action S(A) is replaced by
1 4 2
Sers(A) = S(A) - % d"z(9, A¥)

1 1
= /d4x§A,l {8277‘“’ - (1 — E) 8“8”} A, (2.502)
Correspondingly we have the new Lagrangian density

1 1
== w9, A .

L 4FWF 25( A (2.503)

It should be noted that we have used the symmetry that the action S

is invariant with the transformation
A, — A; =A, - 0.\ (2.504)

in the construction of the Lagrangian of the massless vector bosons, which
can be seen from the derivation of Eq. (2.498). Eq. (2.504) is called the
gauge transformation. The symmetry that the action S is invariant under
the gauge transformation is called the gauge symmetry. Since the La-
grangian for the massless vector bosons is gauge-invariant, we also call the
massless vector bosons as gauge bosons. The gauge symmetry is a condition
imposed on the derivation of the covariant Lagrangian for the massless vec-
tor bosons. Therefore the interaction terms of the massless vector bosons
with other particles should also have the gauge symmetry. This is why the
gauge symmetry plays the important role to unify the different interactions.
Since mass term breaks the gauge transformation A, — AL = A, — 0.,
we can not have massive bosons with two components. For vector bosons
with only one components, there are three virtual components and the way
to construct a covariant Lagrangian has not been found.
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2.6.2.3 Coulomb gauge

Since the action is invariant for the gauge transformation A, — A;L =
A, — 9, we can take Aj) = Ay — A = 0. Therefore, with proper gauge
transformation, we can take Ay = 0. The action is also invariant for the
transformation 8, 4% — 9,A™ = 9, A" — 5. We can take §,A* = 0 with
proper choice of ¢. Then V - A = 0. This is called the Coulomb gauge.
The massless vector bosons have only two internal degrees of freedoms.
The Coulomb gauge V - A = 0 means that the longitudinal component
vanishes and the two transverse components are not zero. Thus we have the
massless vector bosons with two transverse freedoms and add two artificial
variables, one is the longitudinal component A3 = 0 and another is the
fourth component Ag = 0. We have initially the following commutation
relations

[Ai(x, 1), 7;(x', )] = 1650 (x — x), (2.505a)

[Ai(x,t), A;(x, 1)] = [#r:(x, 1), (X', 1)] = 0 (2.505b)
with i, 7 = 1, 2. After introducing the third artificial variable, we have a vec-
tor A with three components, which are not independent and constrained
by V- A = 0. We have only two independent transverse components. We
could use the transverse projection operator P to impose the transversality
condition. P, is defined by
(PL)ij = bi5 — 31%
Then we can impose V-A=0 by acting on A; with the projection operator
P

d;. (2.506)

Ai(x) = (cz-j - ‘9’2’3‘ ) Aj(x). (2.507)
We can change the commutation relations to the projected commuta-
tion relations for a vector with three components. After projection, the
commutation relation Eq. (2.505a) becomes
[Ai(x, 1), 75 (x',1)] = 6%, (x — x) (2.508)
with i,7 =1,2,3. 53“]- (x — x') is the transverse delta function defined by

074(x —x) = (PL)i;6%(x — x')

- kik;

Besides the Coulomb gauge V - A = 0 with Ay = 0, which is also called
the radiation gauge, we can choose other gauges. We have two functions A
and o to determine Ay and Aj using Ay = A and 9, 4% = 0.
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2.6.2.4 ét of massless vector bosons

We can show that the following generator of time translation G, leads to
the covariant Lagrangian Eq. (2.492).

G, = /d?’x% [7‘1-2 +(V x A)Q} : (2.510)

which contains no time derivative and satisfies the covariance principle.
We introduce the four dimensional vector A, with V - A(x,t) = 0 and
Ap(x,t) = 0. The Lagrangian density in Eq. (2.503) becomes the La-
grangian density given by Eq. (2.492). We then define the electric field E
by

OA
E=—— - . .
T V Aq (2.511)
We also define
B=V xA. (2.512)

B is called the magnetic field. In the radiation gauge, we can express the
Lagrangian density in Eq. (2.503) in terms of E and B as

1 1
=_--F,F*" =_F?_ _B% .
L 1 Fu 5 5 (2.513)
After carrying out the integration over 7 in Eq. (2.107), we can see that G,
in Eq. (2.510) leads to the Lagrangian given by Eq. (2.492). The massless
vector bosons described by the Lagrangian density in Eq. (2.513) are also
called photons.

2.6.2.5 The equations of motion for massless vector bosons

Using the generator of time translation G; given by Eq. (2.510), we obtain
the equations of motion

dA . .

th— = [A,Gt] = iPJ_fl’, (2514&)
o4 A . )

ia—:: = [#,Gi] = iV2PLA —iV(V . P A). (2.514b)

The equations of motion for massless vector bosons form a set of wave
equations. Thus we have the particle-wave duality for the massless vector
bosons.
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2.6.2.6 The solution of the equations of motion

For the solution of the equations of motion Eq. (2.514), we can consider
only the two projected transverse modes. Thus we have the following plane
wave expansion of the field operator

“ikr g gl ey (2.515)

A(x,t) / m Z (k, ) (ke
where e(k, ) are the transverse polarlzation vectors satisfying
k-e(k,l)=0, (2.516a)
e(k,l) ek, ') =dan. (2.516b)
The electric field E is given by

i _ gl e*), (2.517)

xt iwke(k, ) (dxe”
/\/2wk 27)3 Z ke, 1) (G

Then we get the expansion for # = —E.
#(x,t) /szke (k, 1) (—ae *= &;f(leik'w). (2.518)

The magnetic field B becomes

ot

—ap,e* 7). (2.519)

B(x,t) ik x e(k, ) (axe —ikx

/ \/2(.0]( 27(' Z )(

The operators dy; and akl have the properties of creation and anni-
hilation operators for the transverse photons. They satisfy the following
commutation relations

[dk’l’y (AIL] = 5‘3(1{/ - k)5ll/, (2520&)

[axrr, daa] = 8], a1,] = 0. (2.520b)
It is easy to check that the commutation relations give the correct results.
Using the commutators of & and af, we have

A ), 9,0 = [ K

\[ wk 27r \/ 2~Uk’ 27r

X ZU./k' Z (k7 l)Ej(k/, l/)([&kl, d:‘(/l,]e—i(k-z—k'.z’)
=1

_ [dI(l’ dkll/]ei(k-m—k'.y))

_-/_dBLZZ: (k, ) (k, )
= 2(2m)3 1:16 e
% (eik(x—x') + e—ik-(x—x’))' (2.521)
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The transverse polarization vectors e(k, 1) and ¢(k, 2) are orthogonal to each
other. They are also orthogonal to the unit vector k/|k| in the direction of
momentum k. Thus e(k, 1), e(k,2) and k/|k| form an orthogonal basis of
three dimensional space and satisfy the completeness relation

2 i
> ek, D (k1) kkk =0y (2.522)
=1

With Eq. (2.522), Eq. (2.521) becomes

. Pk e ik
_ ik (x=x') [ 5. _
[A( ) X t] Z/(Qﬂ_)ge (1] k2 )
=103 ,;(x — x'). (2.523)

2.6.2.7 Hamiltonian and momentum operators in k space

Using the expansion expression, the Hamiltonian operator becomes

Hz/d%l:(EQ—l-Bz):

3
5/dw/i: Z[wkekl) e(k, 1) + (k x e(k,1)) - (k x e(k,1))]

n=1
X (i + iy faer)
2
= /dBkqu Z@,Ll&k[. (2.524)
=1

In the derivation of the last line of Eq. (2.524), (k x €’) - (k x €) = k?¢’ -
€—(k-€)(k-€) and w? — k* = 0 have been used. We can similarly obtain
the momentum operators

2
P= /d% ExB:= /dBkaaIdakl. (2.525)
=1

2.6.2.8 Spin of massless vector bosons

The spin of the photon field is given by

g,‘j = /dB.T(F’OjAZ' —FA’OiA]‘)

2
= i/d%Zei(k,l’)ej(k,l)(&;rd&kl/ —alak).  (2.526)
i
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Using the vector symbol, the spin operator of the massless vector bosons
has the form

Sz/dgm:ExA:

— 3 d°k’ d®k : : 'Y %
—/dx/\/2wk/(27r)3/\/2wk(27r)3 ”,ZZI(W“/)EO(’Z) etk 1)

"/. A z /. A —_ik. ~ ke
. (ak’l’e k- _allllezk z) (akle ik-x _{_a/;rdezk T) .

. 2
i I JET
-1 / B S (el ) % ek, 1)@y — i)
=1
+e(=k, 1) x e(k, 1)(—a_iginre™ 26t £ a7 |6l e? b)) (2.527)
Then the helicity operator is given by
;o k
A=S. P z/d%(afaakl — 6] ug). (2.528)
Similar to what we did to diagonalize Eq. (2.475), we can diagonalize
Eq. (2.528) using the transformation Eq. (2.476), which gives

A= / k(] ty — &)_dre). (2.529)

Thus the photons are spin 1 particles.

2.7 Interaction

By now, we have only considered the Lagrangian without interaction. The
interactions can be added into the Lagrangian without violating the causal-
ity principle when they contain no time derivatives. Since any terms in-
volving field function 7 in the generator of time translation G; for bosons
will give terms related to time derivative, the interaction terms for bosons
should not contain 7. The physical mass and interaction terms should
achieve the lowest energy for the ground state when the temperature effect
is small. By now, we have no good numerical methods to calculate the
ground state in the Riemann spacetime. However, we know that symmetry
plays an important role in the ground state. Generally, the ground state
should have high symmetry. Some symmetries are related to the Lorentz
covariance. These symmetries should always be guaranteed when we add
mass and interaction terms. In these symmetries, the most important one
is the gauge symmetry, which correlates different types of particles. We
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have shown that the Lagrangian containing the massless boson field should
possess the gauge symmetry in order to fulfill the covariance principle in the
previous section. Therefore, any Lagrangian contains the massless boson
field should have the gauge symmetry. We will discuss the gauge symmetry
in the following section.

2.7.1 Lagrangian with the gauge invariance

We can couple the vector bosons with the spinor fermions by adding an
interaction term eA,yy*%. The Lagrangian for a spinor fermion field in-
teracting with a vector field reads

. . 1
L= (i B~ m)é + ey — S Fu P
_ 1
= Plir™ (9 — ied,) = mlt = 2 Fou PP, (2.530)

The above Lagrangian density is invariant by the gauge transformation
described by

1 1 .
Au(@) = Au(@) + Z0,A(x) = Aulw) + Zf(;.e—m(-":)a,lem@) (2.531)

and
¥(z) = e @y(x). (2.532)
We define the gauge covariant derivative
D, =0, —ieA,. (2.533)

Then Eq. (2.530) can be rewritten as follows:
- 1
£ = Bliv* Dy — mlw — ;Fu F*. (2.534)

The gauge transformation Eq. (2.531) makes F,, (z) — Fj,,(z), which
means that the Lagrangian of photons is invariant. The Lagrangian den-
sity in Eq. (2.530) possesses the symmetry of gauge invariance. From
Eq. (2.532), we can see that A(z) and A(x) 4 27 give exactly the same
transformation. The gauge transformation U = €*A(®) in Eq. (2.532) forms
the abelian group U(1) because A(z) is a simple function of spacetime
coordinates.
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2.7.2 Nonabelian gauge symmetry

The transformation can be generalized to the nonabelian case where A,
is composite. In the gauge transformation ¥ (z) — Ut(z), U can be an
element of SU(N) with UTU = 1, which guarantees the term Ty for
scalar field or ¥ for fermion field to be invariant. This generalization was
introduced by Yang and Mills in 1954.

Similar to the abelian case. We introduce the gauge covariant derivative
D, = 0, —igA, to replace the ordinary derivative 0, where g is called the
coupling constant. Under the transformation

P(x) — Ud(x), (2.535)
we have
D, - U(z)D, U (z). (2.536)

Then we have an invariant kinetic term D,ﬂﬁD“w for scalar boson field
or z'@Z_JlDuQ,ZJ for spinor fermion field. Now we consider a Lagrangian with N
field v;(z) under a continuous SU(N) symmetry transformation ¢;(x) —
Uij(x)y;(x). The gauge transformation is an SU(N) transformation. An
infinitesimal SU (V) transformation has the form

Usi(@) = 831 — ig8° (@)(T%) 1 + O(6°). (2.537)

The index j and k run from 1 to N. a runs from 1 to N? — 1. In the
Eq. (2.537), the summation over a is implied. T° are the generators of
SU(N). Due to the special unitarity of U, T* are hermitian and traceless.
The Lie algebra of group gives the commutation relations

[Ta7 Tb} — ifabcTc7 (2538)

where the real factors 2% are called the structure constant. For SU(2),
fabe = g2 where ¢%%¢ is the antisymmetric Levi-Civita symbol. For the
abelian case f**¢ = 0. The generators obey the normalization condition

Tr(T°T®) = %5@. (2.539)

abe

Under the gauge transformation
Outo — Bu(U) = U0,y + (0.U)y = U0, + (U0, U)9].  (2.540)
In order to give

D, — U(z)D,U(2), (2.541)
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A, should transform as
Au(@) = U@)Au (@)Ut () + éU(m)@uUT(Q:). (2.542)

This can be verified directly.

Db = 0,9 — igA
— Uld, 0 + (U, U W] — igUA U Uy + U, U Uy
= U0,y —igA U U (2.543)

We have used UTU = 1 in the derivation of Eq. (2.543). U(z) can be
expressed in terms of the generator T¢ as

U(z) = exp[—igf(z)T"). (2.544)

For the kinetic term of vector boson field A,(z), we replace F,, =
OuA, — 0, A, by

7
F,, =-[D, D,
b g[ wr Do

= 0,A, — 0L A, —ig[Au, Al (2.545)
Eqs. (2.541) and (2.545) give
Fu(z) = U(2)Fu (z)U' (2). (2.546)

Then we can construct a gauge invariant kinetic term
1
Ly, = —E’H F¥Fu, (2.547)

where the subscript ‘gh’ represents gauge bosons.

We can derive this Lagrangian from the generator of time translation
in a similar way as we used for the photon field. We will give the detailed
deduction later.

A,, should be N by N matrices. From Eq. (2.537), we have

A, — A, —ighT? A, — 8,0°T". (2.548)

Taking the trace of Eq. (2.548), we can see that the trace of A, does not
transform. Thus A, can be traceless and hermitian. Then we can expand
A, in terms of the generator T

Au(z) = A (z)T*. (2.549)
Using Eq. (2.539), we have
A%(z) = 2Tr A, (2)T° (2.550)
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For F,.(x), we have
E, = 0,4, ~ 0,4, —iglA,, A
= (0, A5 — 8, A5)T° — igALAL [T, T?)

= (0 A5 — D, A + gf AL AL T®. (2.551)
Then, we can express F,, (z) as
Fu(z) = F;, (2)T° (2.552)
with
Ff, (@) = 8,A7 — 8,A5 + gf** AL AD. (2.553)

Thus the kinetic term Eq. (2.547) becomes
1 apyv a
Lgp = ~ZF g (2.554)

This is the so-called Yang-Mills Lagrangian density. From Eq. (2.553), we
can see that Lg contains the self-interactions among the gauge fields. Using
Eq. (2.553), we can express the Yang-Mills Lagrangian density Eq. (2.554)
by

1 a ppapy
»Cgb = _ZF}.LUF f
1 a a 1 a\ cabe L ACU
= _Z(aﬂ-Ay - 3UA;L)2 - 59(5#143 -0, AL)f A A
. %g2fabCfadeAZAlc,Ad,uAeu. (2555)

We use the Faddeev-Popov method to integrating out the redundant
components. We consider the path integral

Z= / DA (2.556)
where S(A) = [d*zLgy is the Yang-Mills action. We define a function
A(4) = { / Déd| f(A(@))}}_l | (2.557)
where
AB) = U@)A, U (6) + é(@MU(G))UT(Q). (2.558)

A(6) corresponds to the gauge transformation of A and U(#) = e~%90(=)'T
is the group elements that defines the gauge transformation at z. We use
Eq. (2.496) and factor out integration over §. Then we have

Z= / DAESA A(A)S[F(A)]. (2.559)
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We can choose suitable form of function for f(A). A suitable selection
is

F(A)=0A—o0. (2.560)

Since A(A) appears in Eq. (2.559) together with 8[f(A)], only infinitesimal
0 is relevant. Under an infinitesimal transformation

A2 — A%+ gf*0° AL, — 8,07, (2.561)
Eq. (2.557) becomes
A(A) = { / DOS[OA® — o + 8 (g f**°6° AC — auea)]}_l . (2.562)
Thus
A(A)S[f(A)] = {/Dod[aAa — 0%+ 0" (gf*0° A — a;,@a)]}_1
x 5(f(A))
= { / D6s[o" (gf 6P AS — 8#0“)]}_15( f(A)).  (2.563)
We define an operator K**(x,y) by
K®(x,y) = 0*(gf** A, - 0,8°)5*(z — y). (2.564)
Then we have
M (gf* 0P AS — 0,6%) = / d*yK*(z,y)6". (2.565)

Since [df§(K6) = 1/det K, we have A(A) = det K. We can express the
determinant det K as a functional integral over Grassmann variables by

A(A) = / DeDeleiSonost(e'0) (2.566)
with
Sppast(cl0) = [ e [ dtyel (@)K @ p)ealy)
= / d*z[0#c] (2)Buca(z) — B cl(z)gf ™ Asen(z)].  (2.567)

The field functions ¢, and ¢], are the ghost field functions. They do not
correspond to the real particles. Thus scalar fields ¢, and ¢} can be anti-
commuting without causing problems.
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Since Z does not depend on ¢?, similar to Eq. (2.501), we multiply a
Gaussian functional

—3 S (2.568)
and integrate over ¢. Thus 6( {A)) is replaced by
¢ 2e 412047 (2.569)
The final expression for Z is then given by
/ DADcDcte!S(A)—de [ 4'2(04%) FiSgnon(c’ ) (2.570)

The gauge Lagrangian density is changed to

1
Lgb=——(a AL — 8, A%)
1

— it AL
(0 ALY S

£
L g2 pabe FOUCADL AT A A + O] Buca — OMClg FO Ay, (2.571)

5 (8,47 — 0, 42)g o0 AV A

Now we construct the generator ét of time translation corresponding to
the Lagrangian density L£g. Similar to photons, we have only two internal
degrees of freedoms for each A®. Since the action is invariant for the gauge
transformation A% — A% + gf *¢°AS — §,0°, we can take A'f = Af +
gfeg AE — 0,6° = 0 with proper gauge transformation. Therefore, we
can choose Af = 0. The action is also invariant for the transformation
0A — 0A'"™ = 0A° — 0% We can take JA* = (0 with proper ¢¢. Then
V-A® = 0. For the three spatial components, we have constructed the four-
vector A% by choosing two transverse components and one zero longitudinal
component. We can only choose the two components of gauge bosons as
two transverse components and add one artificial longitudinal component

% = 0 and the fourth component Af =
We have initially the following commutation relations

[A“(x t), 7 (x t)] = idijéa(x —x'), (2.572a)

LA (x, 1), A%(x',0)] = [32 (x, 1), #2(x, 1)] = 0 (2.572b)

with,§ =1,2. After introducing the third artificial variable, we have three
s

variables of A which are not independent and constrained by V- A =0.

If we use the commutation relations for a vector, we could use the-trans-

verse projection operator (P, );; in Eq. (2.506) to impose the transversality
condition. After projection, the commutation relations Eq. (2.572) become

A8 (x, 1), #2(x, )] = 183 ;; (x — X'). (2.573)
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Using the four-dimensional vector A} with V - A® =0 and Af =0, we
can express the Yang-Mills Lagrangian density Eq. (2.571) as follows:

1 (O0A" ? 1 a\2 814?‘ abe Abi AcO
ﬁgb—a(at)—i(VXA)‘wa A" A

1 a a ai j 1 a ade c ev
= (8,43 — B AT)g ot AT A% — 2P Fove fode 4} A A% A
+0"cld,c, — 6“chbe°14ch;,

1 /0A%\* 1 a2
_5(8t)_§(VXA)

1 T |
_ 5(8“4? _ 8jA?)gfabcAazAb] _ Zg2fabcfadeAZAlc,Ad”Aey
+ 0"cl 9, c, — O'cl fPeAlcy. (2.574)
We can show that the following generator of time translation Gy leads
to the Yang-Mills Lagrangian density Eq. (2.574).
A . Tl 1 ~a 1 S
Gy = /tidx[§(7“r“)2 + §(V x A)? + 5(81-14; — 0;A%) g fobe A% AP

1
+ Zg2fab0fadeAzAsAdpAeu +4iTrln K} (2575)
with
K®(z,y) = (0'gf**AS — 08,0°%)5%(z — y). (2.576)

G, in Eq. (2.575) does not contain the time derivative term of the field func-
tions and thus satisfies the causality principle. Inserting G; in Eq. (2.107)
and carrying out the integration over 7% and introducing the ghost fields,
we get the Yang-Mills Lagrangian density Eq. (2.574). Using the generator
of time translation G; given by Eq. (2.575) with the fields replaced by the
operators, we obtain the equations of motion

OA®

=[A%, G4, .
i 5 [A%, Gy, (2.577a)
O o A
i = [7%, Gy (2.577b)

Since there are self-interaction terms, we are not be able to solve the equa-
tions of motion for the Yang-Mills gauge bosons exactly.






Chapter 3

Quantum Fields in the Riemann
Spacetime

3.1 Lagrangian in the Riemann spacetime

Now we turn to the curved spacetime. In order to fulfill the causality prin-
ciple, the physical spacetime should be the Riemann spacetime as discussed
in the Appendix A. The action should satisfy the principle of general co-
variance. Thus, the action S is a scalar in the Riemann spacetime. Let
us construct the Lagrangian which should be the scalars in the Riemann
spacetime. The simplest field is the scalar field. We consider the scalar
field as an example. The underlining principle is independent of the types
of the fields contained in the Lagrangian.

Let us begin with the Lagrangian of matter £,,. The general form of
the Lagrangian density of matter £,,, with #? term for a scalar field in the
Riemann spacetime is given by

L = 56 0,6,0,80 = m*6E) = V(9), (3.1)

where m is the mass and V (¢) is the self-interaction term. g** is the metric
tensor in the Riemann spacetime. g** can be a functional of the field ¢ and
its spatial derivatives. It should not contain é. If g*¥ is not a function of
®, all the procedure of constructing covariant Lagrangian in the Minkowski
spacetime can be applied similarly to the Riemann spacetime. The more
general form for Eq. (3.1) is

1
L = 3 106" Bubabiba ~ ;m?62 ~ V(9). (32)

f(¢) can be absorbed into the metric g** because the metric g** is the func-
tional of the field functions. Therefore the Lagrangian density in Eq. (3.2)
is equivalent to that in Eq. (3.1). We will only consider the Lagrangian

97
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density in Eq. (3.1). The action for a scalar field of matter in the Riemann
spacetime is given by

S /d%,/’ [ 90,0000y — —m>p2 —V(8)] . (3.3)
For a vector A,, we should use a covariant derivative

DaA, = 0,4, A,. (3.4)

(1[1,

where [y, is the Levi-Civita connection of the metric given by

1
F;\w = 'égAp(anpu +OuGpv — OpGuv ) (3.5)

The first order covariant derivative of a scalar function coincides with the
ordinary derivative.

With the Lagrangian density of matter £,,, we can define the energy-
momentum tensor

THY = 1 (\/—_E )
V=9 D(Dya(z))

Using the energy-momentum tensor T#¥, we can also construct a scalar
Se = /d‘lm\/—ggle“”
= /d4m\/:§[,e (3.7)

DY ¢, (z) — g" Lon(z). (3.6)

with
Ee = algm,T‘““, (38)

where o7 is a constant parameter. This Lagrangian density can be consid-
ered as a part divided from the Lagrangian density of matter. With the
metric g"¥, we can construct a scalar as follows:

S, = oy / d*z/=gR, (3.9)

where o is a constant parameter. R is the Ricci scalar curvature. Sy is the
so-called Finstein-Hilbert action for gravity. R is defined as g*" R,,. R,
is the Ricci tensor defined by R, = R}, . R;}M is the Riemann curvature
tensor defined by

=0, — 8., +I9. T, —I7,T2 (3.10)

I.IJI‘L— Ko vo vt KOt
I
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The total action S; should be the sum of the above three parts and a
constant term.

S, = / d*zv/=gLm + a1 / d*z/—gg., T

+az /d“:c\/—gR + /d4x\/—gA'
= /d%\/—gﬁt (3.11)
with
Ly =Ly+o1guT" +asR+ A, (3.12)

where A’ is a constant. There are other scalar terms such as R?, we will
discuss other terms later. Now we consider the total action is given by the
above three contributions. If all the quantum fields involved are considered
in the matter Lagrangian density £,,, then the action S; contains all kinetic
terms and the interactions.

It should be noted that we do not consider the metric g,,,, as an inde-
pendent field. g,, is a functional of field functions ¢,(z), gu. = g (d(z)).

3.2 Homogeneity of spacetime

We use the principle that the spacetime is homogeneous. The total action
should possess the symmetry of spacetime translation. We transform the
fields via ¢q(z) — ¢o(x — a), where a* is a constant four-vector. For an in-
finitesimal translation, ¢,(z) = ¢o(x) — ¢4 (x) with ¢, (x) = —a¥d,¢,(x).
Correspondingly, we have /—gLm(z) — V—9Ln(z) + §(/=9Lm (7)),
where §(\/—gL,(z)) is given by the chain rule

S(V=gLm(z)) = 2V ZIEm(@) 5 0y &‘/__—g‘c—"ﬁmwa(x). (3.13)

D¢ (x) D(Dyu¢a(z))
We also evaluate the functional derivative WI(L which gives
3Sm 6(v=9Lm(y))
= [ dty XTI
56a(2) / YT 00a@)
D(v=gLm(z)) D(V=9Lm)
Doule)  DDuba) MY

where Sy, = [ d*y/—=gL(y) is the action for matter. Thus §(v/=gLm (z))
has the form

_ p, Dlv=5tn) 55m
(V/=8Ln(x)) = Dugsy LS 00u(a) + g tsboul@).  (315)
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When we transform the fields with an infinitesimal spacetime translation

a’, we have 6(\/—gLm(z)) = —a"0,(vV—9Lm(x)) = —0,(a”\/—gLm(x)).
Expressing the right side of Eq. (3.15) with the Noether current for the
energy-momentum

1 DV=9Ln)

]u(l‘) \/—g— D( p¢a ) (a1/6U¢a(x)) - a“ﬁm(m)
a, T (z), (3.16)
we have
;oﬁf—z;)é%(‘”) =V=9Duj* = V/=gDpu(a, T (x)). (3.17)

Then the functional derivative for the total action .S; becomes

N
3425—(2755%(27) = V=9Dpu(a, T (z)) + 10(guv/—gTH")
+ (v —gR) + 6(v/—gA"). (3.18)
The action should possess the symmetry of the spacetime translation. Un-
der an infinitesimal spacetime translation with §¢,(z) = —a”8,¢4(x), the
variation of the total action should be zero. We have
3.5
605 = dpg = 0. 3.19
'S Sou(a) Pa(z) (3.19)
Here we demand 45 = 0 for a specific variation 8¢, (z) = —a"0, ¢,(x) from

an infinitesimal spacetime translation due to the homogeneity of spacetime,
which should lead to the conservation of energy-momentum. Since the
current conservation is valid in all circumstances, it should also hold in the
Minkowski spacetime and the classical case. Eq. (3.16) gives the correct
limit for the Minkowski spacetime and the classical case.

In the Minkowskian action, the metric g*” is constant. We do not have
an equation to relate the matter field with the geometric metric. It seems
that the Minkowski metric has a symmetry of spacetime translation and we
can have the conservation of energy-momentum. However this is true only
when background is vacuum. Generally we have inhomogeneous matter
distribution as background. When we consider the transition amplitude

(p2,t2]|01,t1) =/D¢€XP (iS]8)), (3.20)

we find that the symmetry of spacetime translation is not guaranteed in
the Minkowski spacetime for the transition amplitude with inhomogeneous
initial state ¢(x,0). When the initial state is inhomogeneous, any spacetime
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translation will result a different initial state. Thus the transition amplitude
is not invariant for the time translation in the Minkowski metric. This is
another reason that we should use the Riemann spacetime.

The conservation of energy-momentum is given by

D, T (z) = 0. (3.21)
Therefore, we have

@10(guu vV=gT") + a26(v=gR) + 6(v/=gA') = 0. (3.22)

Using the following relation

1
v ny
1+4ﬁg,w(R + Bg"" R), (3.23)

we can write Eq. (3.22) in a more symmetric way,

5 Kal V—gTH + a'“/;(R"” + Bg"'R) + %\/—_g./\.’g"") QWJ

=0. (3.24)

3.3 Einstein equations

Since we can use any local coordinate frame, g, can be a very general
function and we expect the terms in the bracket before g,, in Eq. (3.24)
cancel out except for a constant term. Thus we have

T + 46 —2_(R™ + Bg"“R) + A’ o= g, (3.25)
where c is a constant. ¢g”” term can be merged with %1./\.’ g"¥ term and thus
we take ¢ = 0. Using the Bianchi identity, we can see that 8 = —-1/2 in
order to guarantee the equation of the conservation of energy-momentum
D, T*¥(z) = 0. We introduce the gravitational constant G, which relates
the parameters o and ag by a3 = —871Gas. Then Eq. (3.25) becomes

1
R — ig’“’R +g" A = —8nGT", (3.26)

where A = 2rGA’/«;, which is call the cosmological constant. Eq. (3.26) is
called the Einstein equations or Einstein field equations of general relativ-
ity. Since the Einstein equations Eq. (3.26) guarantee both Eq. (3.21) and
Eq. (3.22) to be satisfied, Eq. (3.19) is fulfilled automatically. Therefore,
the homogeneity of spacetime is guaranteed.
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When we put back the Einstein equations into the total action S; and
use the parameter relation a; = —87Gay, we find the terms S. and S,
cancel out. Only the action S,, for matter remains in the total action S;.
Thus the action becomes

Sy = /d“:cw—gﬁm. (3.27)

The path integral for the action of Eq. (3.27) should be carried out for
the field functions with the metric g in the action satisfying the Einstein
equations Eq. (3.26). Both T"¥ and g*” are symmetric for the index u
and v. There are 10 independent functions for g#¥. Thus there are 10
equations in Eq. (3.26). Since the energy-momentum conservation equa-
tions D, T#(xz) = 0 are satisfied automatically. We have 6 independent
equations for 10 functions. We have then 4 functions to make coordinate
transformation for g#¥. Thus the Einstein equations uniquely determine
the metric g#¥ from the field functions. On the right side of Eq. (3.26),
TH is determined by Eq. (3.6).

3.4 The generator of time translation

We will show that the following generator of time translation gives the
action of Eq. (3.27)

_f =p L1 a0 4 )2
Gt - /\/—gd z |i2 (_ggoo) (ﬂ-a \/—gg D1¢a)
- %g”’ Di¢aDija + %m%ﬁ + V(@) (3.28)

where the metric g"” is only the functional of the field functions ¢,. g*¥
should not contain the conjugate field function 7, and the time derivative
terms. Thus the causality principle could be guaranteed. We can get the
action of Eq. (3.27) by inserting Eq. (3.28) into Eq. (2.107) and integrating
over m,.
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Z = /D¢>/D7rexp [i/d“x(m'ﬁ —Gt(mqﬁ))}

- / Dasexp{z‘ / \/—_9d4$[%900(D0¢a)2 + 6% Dida Docte

}

= /qu exp {z / V—gd'z Bg“”DuaﬁaDucba - %m%z - V(¢)] }
= / Dgexp {i / \/—_gd‘l:cﬁm(@] (3.29)

Thus the generator of time translation corresponding to the action of
Eq. (3.27) is given by

1 .. 1
+ Egz]DinaDjﬁba - 5’”12(,‘25(2,' - V(¢)

G, = / V=gd’z {%Z‘—Zlg_otﬁ(ﬁa ~V=94"Did)*

1

.. N N 1 ~ ~
= 597 DidaDjda + 5m2¢§ +V(@)]. (3.30)

In the meanwhile, the energy-momentum vector is defined as
B = /\/—gdSwa

e [ L DO e
= [ veas [ DI D 6 0) - gten(a)] . (1)

Since g,., is independent of gz'Sa, we have

Py = / V—gd’z {D—(%I”%:—))Dooba(x) —gé’ﬁm(l‘)}

1
= / V —gdsx [gO#Du(baDOQsa - 98 (EgoﬂDpﬁbaDOQsa

1, 1
+ 59 Dyt Dida — 3m302 = V(@) |

1 | 1 1
= /V —gd’z bgooDo%Do% — 39 TDi¢oDjda + 5m2¢§ +V(e)] .
(3.32)

Fy is the energy of the fields ¢, and is called the Hamiltonian of the fields.
When we replace the field functions ¢, with the field operators QASG, the
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corresponding operator is the Hamiltonian operator.
H = IA)(]
1 - - 1 ... .
= [ V=3[ 56 DodaDoda - 399 Didu Dy
1 ~ A
+5m*2 V(3. (3.33)

Similar to the flat spacetime, we can show that we can not construct a
consistent formalism for the scalar fermions which obey anti-commutation
relations. Thus we consider that the scalar field is a boson field that qga
and 7, satisfy the commutation relation in Eq. (2.60) for bosons. Inserting
Gy(#,¢) in Eq. (3.30) into the commutator [¢,(x,t), Gi(#, )], we have

901' )

1 . “
Wlﬂ'a — 9—062D¢¢a. (334)

[ba(x,t), Ce(#, )] =

Using the equations of motion

i8sda = [da, G, (3.35)
By = [fa, Gt (3.36)
We find
iuba = —iftg — ﬂz‘Diéa (3.37)
/=99% 00
Thus we have
#a = V=99" Dy ba. (3.38)
Using Eq. (3.37) to express Py in terms of #,, we have
G, =H. (3.39)

Therefore the generator of time translation G‘t is equal to the Hamiltonian
operator H and Eq. (2.81) becomes Heisenberg’s equations of motion.

In order to calculate the second equation of motion, we need to know
the relation of gw(d;) with the field operator ¢. The relation of g,“,(qg) with
the field operator (25 is described by the Einstein equations Eq. (3.26), which
we can not solve exactly.

It should be noted that if we use the anti-commutation relations of
fermions for ¢ and #, we get [4(x, 1), Gy(#, $)] = 0. G, given by Eq. (3.28)
can not be the generator of time translation. Therefore, the Lagrangian
Eq. (3.2) can only be used to describe the scalar bosons.

In the derivation of the Einstein equations, we have only used the R
term. We have not considered the high order terms of R because they
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involve the time derivatives of third order on the left side of the Einstein
equations while only the time derivatives of up to the second order are
involved on the right side. The terms contributing the third order time
derivative should be zero. Thus the terms containing the high order terms
of R should vanish and only the linear R term is needed.

The gravitational effects are mainly caused by the mass of particles and
the mass effect is involved not only in the range of low energy. In order
to calculate the gravitational effect in a general way, we need consider a
broad range of energy spectrum. This poses a computational difficulty of
gravitational effect due to the failure of ordinary perturbation. Because
in the ordinary perturbation, when we consider the Minkowski metric as
a starting metric and use plane wave basis, we encounter the integral of
[ d*k that is integrated over the whole range of energy. Thus the ordinary
perturbation calculations fail.

3.5 The relations of terms in the total action

Now let us consider the value of the parameter a;. «; can take an arbitrary
value. Since the action with a; has the similar terms as the action for
matter, it is natural to choose oy = 1/4, which gives a1g% = 1 because
g/, = 4. Then the total action becomes

Sy = /d‘l:c\/—gﬁt

= /d‘lm\/—_g(ﬁm-l-ﬁi) (3.40)
with
_1  D(-=9Lm) . 1 /
L;= Zlg”VD(D—“d)a(xWD ¢a(x) ~ Lo (2) ~ 327TGR+ A (341

The terms in £; are canceled out except for a constant term due to the
symmetry of spacetime translation. We call £; the invariant Lagrangian.
The invariant Lagrangian £; plays the role of guaranteeing the conservation
of energy-momentum. In addition, we find that it implicates a symmetry
of the scale invariance for the total action. It can be seen that in the
total action, the matter Lagrangian has a minus counterpart —L,,(z) in
the invariant Lagrangian. Therefore any mass and interaction terms can
be canceled out without changing the total action. In the second term of
Eq. (3.40), the kinetic terms play a special role. Since the matter action
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can be canceled out, the remaining action related to matter particles are
the following action

S, = / Aoy L, = / d4:1:\/—_gg“”ZD)((—B/;_q;)gf(Tm)))DV¢a(w). (3.42)

3.6 Interactions

Similar to the Minkowski spacetime, the interaction can be added into the
Lagrangian. Any terms involving field function 7 in the generator of time
translation Gy for bosons will give terms related to the time derivative. The
interaction terms generally should not contain boson field 7 except for the
linear term of 7. Although we can add any mass and interaction terms
without changing the total Lagrangian, the suitable form of the mass and
interaction terms should be that which achieves the lowest energy for the
ground state when temperature effect is small. Determination of the form
of the interaction terms that achieves the lowest energy for ground state
involves the calculations of the ground state in the Riemann spacetime,
which is difficult. We note that a sign change of all mass and interaction
terms is equivalent to the sign change of kinetic terms and thus the sign
change of the gravitational constant G. Therefore, the sign of G is related
to the ground state.

Generally, the ground state should have high symmetry. There are some
symmetries which are related to the Lorentz covariance. These symmetries
should always be guaranteed when we add interaction terms. In these
symmetries, the most important one is the gauge symmetry, which corre-
lates different types of particles. We have shown that massless boson field
should possess the gauge symmetry. Therefore, any Lagrangian containing
the massless boson field should have the symmetry of gauge symmetry. We
can couple the vector bosons with the spinor fermions by adding an in-
teraction term gA/ﬂ;V”‘I/), where g is the coupling constant. We introduce
the gauge covariant derivative Du = D, —igA, to replace the spacetime
covariant derivative D, to include this interaction term. For the kinetic
term of the gauge boson field A, (z), we use F,, = buA,, - DUAM for the
abelian gauge symmetry and use

F,, =D,A, — D, A, —iglA,, A). (3.43)
for the nonabelian gauge symimetry. Then we have a gauge invariant kinetic
term for the Yang-Mills Lagrangian

1 1
Lop=—3Tr P Ey,. (3.44)
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Since I'y,,, = I'},,, the terms involving I'y, | canceled out and we do not need
to consider them. We can construct the generator of time translation in a
similar way used for the case of the Minkowski metric in the section 2.7.2.






Chapter 4

Symmetry Breaking

4.1 Scale invariance

4.1.1 Lagrangian with the scale invariance
Dilatation transformation on spacetime is defined by
r— 1’ = Az, (4.1)

where A is a real number. With the change in coordinate scale t — ' = Az,
if we also define a field transformation of the form

¢(z) = ¢'(2') = X% ¢(\z), (4.2)

then the transformations Eqgs. (4.1) and (4.2) are called the scale transfor-
mation. dg is called the scaling dimension of the field ¢. If the action S is
invariant with the scale transformations Egs. (4.1) and (4.2), we say that
the system has the symmetry of scale invariance. The Lagrangian without
the mass terms and interaction terms has the symmetry of scale invariance,
which we call the plain Lagrangian.

For the d-dimensional space, in order to maintain the scale invariance,
the field transformation needs to have the following forms.

(i) For scalar bosons,

pl(z) = ¢'(2') = AT (). (4.3)

(il) For spinor fermions,

Plz) = ¥ (@) = Ay(Ae). (4.4)
(ili) For vector bosons,
Au(z) » AL(@) = AT 4, (). (4.5)

109
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With these transformation, we have
L(x) = L'(x") = XF1L() (4.6)
and

S = / dlzL(z) — / e L) = / di ' L(z). (4.7)

When S is unchanged with the scale transformation, for a Lagrangian with
the gauge symmetry, A, should be scaled as d,, because of the presence of
the covariant derivative D, = 0, —igA,. We have AT = ) from Eq. (4.5).
Then d = 3, which means only four-dimensional spacetime can have both
scale invariance and gauge invariance. We have shown that the action with
massless vector bosons should be gauge invariant. In the three-dimensional
space, when we add gauge interaction terms to the plain Lagrangian, we
still have the symmetry of scale invariance. For other space dimension, the
symmetry of the scale invariance will be broken when we add the gauge
interaction terms.

4.1.2 Conserved current for the scale invariance

In order to consider an infinitesimal transformation, we introduce e® = A.
Then the field transformation is expressed as

d(z) = e*dep(ez). (4.8)
We have
dr = ox (4.9)
and
5 = e g(ex) — ¢(x)
= (1 + adg)¢(z + az) — ¢(z)
= (ad¢ + ax,\a;zl\) . (4.10)
Then
6L = a4 + z20M)L. (4.11)

The variation 65 = [d*2z4L vanishes upon integration by parts. Using
Noether’s theorem, the invariance of action § leads to the conservation law
corresponding to the scale invariance

8,6 =0 (4.12)
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with the canonical Noether current 8 given by
oL oL
-2 g (S
00,¢a 00,04
In the above formula, the second term can be rewritten in terms of the
canonical energy-momentum tensor

or By e — 555) 2. (4.13)

oL
oY = 0" by — Y L. .
6,0 da =1 (4.14)
Then the canonical dilatation or scaling current #* is expressed as
ot =z, O* + TH, (4.15)
where
oL
S =dp——0a .
*50,0.° (4.16)

is called the internal part.

It is possible to eliminate the internal part 3# in Eq. (4.15) by redefining
an symmetric energy-momentum tensor T4 in the following way. We use
Eq. (2.315)

T (z) = O (z) + %@ (TRHV 4 pHER PR (4.17)
and set
e ) (w1s)
where f is the solution of the differential equation
Of = 0 (E" — 1, 5. (4.19)
O is the d’Alembert operator. Then
TH — T"H = @1 — QYF + §, T™HY. (4.20)

Using Eq. (2.319), we have
THY . TV — 6N(MN/1.U _ SRuv + Tn/.ﬂ/)
— 8N(_Zrc;u/ +7_n;u/)
1 K 1% KV
= SO0 f = ")
=0, (4.21)

which shows that T#" is antisymmetric. Using Eq. (4.17) and 7r°#Y +75v# =
0, we have

TV = O + 1, O™ (4.22)
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Using Eq. (4.15), we find
0,0 = OF + ,%H, (4.23)
Inserting Eq. (4.23) into Eq. (4.22), we obtain
TH = 8. (0" — X% + nu,m")
= (B — %)+ 0f
= 0. (4.24)
We introduce T without internal part by
TH = 3, TH, (4.25)
Then the conservation law Eq. (4.12) is replaced by
9,0 =Th =0, (4.26)

which implies that the scale invariance leads to the vanishing of the trace
of the energy-momentum tensor.

4.1.3 Scale invariance for the total Lagrangian

The action given by Eq. (3.42) has a symmetry of scale invariance. When
we change the scale of coordinates £ — 2’ = Az together with the field
transformations

ba(z) = ¢, (7') = Mpa (M), (4.27a)
w(z) = ¥ (2) = X (), (4.27b)
Au(z) = AL () = M, (), (4.27¢)

where ¢q(z), ¥(z) and A,(x) are the scalar boson field, spinor fermion
field, and vector boson field, respectively. the Lagrangian £, changes as

L.(z) = L.(2)) = AL, () (4.28)

Thus the action S, is unchanged under the scale transformation,
Sy = /d4m\/—g£r(m)
- / d*z/—gA\ L, (\zr) = / d*z’/—gL. ()= S..  (4.29)

Using Noether’s theorem, the invariance of action leads to the conserva-
tion law corresponding to the scale invariance, 8, (z.T#") = T} = 0, which
implies that scale invariance is equivalent to the vanishing of the trace of
the energy-momentum tensor. When we put the T} = 0 into the Einstein
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equations, we have R = 0 if the cosmological constant is zero. The space-
time will have zero curvature for a system with the scale invariance. From
Eq. (4.29), we can see that only four-dimensional spacetime can have the
symmetry of scale invariance. Since the time can only be one-dimensional
due to the causality principle, this might be one of the reason that the space
dimension is three-dimensional.

4.2 Ground state energy

Energy plays an important role in physics. The energy is excited over a
background to generate particles. There are two special backgrounds which
are important. One is the ground state, which is the state having the low-
est energy and is thus the state with the highest stability. The other is
the vacuum, which does not contain particles. FEach ground state has its
vacuum. But vacuum is not necessarily equivalent to the ground state.
When the ground state does not contain particles, the ground state is then
the same with the vacuum. When the ground state contains particles, the
ground state is not the vacuum. The universe is not empty. Our universe
consists of various types of particles. Because our universe is not in the
temperature of zero, we do not know whether the ground state of our uni-
verse is a vacuum. However, in most cases, the universe can be considered
almost empty. This means that the ground state can be approximated by
the vacuum. The ground state energy is then equal to the vacuum energy
approximately. The vacuum energy is also called the zero point energy
because it is related to 1/2/wp in the case without interactions of the par-
ticles. As an example, we calculate the vacuum energy of the free scalar
boson field in the Minkowski spacetime, which is the expectation value

(0|H|0) = / d*z (072 + (V$)? + m2$2|0). (4.30)
Let us first calculate

(01é(x,)(x, 1)|0) = lim (0]é(x, 0)(0,0)(0)

= lim d3—pe
T x50 2wp(2m)3

d3
= / “_—2%(;)3' (4.31)

—ip'x
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Other terms in Eq. (4.30) can be calculated similarly, we get

Fy Pp 1, 2 2
(OH|0) =V 2%(—2W)3§(WP+P +m?)

3
= V/(;iTZ)’S%wP. (4.32)

We can see that the energy of vacuum is the integration of 1/2wp over all
momentum mode and over all space. It should be noted that the integration
over p diverges. However, what matters is the difference of energy. These
could be (i) the energy difference of systems with and without particles;
(ii)) the energy difference between different vacuums corresponding to
different ground states.

For the spinor fermions, the energy of vacuum in the Minkowski space-
time is given by

(01A0) = / Ep L pll (p,5).5) — dp. 5.0

= (0] [ @5 wnlbl (b, 5)b(p,5) + d! (p,5)d(p.5) = S O)])

(4.33)
It should be noted that )
3 — B — 3, ipX
§°(0) I?_)rrg @r) /d ze
1
=—— [ &z 4.34
o | (134)
Then we get
(0| H10) = dz df"pZQ Wp- (4.35)

The factor 2 comes from the summatlon of the contrlbutlons of particles
and antiparticles, such as, electrons and positrons.

Eq. (4.35) has an minus sign with it. The spinor fermion field has a
negative vacuum energy, while the scalar boson field has a positive vacuum
energy. Since wp = 1/p? + m? increases with the increase of m. The mass
of particles increases the vacuum energy. A Lagrangian with positive mass
term for scalar bosons will increase the vacuum energy. The ground state
should have the lowest energy. Thus we can only add a negative mass
term, which means that we can not give mass directly to the scalar bosons.
Instead, we need a negative mass term and then with a symmetry breaking
to transform the negative mass term into positive mass term, which is the
reason why we need Higgs mechanism to generate mass for particles. The
Higgs mechanism will be discussed in the section 4.4.
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4.3 Symmetry breaking

When temperature is high, we have the state with high symmetry due to the
entropy effect (see chapter of statistical mechanics). When temperature is
low, the high symmetry state will transform into a state with lower energy,
which usually has lower symmetry. The symmetry breaking is related to
the phase transitions of second order and critical phenomena. It is one of
the most important physical mechanisms.

Now we consider the Lagrangian

1 1 A
L= 50,00"¢ — om*¢” — 2(¢")?, (4:36)
where ¢ = (1,92, -+ ,¢n). This Lagrangian corresponds to the scalar

bosons with mass m and a self-interaction %qﬁ‘l. The Lagrangian exhibits
an O(N) symmetry under which ¢ transfers as an N-component vector and
is renormalizable. We can add a term that does not possess the O(N)
symmetry to break the O(N) symmetry. For instance, we can add ¢?¢? to
break the O(N) symmetry down to O(N — 1). However, the Lagrangian
does not possess the original O(N) symmetry anymore. There is another
way for system to break the symmetry. We keep the Lagrangian with the
O(N) symmetry, but the ground state turns out to be a state without
the O(N) symmetry. This phenomenon is called spontaneous symmetry
breaking.

4.3.1 Spontaneous symmetry breaking

We have explained that for scalar bosons, positive mass term leads to the
ground state with higher energy. Thus a Lagrangian density with the cor-
rect ground state would have the following form

L= éa,@aw + %ugqbg —~ %(qs?)?. (4.37)

We have changed the sign of the ¢* term in Eq. (4.36). We can not
just say that the field has the particles with mass /—u? = iy, which is
meaningless. %(8@)2 — % ule? + %((bz)z is the potential term. We notice
that ¢ = 0 is not the position of the minimum for the potential term. It
is the maximum position. The minimum is at ¢ # 0. Now we determine
the minimum of the potential term. Clearly, any spatial variation in ¢

will increase the energy. Thus we set ¢(z) to be a constant quantity ¢g in

spacetime and look for the minimum of potential. We define
1

V(6) = g6 + Z(#) (4.38)
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Vi)

Fig. 4.1 Potential of field.

First we consider the case N = 1. The potential is shown in Fig. 4.1.

The minimum is determined by 3 av =0 and ‘g ¢‘2/ > 0.

% = —p2¢ 4+ Ap® = ¢(—p® 4+ \p?) = 0. (4.39)
¢ = 0 corresponds to a maximum. ¢ = +(u?/\)z = v are the two
minima.

There are two possibilities for the ground state: ¢ = +v or ¢ = —w.
Physics is equivalent for the two cases. When the nature made the choice,
the reflection symmetry ¢ — —¢ of the Lagrangian is broken. It is broken
spontaneously. We can choose either two ground states. So we choose the
ground state at +v and write ¢ = v + ¢’. We expand £ in ¢’ and we have

4
L=+ Maw — 1247 + 0(97). (4.40)

Now we have a positive mass term for the shifted field ¢’. The particles
corresponding to the field ¢’ with mass v/2y. The first term is the constant
term, which will contribute to the cosmological constant.

4.3.2 Continuous symmetry

The case N > 2 is different with N = 1. For N = 1, the symmetry is the
reflection symmetry ¢ — —¢. It is a discrete symmetry with one symme-
try transformation. For N > 2, we have an infinite number of symmetry
transformations with continuous parameters. We call it continuous sym-
metry. For N = 2, the shape of the potential is shown in Fig. 4.2. We have
the O(2) symmetry in the Lagrangian. The potential has the minima at
¢? = p? /A, which corresponds to an infinite number of equivalent vacua
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characterized by the direction of ¢p. We can choose any one of them and
others are the same with it. So we choose the one with the direction of ¢
to be in 1 direction. In this case, ¢, = v = /u?/) and @2 = 0.

Now we express the field functions as the fluctuations around the vac-
uum, We have ¢; = v+ ¢} and ¢2 = ¢ and put them into the Lagrangian
density in Eq. (4.37). The Lagrangian density becomes

4

L= L0u0006, + 20,0406 — 1,7 4 O(6). (441
In Lagrangian density given by Eq. (4.41), the particles generated by the
field ¢} have a mass \,/Zu. However, the field ¢4 is massless due to the
absence of ¢,° term. The emergence of the massless boson field ¢/, comes
from the symmetry of vacuum. The potential along the bottom of the
potential takes the same values. ¢} is the field along the bottom. It costs
no addition energy to go around the potential bottom. The mass of particles
is zero for the field ¢). The massless field ¢, is called Nembu-Goldstone
bosons or Goldstone bosons. For N > 2, we have the similar results. After
symmetry is broken, the system has the ground state with one massive
boson and N — 1 Nambu-Goldstone bosons.

Fig. 4.2 Potential of field with O(2) symmetry.
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4.4 The Higgs mechanism

We know that scalar bosons can achieve a positive mass term through sym-
metry breaking from a negative mass term with self-interaction. Through
interaction between different types of particles, other particles can also be-
come massive by the symmetry breaking of the scalar boson field. This
mechanism is called the Higgs mechanism.

We consider the simplest case: the charged scalar field (complex scalar
field) with the local U(1) gauge invariance coupled with the massless vector
bosons. The vector boson term is given by —ﬁFWF‘“’. We add the inter-
action term eQA#A“qb*dJ with the gauge invariance. Then the Lagrangian
density is given by

L= =1 FuF" 4+ 3 (B = ieAy)o (9% + ie ")
1 242 1 2\2
t ok 7 = Z)\(Gﬁ )" (4.42)

The Lagrangian is invariant under the local abelian gauge transforma-
tion

U=e), (4.43)
The gauge transformation of the field functions has the form
é(z) = ¢'(z) = e—iﬂ(a:)qb(x)’ (4.44a)
¢*(z) = ¢*'(z) = P ¢* (), (4.44b)
' 1
Au(z) — A (z) = Au(z) + 53#9(:5). (4.44c)

A, is the massless vector boson field. As we did in the previous section, we
set

$(z) = v +¢(z) + ix(x), (4.45)
where v = /—u?/\. We have shifted the field by a value of @yue = v.
Inserting in Eq. (4 42), we have

6202

L= ——FWF’“’ - = Au Al + ( B8,.6)* + ( 9ux)°
—awPe? — evAua“X +oen (4.46)

A mass term 622“2 A, A* emerges in Eq. (4.46). The gauge transformation
Eq. (4.44) become
&(x) = &'(x) = v+ &(z)] cosB(x) + x(z)sin b(z) — v, (4.47a)
x(z) = x'(z) = x(z) cos 8(x) — [v + &(z)] sin §(z), (4.47b)

Au(z) = AL () = Ay(z) + éaﬂe(x). (4.47c)




Symmetry Breaking 119

The resulted Lagrangian now describes a massive boson field interacted
with two scalar boson fields, the massive £ and massless y fields. It should
be noted that the gauge bosons have only two independent transverse com-
ponents before the symmetry breaking. The third component (longitudinal
component) has been gauged out by 8, A* — g = 0(with o taken to be zero
here). Now longitudinal component A3 can be nonzero because the vector
bosons become massive. We shall use the gauge transformation to gauge
out another component.

Since the Lagrangian does not change with any choice of the transfor-
mation function () in Eq. (4.43), we can choose 6(z) to be equal to the
phase of ¢(z) at any spacetime point. In this gauge,

¢'(z) = e @ g(x) (4.48)
becomes a real field function. We set
¢ (z) = v+ n(x), (4.49)

which shifts ¢/(z) to a new field function n(z) in a new vacuum ¢y = v.
n(z) is a new real function. In the new gauge,

A(w) = Aule) + - — 2 (4.50)

The Lagrangian density in Eq. (4.42) becomes

1 2 1

L= =g Fl F™ = o A A 4 2 (0um)
1 1
= W — 2o 4 Se(AL) (2vn + %), (4.51)
where

F,=0,A,-0,A,. (4.52)

The Lagrangian density Eq. (4.51) now describes a massive vector boson
field interacted with a real scalar boson field 1. 7 is called the Higgs boson
field, which has a mass

my = V2 ? = V2. (4.53)
All massless particles become massive particles through the Higgs
mechanism.

If there is no gauge interaction term, the complex massless scalar bosons
become one massive boson and one massless Goldstone boson in the sponta-
neously broken symmetry. When there is a gauge interaction term between
the vector bosons and scalar bosons, the vector bosons acquire mass at
the expense of the would-be Goldstone bosons. Vector bosons with two
components become massive vector bosons with three components while
Goldstone boson disappears. This Higgs mechanism can be applied simi-
larly to the non-abelian gauge bosons.
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4.5 Mass and interactions of particles

The mass terms generally are not added purely as an self-interaction term.
If we add the mass term as an self-interaction without interaction terms
between different types of particles, these massive particles will become
dark matters. However, the mass of particles can be generated through
interactions by the Higgs mechanism. It is reasonable that the favorable
interaction terms are those possessing the scale invariance, which maintain
the symmetry of the scale invariance in the total Lagrangian. The inter-
action terms included in the standard model of electroweak unification are
those possessing the scale invariance.

The gauge group in the standard model is U(1) ® SU(2), for which the
gauge invariant Lagrangian density for the gauge bosons has the form

1. . 1
Lop = = Wi, W ~ ~ B, B", (4.54)
where
By, = 8,B, —8,B,, (4.55)
and
Wi, = 8,W] — 0, W} + g Wiw,, (4.56)

B, is the abelian gauge boson field and Wg is the nonabelian gauge bo-
son field. The self-interaction terms for the gauge boson fields are scale
invariant. One can add other interaction terms which are both gauge in-
variant and scale invariant. There are the interaction term of the gauge
bosons with the left hand spinor fermions L4555, the interaction term of
the gauge bosons with the right hand spinor fermions Lgp_ o5, the inter-
action term of the scalar bosons with the spinor fermions £z, 5f, and the
interaction term of the gauge bosons with the scalar bosons Lg4_is5. They
are given by

_ 1, 1.
Lgp—1sf = Yriv* (8# — 519’3# + 5297 : W#> Y, (4.57a)
Lgp—rss = Vriv"(0u — 19" Bu)¥r, (4.57b)
Lop-si = —gel(b1.0)0r + Vr(dT41)], (4.57¢)
1 1 t '
[/gb~sb = {(8,, + Eig'B# + EZgT . W,u> g/)} (457d)

X {(6,, + %ig’B# + %igr . Wﬂ> d)} — AT )2, (4.57e)
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where —\(¢T¢)? is the self-interaction term. When a symmetry break-
ing term —p2¢’¢ in the Lagrangian of matter is generated, the scale in-
variance symmetry is broken. The particles become massive by the Higgs
mechanism.

Before the symmetry breaking of the scale invariance, we have only three
basic types of particles:

(1) the scalar bosons with the Lagrangian density

Lov = 50" 0,00, (459)
(2) the vector bosons with the Lagrangian density

Loy = —EFWF‘“’; (4.59)
(3) the spinor fermions with the Lagrangian density

[’Sf = ’(/;LZ"Y#ISH’(/JL + &Ri')/#auw}?- (460)

All these particles are massless. The massless particles moves with the
speed of light. When the symmetry of the scale invariance is broken, the
particles acquire mass.






Chapter 5

Perturbative Field Theory

5.1 Invariant commutation relations

We have solved the equations of motion for free fields. In order to treat
the quantum fields with interactions, we will develop some tools which are
useful for the calculations of quantum fields in this chapter.

The commutation relations Egs. (2.60) and (2.61) are the commutation
relations between field operators at two different spatial positions but at
equal time. Using the equations of motion, we can calculate the commuta-
tion relations between field operators at different times. One of the most
important commutation relations is the invariant commutation relation,
which possesses the Lorentz invariance.

5.1.1 Commutation functions

In the following, we consider the scalar boson field as an example. For
scalar bosons, we define the invariant commutation relation between the
field operators cZ)(x, xq) and QAST(y, Yo) as
itz —y) = (), &' (y)). (5.1)

A(z) is also called the Pauli-Jordan function. We have used the homo-
geneous character of spacetime to write A(x — y) as a function of z —y
instead of z and y separately. It can be seen that A(z — y) is a Lorentz-
invariant function from the definition Eq. (5.1) which is not dependent on
any specific frame of reference.

For the free complex scalar field, we can calculate the function A(zx —y)
easily. The generator of time translation G is given by

~ N 1_+ ~ 1 PO
Gi=H= /d% (%frTﬁ + §v¢fv¢ + §m2¢f¢> . (5.2)
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The corresponding equations of motion are given by

idog = (6, G4] = (5.3a)
it = [¢, G ] i, (5.3b)
o7 = [f, G4] = (V2 — m?)g, (5.3¢)
ot = [#1,Ge] = i(V? — m?)g. (5.3d)
The solutions of the equations of motion have the form
ix,6) = [ Erlagup(xt) = Bpup(x, ] (5.4a)
3 (x,1) = / Bplalus(x, ) + bpup(x,1)]. (5.4b)

In Eq. (5.4), we have two types of creation and annihilation operators de-
noted by (a,4a') and (I;, b1), respectively, because we have two components
for a complex field. Similar to Eqs. (2.142), (2.143) and (2.146), we can
deduce the following commutation relations:

lap, L] = [bp, bL,] = 6*(p — P, (5.58)
lap, tpr] = [Bp,z}pl] = [a},,al,] = b}, 5,1 =0, (5.5b)
lap, bpr] = [ap, 0] = [}, bp] = [af,,6],] = 0. (5.5¢)
For the vacuum state, we have
ipl0) = byp)0) = 0. (5.6)

Inserting the expansion Eq. (5.4) into Eq. (5.1), we have

/ds /d Wl () apr, aL] + ul (2)up () B, b))
- / & plup ()l (4) — ul(z)up(y)

d®p . .
= _ x| miplz—y) _ pip(z—y)
/ wp (27)3 [e € }

>

= iAW (z —y) +ia Dz —y) (5.7)
with
d’p )
A (p — =/___ —ip-(z—) .
ZASN ) RN IS N , (5.8a)
a3 .
A (g — :_/ P iv(a—y) )
ZANNCAS) RNCIIEN (5.8b)
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where we have defined the four-dimensional momentum p = (pg, p) = (wp =
VP2 4+ m?2,p). iAH)(z - y) is called the positive frequency function and
1A (x —y) is the negative frequency function. Eq. (5.7) can be expressed
as

d’p sin(p- (z —y))

iNz—y)=— g ™

(5.9)

We can extend the three-dimensional integration in Eq. (5.9) to four-
dimensional one in order to show the Lorentz invariance explicitly. We
denote z = z — y and change py from wp to an independent variable in
integration. Then we have

3
’LA(;U — y) = / .—d.pi.._ ]:e_i(WpZO—P'Z) _ ei(wpzo—]}z):i

2wp(27)3
dip 1 .
= | ———1[6(py — —§ —i(pozo—p-z)
/ (27T)3 2wp[ (pO wp) (po + (/Jp)]e
_ [ dp e(po) ipz
= / 21)7 2y [6(po — wp) + d(po + wp)]e P, (5.10)
where
+1, for po >0
= Si = 5.11
e(po) = Sign(po) {_1’ for  py <0 (5.11)
is the sign function. Using
1
;18P0 = wp) +8(po +wp)] = 6((po — wp)(po + wp))
o)
= (p§ — wp)
= §(p* - m?), (5.12)
Eq. (5.10) becomes
; d4p 2 2\ —ip-z
iNz—y)= W&(pg)&(p —m)e . (5.13)

The sign of pg does not change under any Lorentz transformations because
the time-like momentum vectors with pg > 0 always keep (p? = m? > 0)
and thus always lie in the forward light cone while those those with pg < 0
are always in the backward light cone. Thus A(z —y) is Lorentz-invariant.

We can easily show that other commutation relations satisfy the follow-
ing equations:

[#(2), 9" (v)] = [7(2), 7" (3)] = 0. (5.14)
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Since the field operator ¢(x) satisfies the Klein-Gordon equation

(O +m?)d(z) =0, (5.15)
the function A(z) also satisfies the Klein-Gordon equation
O+mHAZ) =0 (5.16)
with the following boundary conditions at vanishing time difference.
A(0,x) =0 (5.17)
and
0 A(zg,X) 5%(x) (5.18)
— , = —6%(x). .
33:0 0 25=0

Eq. (5.17) comes directly from Eq. (5.9) because the integrand becomes an
odd function of p when t = 0. We can verify Eq. (5.18) by differentiating
Eq. (5.9). In fact, Eq. (5.18) is just the equal-time commutation relation
Eq. (2.60).

o 00,3
1 %A(-T - y) To—rYo B 8_%[¢(m)7¢T(y)] Zo—Yo
- [qb(x)q;T(y)] oo
= [Qg(x)ﬁ(y)] zo—Yo
=i (x —y). (519

5.1.2 Microcausality

Eq. (5.17) leads to a very important property of quantum field
Alz—y)=0, for (z~-y)*<O0. (5.20)

The invariant function A(x — y) vanishes when x — y is'a space-like four
vector. Eq. (5.20) has important implication that two observable quanti-
ties can be measured independently when the measurements take place at
two points that have a space-like separation. This is the so-called micro-
causality, which states that disturbances can not propagate faster than the
speed of light.

In the following, we will give a deduction that Eq. (5.20) leads to the
microcausality of observables. We write the operator for a local observable
such as 13# as

O(z) = 6/ (x)0(2)d(x), (5.21)
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where O(z) is a c-number function or a differential operator. The commu-
tator of two observables is given by

[0(z),0(9)] = O(z)0(y)[$" (€)d(x), ' (1) ()]
= 0(z)O(y){d' (2)¢' (v)[#(2). $(y)]
+4'(z )[cb(l‘) ¢! (¥)o(y) + ¢ (¥)[¢' (2), 6())d(x)
+[0'(2), ¢' (¥)Id(@)d(y)}
= O(z)O(y ){dﬁ( JidMz = y)ly) — &' (y)is(y — z)é(z)}

= 0(z)O(y)(¢' (2)8(y) + &' (¥)d(x))irr (= — y). (5.22)
From Eq. (5.20), we obtain the microcausality for the scalar boson field.
[O(x),0(y)] =0, for (z—y)?<0. (5.23)

In the frame that two space-like points z and y have the same time,
O(z)O(y) or O(y)O(z) can be considered as two consecutive measurements
made within an infinitesimal time difference. Eq. (5.23) means that the
measurement first at z and then at y is equivalent to the measurements
first at ¥ and then at z for two space-like points z and y. Thus the observ-
able O can be measured independently at two space-like points.

5.1.3 Propagator functions

In addition to the function A{x—1y), we can define other invariant functions
for the operators, the so-called propagator functions. One of the most
important propagator functions is the Feynman propagator Ar(z — y),
which is defined as

iAp(z - y) = (0]T(x)d" (y)]0). (5.24)

The symbol T' denotes the time-ordered product of the operators é(ac) and
¢'(y), which is defined by

~

TA(z)B(y) = A(x)B(y)©(z0 — yo) £ B(y) A(2)O(yo — 20), (5.25)

where

Ox) =

1, for z>0
(5.26)

0, for =<0
The operator T put the factor of two time-dependent operators A and B

into chronological order that the operator having the later time argument
is put before the other. = sign in Eq. (5.25) occurs due to the reordering of
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operators. The plus(minus) sign is for the boson(fermion) field operators.
In the case of the free fields, Ap(z — y) is also called the free propagator.

We can evaluate the Feynman propagator using the solutions of the
equations of motion. The solution Eq. (5.4) for the complex scalar bosons
consists of the following parts

3 (x, 1) = / Epipug(x,t), G (x,8) = / P pboup(x,1)), (5.27a)

¢ (x,1) = / dBpbluz(x,t), o' (x,t) =
They have the properties

$T ) (2)[0) = (01 (z) =

¢ (@)|0) = (06" () =

d*palup(x,t)).  (5.27b)

—

(5.28a)

0,
0. (5.28b)

Thus we have

A p(z —y) = Bz — 40) (0|6 (2)g1 >( )i0>
+O(yo — ) (01" (1)) ()[0)

— 00 — 10) / & pu (2 (1)
0o — z0) / @ pup () ()
= O(z0 — 0) / (di_i_e~ip'(z—y)

2m)® 2wy,
dp 1
O(yy — _=_pip(z—y)
0o )/ (2m)3 2wpe
= 0(0 — y0)is P (@ —y) - O(yo — 20)is V(@ —y). (5.29)
We can express Eq. (5.29) in a more compact form. Using the following
mathematical formula

1 . )
m[@(l‘o — yo)e_wp'(%‘yo) + @(yo _ xO)ewp'(IO_yo)]
P

de e—iPO'(Zo—yo)
- = 5.30
27 P — w? + ic (5-50)
where € is an infinitesimal number, we have
dtp e -y
Ap(z —y) = . 5.31
rl—y) / (27)% p? —m2 + ie (5:31)

We can see that the fourier coeflicient of Ap(z —y) is

Ap(p) = /daa:e‘ip‘“’AF(a:) = !

p? —m? +ie

(5.32)
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Since Ar(x — y) satisfies the following relation

dip e—ip-(z—y)
2 _ .2 2
(Dr+m)AF(z—y)—/(27r)4( p —+~’ITL) 2

p? —m?2 + ie
4

= —6(1‘ — y)7 (5.33)

the function Ap(z — y) is the solution of the inhomogeneous Klein-Gordon
equation containing a delta function as a source term. The Feynman prop-
agator has the meaning of amplitude probability for the process in which
a particle created at the point x;,£; in spacetime propagates to the point
X2, ts where it is annihilated. Since field operators (;3 and QAST contain both
the operators for particles and antiparticles, Ap(z — y) describes the pro-
cesses for both particles and antiparticles depending on the chronological
order of ¢ and ¢7.

In contrast, the commutation functions A(z — y), AP (z —3), and
A)(x — y) satisfy the homogeneous Klein-Gordon equation

(O +m?*)Ai(z -y) =0, (5.34)

where A; = A, A and A,

In addition to A{z —y) and Ap(z —y), there are several other commu-
tation functions and propagator functions. For the propagator functions,
in addition to Ap(xz — y), we define Dyson propagator as

Ap(z) = O(z0) AT (2) — O(—x0)i A (). (5.35)

Ap(zr) is also known as anti-causal propagator which has an opposite
chronological order as compared to the Feynman propagator.

We can also define two other propagators, the retarded propagator
Ap(z) and the advanced propagator A a(z).

Ag(z) = O(z0)A(x), (5.36a)
Aa(z) = -0(z0)A(x). (5.36b)

The Pauli-Jordan function A(x) can be written as the difference between
the retarded propagator and the advanced propagator

Alz) = Ap(z) — Dale). (5.37)

Using Ag(z) and A 4(x), we can define the principal-part propagator A(z)
as

Alz) = Z[Ar(z) + Aa(z). (5.38)

B}
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Inserting Eq. (5.36) into Eq. (5.38), we have
_ 1
Alz) = §G($O)A(:E). (5.39)

The propagator functions Ar(z), Ap(z), Ar(z), Aa(r) and A(z) are
the solutions of the inhomogeneous Klein-Gordon equation with a delta
function as the source term

(O +m*H)Ai(z) = —6%(x), (5.40)

where AA; = Ap, Ap, Agr(x), Aa(z), A(z). Since they are the solutions of
the inhomogeneous Klein-Gordon equation with delta function source, we
also call them the Green’s functions. For example, Ap(x) is also called the
Feynman Green’s function. These propagator functions contain a product
of the function A(z) with a unit step function in time such as ©(zy) or
%e(a:o). The step function is the one leading to the delta function when the

Klein-Gordon operator is applied.

5.2 n-point Green’s function

5.2.1 Definition of n-point Green’s function

We have calculated the Feynman propagator in the previous section, which
is shown to be the Green’s function for the equations of motion. The
Green’s functions are also called the correlation functions. They are the
useful tools in the calculations of field properties. Now we generalize the
two-point Green’s function to the n-point Green’s function defined as the
following time-ordered product.

Clar, ez, 2n) = OITB(x1)g(@2) -+~ (2n)]|0). (5.41)
G(z1,22, -+ ,&y) s also called the n-point correlation function. Similar
to the two-point Green’s function, we can calculate the n-point Green’s
function using the solution of the equations of motion. Generally, the easiest
way to calculate the n-point Green’s function is that uses the path integral
formalism. Similar to the derivation of Eq. (2.102), we can express the
n-point time-ordered product as a path integral. The n-point time-ordered
product, which is also called the transition matrix element, has the form in
the path integral formalism

(@ V| T[¢(x1)p(z2) - -~ blan)]|, t)
_ f Dol )p(2) - dlan)et I ATEW, (5.42)
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5.2.2 Wick rotation
Now we consider the evaluation of the two-point function
G(x1,22) = (0|T[B(x1)d(x2))(0). (5.43)

We can extract the correlation function G(x,,z2) from the transition ma-
trix element Eq. (5.42) in the following way. We decompose |¢) into the
eigenstates |n) of H, which gives

6,t) = 1S In) (nlo)

= eFn)(n|g)
= iew"‘<n|¢>|n>. (5.44)
Using the expansion of Eq. (5.44)? we have
(@, ¢|T[d(21)(z2))] 0, 8)
—Z <z> t'|n) (/| T(d(z1)(2)) |n) (n] )
=2e—“En't’-E"”@',t'ln’><n|¢><n’|T[a3(x1)a3(a:z>]|n>. (5.45)

The term with n’ = n = 0 in Eq. (5.45) contains the correlation function
G(z1,z2) . The trick to exact the function G(z1,z2) from Eq. (5.45) is to
damp out the terms with n’ # 0 or n # 0. These terms have the oscillatory
factor e~ (Ent'~Ent) We can take the ground state Ey = 0. Thus one can
introduce an exponentially damping factor by attaching an imaginary part
to the time coordinate by ¢’ — 7/¢~%* and t — Te~%. When we take the
limit 7 = —oc and 7 — oc. The terms with n’ # 0 or n # 0 are damped
out. Geometrically, this is achieved by a rotation clockwise with an angle
0 > 6 > 7 in the complex plane. To calculate the path integral, one can
start from any 0 > § > 7. In terms of the new rotated time coordinates
7 =€t and 7 = €¢t, the limit of the matrix element has the form
lim (¢',t'|T(¢(z1)¢(x2)]| @, 1)

t! = oc
t— —oc

= lim (¢, 77 |TIg(z1)(2)][0, e )

= lim (¢ 0TI delo. e 0r).  (5.46)

T——oC
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In the last line of Eq. (5.46), we have made an analytical continuation by
going to real values of the rotated time coordinate 7. This is a mathematical
manipulation. If the integral is an analytic function in the time variable,
this can also be considered as a procedure that we calculate the well defined
limit in the last line of Eq. (5.46) and then make an analytical continuation
to 6 = 0. Since one can choose any 0 > § > 7, the most convenient choice
is 6 = %, which rotates the time axis into the pure imaginary direction.
t — —it. Such a rotation is called a Wick rotation.

Using the Wick rotation t = —i7 with 7 being real, Eq. (5.46) becomes

Jim (', | T1d(z1)(x2)]|6,1)

t——oo

= lim (¢, —ir'|T[d(e1)(x2)]|¢, —i7)

T—=—00

li

Tim 37 e BB 1) (nl g [Td(1) ()] In)

T -0 n,n’

= lim e 50! ]0)(010) (0T [é(21)é(2)]]0)- (5.47)

Similarly, we have

lim (¢',¢]¢,6) = lim e~ ™("=7(¢/,¢]0)(0]9). (5.48)

Combining Eq. (5.47) with Eq. (5.48) gives

(¢, 1T [d(z1)B(x2)]|9, t)

(0| T[d(z1)d(22)]0) = :!}_2 (@, t|6,t)
D o iS{¢]
B tt;ij_g f m}(gq)bfi(sw]) — (549

where S[¢] = [d*zL(p,¢)) is the action of the field. Eq. (5.49) can be
easily extended to more general cases.

~

<O‘T[¢3($1)¢3($2) - p(2n)]|0)
(@ | T[p(x1)d(x2) -+~ Blan)] @, 1)

o (¢',¢]6,1)
o [ Dé(1)p(ws) - - plan eSO
i J DoeiStl : (5.50)

t— —oc
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To make the notations simpler, we generally omit the lim symbol in
Eq. (5.50). Then Eq. (5.50) is expressed as

Glx1, 29, - ,2p) = (0T [p(x1)d(x2) - - - (2 )]|0)
[ Déd(1)(2) - - - P51
B [ Dopeislel :

It is noted that on the right hand side of Eq. (5.51), the path integral should
be modified slightly in accordance with the transformation in Eq. (5.46).

(5.51)

5.2.8 Generating functional

In order to calculate the path integral in Eq. (5.51), we define the generating
functional of a field by

AUE / DgetJ @' #1(@:9)+9], (5.52)
Using the generating functional, we can define a normalized functional
Z[J]
ZlJ| = —. .
Then we have
\" 6nZ[J]
Ie cxy) = = _
(=1,82,"++ 1 n) (;) 5700 (ws) 30w |, Y
G(x1,x2, -+ ,Zn) Is a symmetric function of its arguments for a scalar field.
Eq. (5.54) means
1 -
Z|J] = Z;ﬁ/d‘lxl---d%nz Glzy, Ta, ,2n)
X J(x1)J(x2) - - J(2n). (5.55)
There is another useful functional W[J] defined by
Z[J] =Wl (5.56)

W1J] is called the connected generating functional. Using W[J], we can
introduce the connected Green’s function G by

1 )"—1 FmW(J]
i) 6J(21)0J(w) 6 (Tn) | yg

The physical content for the name ‘connected’ will become clear in the later

Ge(@1,02,+++ ,Tn) = ( (5.57)

usage.
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5.2.4 Momentum representation

For a free field or perturbation calculations based on the free field, it is
advantageous to work in the momentum space because the solutions of the
equations of motion for the free field can be expanded using plane wave
basis. The transformation of the Green’s functions into the momentum
representation is defined by

G(p1,p2,- ) (27) 6% (D1 + P2+ -+ + pu)
= /d4$1 o dt "G (T, Ty, -, g e PUEITPR TP En) (5 5g)

The d-function factor comes from the conservation of energy-momentum
due to the translation invariance of spacetime. After evaluating the right
hand side of Eq. (5.58), there would be a factor é4(p; +p2 + -+ + p,) on
the right hand side of the equation so that the factor 6*(p; +p2 +- - +pn)
would be canceled out.

5.2.5 Operator representation

We introduce the operator functional defined by

Z[J] = Tel 4ol (@3le), (5.59)
where ¢ is the field operator. It can be seen that Z[0] = 1. We have for
the functional derivatives of Z[J]

" 51 31J] I A
() T oy = Tbed - Han 2L o0

Now we consider the functional derivatives of (0]Z[J]|0).  Using

Z[0] = 1, we have
() FEFrer =i el 061
According to Eq. (5.54), we have
5" Z[J] B §™(0|2[J]10)
8J(z1)6J(z2) - 6J(xn) | ;g 0J(71)8](22) 6] (Tn)
Inserting Eq. (5.62) into Eq. (5.54), Eq. (5.55) becomes

I 5m0|21J)j0)

x J(z1)J(22) - T (@)
= (0|Z[7)10). (5.63)
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5.2.6 Free scalar fields

For a perturbation calculation, we need define a reference field, whose equa-
tions of motion can be solved. Generally, we take free fields as base fields
because the equations of motion for free fields can be solved exactly. Now
we consider the case of a free scalar field. The connected generating func-
tional for the free scalar field is given by

=/D¢e—ifd4:c[%¢(|:|+m2—ie)¢—.]¢]. (5.64)

with O = §,0*. Here we have performed an integration by parts for the
kinetic term in the Lagrangian density £ = %(Buqﬁ@“qﬁ — m2¢?) of a free
scalar field

/ d*z0,90"¢ = — / d*z¢0e. (5.65)

A positive infinitesimal € is introduced in accordance with Eq. (5.46). An
alternative method is the Wick rotation, which enable one to evaluate the
path integral in the Euclidean space (see Appendix E).

In order to calculate the generating functional, we introduce a field ¢g
satisfying the following equation

O+ (m? — ie)]do = J (). (5.66)

We take ¢y as a reference field and shift ¢ with respect to ¢¢. ¢ = ¢o + ¢'.
Then we have

/d4 { (O+m* —ie)p — J¢
= [ @0 @+ mt iy +;¢ (O+m? = ie)o
+¢(@+m? —ie)qﬁo—ngO—Jqﬁ"
/d4 ¢ (O +m? —ie)g +2J¢0
+¢/(O+m® = ie)go — Joo = &

= ——/d4 ¢' (@ +m? —ie)e’ — o] . (5.67)

In the derivation of Eq. (5. 67) we have used Eq. (5.66).
The solution of Eq. (5.6

6)
/ d*yAr(z —y)J(y), (5.68)
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where Ap is the Feynman propagator,

Arle—y) = / (;er];‘l er —kn(; —i)ie’ (5.69)
which is the solution of the equation
(O+m? —ie)Ap(z) = —54(x). (5.70)
Substituting Eq. (5.68) into S[¢, J] in Eq. (5.67), we have

Slp,J] = —% /d4x¢’(m +m? — i)

a % /d4"3d4yJ($>AF(w - y)J(y). (5.71)

Dependence of J in the path integral is contained in the second term of
Eq. (5.71). Thus

21J) = / Dge~if #o[36@+m?~ic)g-Jo]
= Z[0]e~ 2 d2d*yI @) Ar (e-y) I () (5.72)

Then the normalized generating functional for the free scalar field is
given by

Z i g4
Zo[J] = 2l _ e~ % [ dzd*yI (@) A (z-y) T (y) (5.73)

A ‘
The subscript 0 is used to denote a quantity of the free field.

5.2.7 Wick’s theorem
We expand Zy[J] in Eq. (5.73)

2l = 5 -5 [ dstuI@an - )0
n=0
- = n!\ 2 ! 2n
X Ar12AF34- - Apop_12, 102 Jon (5.74)

with Ap;; = Ap(z; — x;) and Jp = J(zg). All the n-point functions
with odd n vanish because Z contains only even powers of J and an odd
functional derivative leaves an odd powers of J in the integrand which
vanishes at J = 0.
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For the even powers of functional derivatives of Zy, we have

1 2k 62kZO(J)
Golxzy, 29, -+, ={=
o1, T2 2k) <z) 6J(z1)8J (2) -+ 6J(z2k) | ;g
N\ K
2 1
- <§) _‘ZAFplpz .“AFPZk—poxw (575)
- r
where the sum runs over all permutations (py,p2,--- ,pak) of the number

(1,2,---,2k). Eq. (5.75) shows that the n-point functions of free scalar
bosons can be written as a product of two-point functions, which is the
so-called Wick’s theorem. Wick’s theorem thus allows us to calculate the
n-point functions of the free fields in terms of the Feynman propagator. As
an example, we consider the case of n = 4, which corresponds to k = 2. We
have

1
Go(1,22,23,74) = =2 D ArpipsDFpopa: (5.76)
P

There are 24 terms in the sum. Since Appip, = AFpopss AFpsps = AFpaps:
and Arpp; AFpsps = AFpspi DFpapy» We Obtain a 2 x 2 x 2 = 8 factor from
the sum, which just cancels with the factor 1/8. Only %—4 = J distinct terms
are left, which can be written explicitly as

Go(z1,22,23,24) = —Ap(T1 — T2)Ap(T3 — 24)
— Ap(z1 — 23)Ap(22 — 24)
—Ap(xl -—.I4)AF($2 —IE3). (5,77)

5.2.8 Feynman rules

We can express the expansion in a graphical way using Feymann diagrams.
The Feynman rules set up the connection between the algebraic and graph-
ical representation. For the free field, they are given by

(1) Each Feynman propagator iAp(z — y) is represented by a line as
shown in Fig. 5.1.

Fig. 5.1

(2) Each source 7.J(z) is represented by a cross as shown in Fig. 5.2.
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Fig. 5.2

(3) There is an integration over all the spacetime coordinates.

(4) There is a combinatorial factor for each diagram that takes into
account the symmetry of the diagram under exchange of the external lines.

Using the Feynman diagrams, we can express G(z1,%2,%3,24) in
Eq. (5.77) as Fig. 5.3.

1 2
1 2 ! 2
+ +
4
3 3 4
3 4
Fig. 5.3
Since Zo[J] = e*"°lV] we have
. 1
Wald] = =5 [ dsdtyr@)de(e - I0) (5.78)

which can be expressed by a Feynman diagram shown in Fig. 5.4. The %
factor in Eq. (5.78) comes from the symmetry of exchanging the endpoints
in Fig. 5.4, which correspond to the invariance of the integral in Eq. (5.78)
when the integration variables x and y are exchanged.

—X
*—————X
Fig. 5.4 Fig. 5.5
For the expansion of Zy[J], we have
Z[J] = eWel]
. 1, L. .
=1+iW,[J] + §(ZWO[J})2 + 5(zWO[J])3 +.o. (5.79)
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There are two types of Feynman diagrams in the diagram representation
of Eq. (5.79): the connected graphs that all parts are tied together, such
as Fig. 5.4 for iWp[J], and the unconnected graphs such as Fig. 5.5 for
(iWs[J])?. The connected Green’s function defined by Eq. (5.57), such as

1 §2Wy

Ge(z1,12) = i 6J(x1)0J (z2) | ;g

=i{Ap(r) — 22) (5.80)
can be represented as a Feynman diagram shown in Fig. 5.1. Other G, are
Zero.

5.3 Interacting scalar field

We can add any interaction term V' (¢) in the Lagrangian density of matter
to form the interacting scalar field without changing the total Lagrangian
in Eq. (3.40). The form of the interaction term V(¢) should be determined
in such a way that the ground state with the lowest energy can be achieved
by adding the interacting term V(¢). Now we consider the Lagrangian
density with an interaction term

L=Lo—V(e), (5.81)

where Ly = %(@(b@“gb — m?¢?) is the Lagrangian density for free scalar
bosons. V(¢) is the self-interaction term, such as A¢? term in the Higgs
mechanism. In the following, we will discuss the perturbation method to
calculate the n-point functions defined by Eq. (5.51)

D ()i
G(z1, T2, ) = ! ¢¢(xl)f¢g;lis[¢?(z e

We expand the action exponential in terms of the powers of the
interaction

(5.82)

o

N
eiSle] — Z % (—i/d4$v) gSole] (5.83)

N=0
Inserting Eq. (5.83) into Eq. (5.82), we have

G($17z2$ t ,In)

J Dod(z1)p(z2) - d(zn) io: %(—ifd‘le)NeiSO[é]
B = . (5.84)

Dé S (=i [ dizV)Neisoll
N=0 N!
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5.3.1 Perturbation expansion

We can use Eq. (5.84) to make the perturbation calculations of the Green’s
functions up to any orders in V.
The generating functional is given by

Z[J] — NO/D¢eif(l4:n[L0—V(¢)+.]¢]
:NO/D¢e—ifd‘*zV(gs)eifd“z(LoJrJqs). (5.85)

where My = Z[0]7L. Using the relation

1 & g i [ d*
L i fd*z(Lo+Je) i fd%z(Lot ) 5.86
. —5J(y) € P(y)e ’ ( )

we obtain

e~ [ AWV W) i f d'a(LotTe) _ o~ ) yisfy i [d'a(LotTe) (5 87)
Thus, Z[J] in Eq. (5.85) becomes
2] = Npe~ 0V ) / Dt a(Lo+76), (5.88)

Since the V dependent factor is now taken out of the functional integral,
the functional integral is the one for the free field and can be expressed in
terms of the free Feynman propagator. We have

Z[J] = Noe T3V Gty e 4/ ded'y I (@Ar (e=v) (1)

= Noe 4=V Gy 2,11, (5.89)

P [ddyvi(l 5y,
Expanding the exponential factor e~ IV in powers of V', we have

o0

2 =N Y % {—i/d“zv (%E]%J—)HNZO[J]. (5.90)

N=0

Using the expansion Eq. (5.90), we can calculate the n-point Green’s func-
tion perturbatively.
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G($11$23 e ,l‘n)

[ Do(e)o(w2) - 0lan) S (=i [ dav(6(e)] Y el
N=0 .

It

[ Do 5 55 [=i fdtaV (o)) el

1 527
?) 8J(z1) 5J(z2) 57 (zn)
677.

(
( ) IZ NU6J(21)0J (22) -~ 6 (zn)

< (G ))}NZO[‘” B

We can also make the expansion for iW[J] = In Z[J] which is related
to the connected diagrams and reads
iW[J] =InZ[J]

:lnN0+ln( —Zfd =V ( 1 ?I))eiWo[J])

=InANp + Wy + ln(e—iwoe_ifddzveiwo)

=InNp +iWy[J] +1n (1 + e_"WO[J](eA”‘fd%V(% 57Gy) 1)eiWo[J}) .
(5.92)

Il

J=0

|

(5.91)

We define a functional £[J] as
£[J] = e~iWolJ] [ —i [daV(iE) 1} ¢iWolJ]

. 1 5
— —'LWQ[J] . 4 I 4
¢ {l/d‘”v(zj 2' /d 25J

+oee }eiWOU]. (5.93)
Inserting the expansion formula Eq. (5.93) for ¢[J] into Eq. (5.92), we have

iW[J] = InNp + iWs[J] + <€[J] - %52[J] 4. >

10J

1wl agy (L] pwels
Tof ¢V 757
. 14 . 2
— % {e_’wo[‘” {— /d4a:V (z 5(])} eZWO[J]} + O(VS)

— IaN + iWo[J] + iWA ] + iWalJ] — %(in[J])z +O(V?). (5.94)

— lnNO+ZWO[J] ‘LWo[J {_Z/d4xv (1 ) >:| ez'Wo[J]
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with
iWolJ) = —% / d*zd*yJ(x)Ap(z —y)J (y), (5.95a)
W, [J] = e”Woldl |4 / dizv (12 etWol7l, (5.95b)
18
Wald] = =i Wold] —i/d‘*mv LT gwol (5.95
el =g iss ) ¢ -95¢)

Inserting the expansion Eq. (5.94) into Eq. (5.57), we can calculate the
connected Green’s functions of the interacting field.

5.3.2 Perturbation ¢* theory

Now we consider the interaction term
9 4
V(g) = 579" (5.96)

where g is a constant, which is also called the coupling constant. We will
show that the ¢* type interaction term is the only interaction term in four-
dimensional spacetime leading to meaningful results for scalar bosons. Now
we calculate the expansion of iW([J] using Eq. (5.94).

’LW[J] = InNj + ZWO[J] +’iW1[J] + ZWQ[J]

_ %(in )2 + OV (5.97)

with
iWolJ] = —% /d4md4yJ(w)AF(x - y)J(y), (5.98a)
iW,[J] = e=WolJ] [—i / d%% G%ﬂ eWolJl, (5.98b)

1 . 41"
iWa[J] = ae*%WO[ﬂ [—z’ / d%zlg—! G%) ] eWolJl, (5.98¢)
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5.3.2.1 Generating functional up to O(g)

We first calculate the term linear in g

; = _i_g —iWp[J] 4 8 iWo[J]

iWiJ] = i dx6J4($)e
W iweg 4 —i [d*zd*yJ(x)Ar{z—y)J
———Ie []/dxéJ‘l(z)e 3/ yJ(z)Ar(z—y)J{y)
= —%{—3/Ap(m—m)Ap(z—z)d4z

+6i / Ap(y — 2)Ar (@ — 1) AF(z — 2)(y)J (2)d*zd*yd*z

+/Ap(x —yYAr(z - 2)Ar(z —v)Ap(z — w)

X J(y)J(z)J(v)J(w)d4md4yd4zd4vd4w}. (5.99)
The second term is quadratic in J and thus contributes to the two-point
functions. The last term contains four powers of J and thus contributes to
the four-point function. We can express the expansion Eq. (5.97) graphi-
cally using the Feynman rules:

(1) Propagator: iAr(x —y) is represented by a line as shown in Fig. 5.1.
(2) Source: iJ(z) = is represented by a cross as shown in Fig. 5.2.

(3) There is an integration over the spacetime coordinates for each source.
(4) There is an a symmetry factor for each diagram.

(5) Each interaction factor % is represented by a dot as shown in Fig. 5.6.
(6) There is an integration [ d*z for each loop.

Fig. 5.6 Fig. 5.7

Generally the connected generating functional {W[J] for interacting field
is represented by a double line as shown in Fig. 5.7. We can represent the
expansion by Feynman diagrams

iW I =1In Np+iWo[J]+iW1 [J]+0(g%)
=In Ny +Fig.5.8+ (Fig.5.9+Fig.5.10+Fig.5.11)+ O(g*).  (5.100)
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iWy[J] is the zeroth order term, which is given by Eq. (5.78). The graphs
in the parentheses are the first order terms given by Eq. (5.98b). The first
one corresponds to the first integral in Eq. (5.99). There are no external
lines in the graph, which describes the vacuum processes. The second
graph corresponds to the second integral in Eq. (5.99). It has a single loop
attached and is called the tadpole diagram, which gives a mass change due
to the self-interaction. The third graph is the last integral in Eq. (5.99),
which describes the interaction process.

— .. X

Fig. 5.8 Fig. 5.9 Fig. 5.10 Fig. 5.11

Now we show the vacuum contribution in Eq. (5.97) can be canceled
out by the normalization term In Aj. Since Ay = Z[0]~1, we have

Z[0] = / Deel '#(£o=V)

J=0
:e%fd“zV(%ﬁ%—%fd“zd“yJ(z)AF(z—y)J(w‘ . (5.101)
J=0

Expanding In Z[0] similarly as we did in Eq. (5.92) and using Wy[0] = 0,
we have
In Z[0] = In [e‘if d%V(%é_ﬁz—))eiWOU}”
J=0

_ ~ifd4:BV(% 5 ‘L)) _ iWo [J]
tn 1+ (e ) )]
o 1.4 iWo[J]

Z/dﬂ/(i&](x) e
1 , 4 1 4 : iWo[J]

* o { Z/d xV(iéJ(z))} ¢
_1 s 4 1 6 iWo[J] ’

5 { z/d xV(i&J(z))e

= Wy [0] + W4 [0] + ¢W2[0] + - - -

= iW[0). (5.102)
The vacuum terms are those without external lines. When we take J =0
in W{[J], all the terms with external lines vanish and only vacuum terms
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remain. Thus In Ny = — In Z[0] cancels with the vacuum contribution in
the expansion of iW[J] in Eq. (5.100). Then i{W[J] can be evaluated using
the Feynman diagram shown in Fig. 5.12.

Fig. 5.12

5.3.3 Two-point function

Using the expansion Eq. (5.92), we can calculate the connected n-point
functions. We first consider the connected two-point function.

5.3.3.1  Terms up to O(g)

Using Eq. (5.97), we can obtain the expansion up to terms linear in the
coupling strength.

1 8w
Gc(l‘lv‘rz) - ;m J=0
52W, 52w

+0(g%)
J=0

T I @)s @) |,y 37 (@)s (@)

=iAp(z] —22) + 1—‘({12i/d4zAF(a: —2)Ap(z —11)

x Ap(z — 32) + O(¢%)
=i1Ap(z; — 22) — %/d4IAF($2 — 1)
X Ap(z — 2)Ap(z — 1) + O(g%). (5.103)

The first term in Eq. (5.103) is the term of O(g°), which is the Feynman
propagator for a free field.

1

g L
¢* —m? +ie

Ap(zy —x2) = / (2W)4e"iq'(zl_zz) (5.104)
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We can also evaluate the two-point function in the momentumn space by
the Fourier transformation

(2m)*6*(p1 + p2)Ge(p1, p2)
:/d4x1/d4xge_i(7’1'“’1“’Z'xz)Gc(xl,xg). (5.105)
For a free field, we have

(2m)*6*(p1 + p2)Ge(p1, p2)

/d4$1/d .7326 i(p1-z1+p2-r2)

X / L et (z1—z2) t
(2m)* g2 —m? +ic

= (27)46%(p1 + p2)———
Y4

— (5.106)

Thus we have the momentum representation of the two-point function

1
Gcﬂ(pa —P) = GO(pv _p) =

- =iA . 5.107
P —m?tic iAF(p) ( )

The second term in Eq. (5.103) is the term of O(g). Its fourier transform
is given by

4 4 4
——/d4$1/d4$2 —t(p1-c1+p2- zz) /d4 / d QI d QZ d g3
4 (2m)4

e*lqz (z2— x)e—“h (z—x1)
X
(g% — m? +i€)(g2 — m? + ie)(g3 — m? + ie)} }

1
or)tet —_—
—(2m)"8* (p +P2)2 -

dq 1 1
. 5.1
X/(27T)4q2—m2+iepg—m2+ie (5.108)

Thus we have the expansion in the momentum representation

—ig diq i i
X |—=12 —. 5.109
[ /(27r)4q2—m2+ie p?2 —m? + e ( )
Similar to the coordinate space representation, we can use the momen-
tum space Feynman rules to construct the expansion in the momentum

representation. The Feynman rules in the momentum space are given by

(1) Each free propagator line corresponds to a factor m
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(2) Each vertex is associated with a factor —%.

(3) The sum of all momenta flowing into a vertex should be zero.
4

(4) Each internal line is associated with an integration | (%‘5’;.

(5)

5) There is a symmetry factor for each diagram.

We use ¥ to denote the integral in the second term of Eq. (5.109)

g [ d% i
r== . 5.110
2 / (27)% g2 — m? + ie ( )

Then the expansion for the two-point function can be rewrtten as
b
Ge(p,~p) = Go + G07G0

b))
= Go(1+ TGO)

G
~ Go(1-x22)!

i
L 1
_p2—m2+z’el_ X

p? —m? +ie
B i
S pr-mP-Xtie

(5.111)

From this equation, it can be seen that ¥ is the modification to the mass
due to the self-interaction and thus is called the self-energy.

5.3.3.2  Terms up to O(g?)

From Eq. (5.94), we can see that there are two different terms in the O(g?)
contribution. One is ¢{W[J] which is the genuine term of the second order
in V and the other is — 5 (iW1[J])?, which can be considered as the iteration
of the first order term. We draw the corresponding Feynman diagram in
Fig. 5.13.

The first graph in Fig. 5.13 is the Feynman diagram constructed by an
iteration of the first order tadpole diagram. It is the square of the two first-
order terms. As shown in Fig. 5.13, this graph consists two parts of the first
order in V' connected by an internal line. Such a graph can be split into two
unconnected parts when one internal line is cut. We call this kind of graphs
one-particle reducible. Otherwise, it is called one-particle-irreducible (1PI).

In order to describe the 1PI graphs, we introduce a vertex function
F((f;,)tp(pl,pg, “++ ,pn). It is also called connected proper vertex function. The
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@

- o

Fig. 5.13

n-point vertex function is defined as

F((;,zp(l)lap% ot 7pn)
=G;'(p1,—-11)G. (2, —p2) - G H(pn, —pn)Ge(p1, P2, -+, Pn)- (5.112)

Fg%p(pl,p% -+« ,pp) is also called the amputated Green’s function because
it is the connected n-point function with external lines truncated, which is
the reason we add subscript ‘amp’. To simplify the notation, we usually
omit the subscript ‘amp’.

The free 1PI two-point function is given by

_ 1
I (p, —p) = G (p,~p) = ;(p2 —m?). (5.113)

The 1PI part of the first order term is given by

I (p, —p) = G~ Y(p, -p)G (—p, p)Ger(p, —p)

~ig [ diq i
=12—= 5.114
4 (27)4 g2 — m2 + i€’ ( )

where G.1(p, —p) is the second term in Eq. (5.109) contributed by the first
order tadpole diagram in the first graph of Fig. 5.13. The factor 12 in
Eq. (5.114) comes from the symmetry factor.

For the 1PI graph of the second order in V shown as the second graph
in Fig. 5.13, we have

) (p, —p)

_192( %9 2/ diqy digy i i(2m)16% (g1 — g2)
4! (2m)* (2m)4 g2 —m2 +ie g5 —m2 + e

4 .
x/ 45 : (5.115)

(2m)% g2 —m? +ie’
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Another 1PI graph of the second order in V shown as the third graph in
Fig. 5.13 contributes to the vertex function a term

2
T3 (p, —p)

—ig\? [ d*q d*qx diqs
—d (—4'_> / (2m)* (2m)* (2m)* o=+ 0+ )

) i 1

. 5.116
g2 —m? +ic gt —m2+ieqi —m? +ie ( )

5.3.4 Four-point function

The three-point function is zero. Now we discuss the four-point function.

5.3.4.1 Terms up to O(g)

The expansion of the four-point function up to terms of O(g) is given by

1\° 5w
GC($1,$2,$3,$4) = (;) 5J(IL‘1) (5](.’1)4)

J=0
54T, R
= ST 00 (@) |y 0T (@) 0T (@) |y
O(g?). (5.117)

Since Wy depends on J only quadratically, the first term in Eq. (5.117)
vanishes. Only the second term contributes. Using Eq. (5.99), we have

Ge(z1, 22,23, 24)
= —ig/d4$AF(:I: — .'I,‘l)AF(I - .’L‘Q)AF(.T: - I3)AF(.’L‘ — I4). (5118)

The momentum representation is given by

Ge(p1,p2,p3,pa) = —ig H (5.119)

m2+ze

5.3.4.2 Terms up to O(g?)

The Feynman diagrams for the terms of O(g?) is shown in Fig. 5.14. The
four diagrams on the first line are the vertices with self-energy insertion on
each of the external legs. The diagrams on the second line are the genuine
contributions.
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X XXX
I

Fig. 5.14

The contribution from the diagrams on the first line of Fig. 5.14 is given
by

4 . . 2 4 .
? —ig d*q 1
G a ) 9 9 = 4‘ —12 DTH
20(P1, P2, P3, Pa) k|=|1 pz —m2 ( 41 > / (27)4 g% — m?

4 .
)
1=1 "1

From the diagrams on the second line of Fig. 5.14, the contribution has the
form

4 . N .
(41)? i —ig / d*qy d'qa i
G Y ) ) =
26(P1, P2, D3 p4) 9 kl—:Il pi 2 4! (2m)4 (2m)4 q% — 2
i

;@)Y g+ g2 — (e + 1), (5.121)
kl

x
2
g —m

where the sum over (kl) runs over the pairs of number (1,2),(1,3), and (1,4).

5.4 Divergency in n-point functions

5.4.1 Divergency in integrations

One of the difficulties in the quantum field theory is the divergence prob-
lem. Many integrals in the two and four-point functions diverge. The
divergence problem can be solved by the renormalization procedure. The
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renormalization procedure gives the effective field. The reason behind the
renormalization procedure is that only physical interaction terms exist. Al-
though we can add any forms of the mass and interaction terms into the
Lagrangian of matter without changing the total Lagrangian, the actual
forms of the mass and interaction terms are those achieving the lowest en-
ergy for the ground state. The physical mass and other quantities should
be finite. Actually we have only a particular form of mass and interaction
terms to give physical results.

Now we discuss the divergence problem. Let us consider the two-point
function Eq. (5.111)

1

Ge(p,—p) = R S (5.122)

with
s i (o)_-‘i/ d’q : (5.123
TP TS L i —mE e 123)

To perform the integration over g, we rewrite the expression of the self-
energy ¥ in Eq. (5.123) as

E__g/ diq i
T2/ (2m)4q2 —m24ie

g / d®qdgo i
2] (2m) 2 —a? —mZ+ie

g [ d3qdgo i 1 1
== | —F - 5.124
2 / (2m)4 2wq (qo —wq+10  gqotwg—id ( )

with wq = 1/g? + m2. There are two poles located at twq Fid. According
to Cauchy’s theorem, the integral over go can be evaluated by closing the
integral route to enclose the poles and giving each pole a value of 2mix the
residue x the sign of the direction of the integral route.

The self-energy 3 becomes

d3q 1 d? 1
EZQ/__Q_ZQ/ I — (5.125)
2/ @mPwq 2J (27)% /g2 + m2

The integration is divergent. By introducing an upper bound A for the
integral over |q|, the integral diverges as A2 when A — co. It is called the
quadratic divergence.
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5.4.2 Power counting

We can use power-counting to determine the degree of divergence of an
integration. When an integration diverges as AP, we say the degree of
divergence is D. When D > 0, the integration diverges. D = 0 corresponds
to a logarithmic divergence. D < 0 is the case of convergence. For example,
the integration of ¥ in Eq. (5.123) has D = 2 because d%q gives 4 power of
g and the denominator in the integrand gives two powers of q.

For an interaction ~ ¢F in n dimensional spacetime, when the Feynman
diagram has L loop and I internal lines, we have

D=nL-2I (5.126)

because each loop contributes an integral [ d"q and each internal propaga-
tor gives a power ¢~ 2.

When a diagram has V interaction vertices, there are pV lines in total
because each vertex contributes p lines. We denote the number of the
external line as E. One internal line originates and terminates at a vertex,

consuming two legs of vertex. There are I internal lines. Thus we have
pV =FE +2I. (5.127)

Each internal line carries an integral f d"™q. In the mean time, each vertex
contributes a delta-function associated with the conservation of momentum.
Each delta-function, except the one associated with the overall momentum
conservation, decreases the actual integration number by one. Thus we
have also the following relation between the number of loops L and the
number of vertices V

L=1—-(V-1). (5.128)

Using Eqs. (5.127) and (5.128) to eliminate L and [ in Eq. (5.126), we have
-2

D=n+(n—@2—z—p)V—(%—1)E. (5.129)

In a perturbation expansion, we increase the number of vertices V to
get the high orders of perturbation expansion. When the factor of V in
Eq. (5.129) is positive, the degree of divergence becomes larger with the in-
creasing order of perturbation. We denote the factor before V' in Eq. (5.129)
by v
_np—2)

2

When v > 0, we have an infinite number of divergent terms. For four-

dimensional spacetime (n = 4), if p > 4(¢°, ¢, ---), the expansion terms

v ~ . (5.130)
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are more and more divergent. p = 4 is the special case with v = 0. When
v = 0, the degree of divergence D = 4 — FE is independent of V. All are
divergent in the same manner, which makes the divergent parts cancel out
possible. We will show that the renormalization procedure can remove the
divergent part. Since D = 4 — E, there are only two types of divergent
functions, the four-point function with £ = 4 and the two-point function
with £ = 2.

When n > 4, there is no even integer p which gives v < 0. This poses a
strong limitation on the dimension of spacetime in which the particles can
have interactions that are renormalizable.

5.5 Dimensional regularization

In order to separate the divergent parts from the convergent parts, we need
introduce a parameter that could measure and remove the divergence. This
is called regularization. There are two important types of regularizations,
one is the Pauli-Villars regularization and the other the dimensional reg-
ularization. The Pauli-Villars regularization uses the parameter A — the
upper bound for integral over |q|. The dimensional regularization uses the
parameter ¢ = 4 —n. Both regularizations are equivalent. In the following,
we will use the dimensional regularization.
Now we consider the action S in n-dimensional spacetime.

S = /,Cd"m. (5.131)

Since S is a dimensionless quantity. £ must have the dimension {~" with !
as length dimension. Thus we have [¢] = I177/2, [g] = [~(n+p(1=n/2)) apnq
[m] = [71. In the renormalization procedure, we hope to keep the coupling
constant g to be dimensionless. We add a mass factor to the ¢* and rewrite
the interaction vertex term as follows

L=Lo— %u‘*—"qﬁ“, (5.132)

where p is an arbitrary mass.

5.5.1 Two-point function

For the two point function, the divergent integration is contained in the
self-energy term. We consider the lowest order term of the self-energy ¥,
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which is given by the tadpole diagram. Similar to Eq. (5.123), which gives
the corresponding ¥ in four-dimensional spacetime, we have

g a4-n dnq [
v . 1
2 / (2m)" g2 —m? + ie (5.133)

The integral in Eq. (5.133) can be evaluated using Eq. (F.9) in the Appendix
F. We have

9 4-n 1 n—-2_% ( TL)
YX== —— - —]. .
SH (27r)"m w2zl (1 5 (5.134)

The I'-functions with negative integers as variable have poles at 0. Thus
the expression of ¥ is divergent at n = 4. In order to separate the divergent
terms, we expand [" around the pole. We have

i-5)=r(1+
= _§ —1+v+0(), (5.135)

where v & 0.577 is the Euler-Mascheroni constant. Inserting the expansion
of T into Eq. (5.134), we have

€

—€ 2
3oL i (21 s ot0)
€

2 (2m)4—e
gm? (4me\* (2 14+ 0() (5.136)
- _— €)]. .
3272 \ m?2 € K
Using
¢ =e"* =14 elng, (5.137)

Eq. (5.136) becomes

2 2
_gm € 4T _2_ .
2_327r [1—|—2ln(m2 )}( ; 1+/+O(e))

2
2 2
gm 2 4
= 21 -
32m2 [ c Y ln( m2 )} +0()
2 2 2
gn 1l gm 47y
= - -—— 11— 1 . .
1672 ¢  32n2 { T n( m?2 )] 0l (5.138)

The self-energy ¥ diverges as % This divergent term has been separated
from the rest convergent terms.
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5.5.2 Four-point function

Now we consider the regularization of the four-point function. The diver-
gent term of O(g?) comes from the 1PI vertex Feynman diagrams in the
second line of Fig. 5.14. The three contributions can be evaluated similarly.
We take the middle graph on the second line of Fig. 5.14 as an example.
We evaluate the connected vertex function using Eq. (5.121)

. 2
ig o\ (41)2
AF(4)(p17p27p37p4) = <_Zg"/l4 > (—2)—
dg i i
X / (27!')"’ q2 _ m2 (p _ q)2 — m2 (5139)

with p =p1 +p3s = p2 + ps.
The integration can be evaluated using several mathematical tricks. Us-
ing the integration identity

1 L dz
ab /0 [az + b(1 ~ 2)}2’ (5.140)

we transform the integrand in Eq. (5.139) into the following form
1 1
¢ —m? (p—q)* —m?

_ /1 dz

“Jo {(@-mPz+(p- ¢ —m(1 - 2))?

_ 1 dz

B /0 [¢? — 2pg(1 — 2) + p?(1 — z) — m?)%’
Changing the variable ¢ by ¢’ = ¢—p(1—z) in the integration of Eq. (5.139),
we have

(5.141)

AT (py, pa, p3, pa)

1, 2(4_n)/ drq' /1 dz
= — 5.142
g9 # @2m)" Jo [¢* —m2+s2(1 - z)]2 ( )

with s = p* = (p; + p3)*.

We interchange the order of the integration over ¢’ with that over z.
The integration over ¢’ can be evaluated in a similar way with that used
for Eq. (5.133). We have

/ drq 1
(2m)m [q’2 —m? + 8z(1 — 2)|?
(2m)"

(m? — sz(1 —2)]" T n%—o 2/ (5.143)
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The four-point function becomes
AF(4)(1)1 P2,P3,P4)

1 7,772F2-— -
_292M2(4 M= 2/ / dz[m? — sz(1 — 2)]"7

1 ey ! m? — sz(1~2)]7 ¢
=i¢?u*——T —_— . .
YR 3Rz (2)/0 dz [ 4 } (5.144)
The integral in Eq. (5.144) is convergent. The divergent part is con-
tained in T'(§). Using Eq. (5.137) and T'(§) = 2 — v + O(e), we have

AF(4)(p17p23p37p4)
o tus |2 ¢ [* m? — sz2(1 — z)
= - — 1—= PR S
9 372 L 7+O(6)} { 2/0 dz( 4 p?

. - 1 2
ips 1 5 i m* —sz2(1—2z2
=0’ ~ V5 [7+/ dz (T;ﬂ—zﬂ +0(e). (5.145)

In Eq. (5.145), We have separated the four-point function into a divergent
part and convergent part. The integral is a function of p?, m? and p?,
which will be denoted as I'(s, m, i),

T(s,m, p) = /01 dz (mg_s—zg—‘ﬁ> . (5.146)

dmp

The results for the middle graph on the second line in Fig. 5.14 can be
used for the other two graphs on the second line in Fig. 5.14 with appro-
priate replacement of the momentums at external vertices. We introduce
three Lorentz invariant Mandelstam variables s, f,and u

s = (p1+p3)? =p?, (5.147a)
t = (p1+p2)*, (5.147b)
u = (p1 +pa)*. (5.147c¢)

These variables are responsible to the variable change in the last summation
of Eq. (5.121). Thus the summation of all the three diagrams in the second
line of Fig. 5.14 is given by

FE4) (p17p2ap37p4)

37;92“6 1 iQZ,UfE
= ez ¢~ 3oz 37 HI(smp) + Tt m, ) + Tlu,m, )] (5.148)

In Eq. (5.148), the vertex correction F§4) has been split up into a divergent
and a convergent part.
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Summing with the zeroth order term, the total 1PI four-point function
is given by

T (py, p2, p3,pa) = —igu + F§4)(p17P2»P3«,P4)

3ig?uc 1 iguc
Pl gt
1672 ¢ 32

+(s,m,p) + T(t,m, 1) + I(u, m, w)]

. 31
= —igp {1 9[167# 322[37+P(8mu)

Tt m, 1) + T(u,m, u)ﬂ } (5.149)

= —igp® +

We can define an effective coupling constant § by

@
gl1-==]—-3a (5.150)
igp

In terms of §, we can express the vertex function as

T (p1, 2, p3, pa) = —igu’. (5.151)

5.6 Renormalization

The arbitrary mass and interaction terms in Eq. (5.81) generally do not
give convergent results. We need change the parameters in the mass and
interaction terms to obtain a physical convergent results. This process is
called the renormalization procedure. In order to eliminate the divergence,
we add the counter terms

Ecounter - ——0 ¢ - __(Z Z2)¢ (5.152)
We also make a transformation
¢ = VZo. (5.153)

Eq. (5.153) is equivalent to an counter term 3(Z — 1)[(8¢)? — m2¢?] for the
kinetic and mass terms. Egs. (5.152) and (5.153) together are equivalent
to a counter Lagrangian

€

gi‘! (Z,~1)6*, (5.154)

’ 1
‘Ccounter 2(2_1)[(8¢)2_m2¢2]_§6m22¢2—

where Z, 6m? and Z, are the renormalization parameters determined in
the following way.
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The general form of the two-point function for the original Lagrangian
is given by
1

G(p, —p) = . .
(p,—p) R (5.155)

The self-energy % is a function of the momentum p and can be expanded
around the on-shell point p? = m?2. m is the physical observable mass.

S(p?) = B(m?) + (p* — mH) T + La(p?), (5.156)
where
ox
£ = o , ,
= (5.157)

In Eq. (5.156), we have written up the first two terms of the expansion
around p? = m? explicitly. The remainder of the expansion is put into the
Yo (p?) term with Za(m?) = 0.

We define

sm? = B(m?) (5.158)

and
1

Z = .
1-3%;

(5.159)

In terms of Fg4) determined by Eq. (5.148), we define

o -1
Ly’ o)t 5.160
Zo=11-— =(1- .
) o] =) (5.160)
,
with
R
o= —— (5.161)
1g°uc
where r denotes the so-called symmetric point.
4 1
with 4,5 = 1,-- - , 4 denoting the external lines. At the point 7, all particles

are on shell with s =t = u = 4m?/3.
From the self-energy expansion up to the one-loop diagram,

m? 1 m? 471',11,2
2(p*) = BATSPRRETY {1 —y+1n ( - ﬂ + O(e), (5.163)
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we have

S(m?) = gL _ g {1 — v+ (4;’;2)} +0(e), (5.164a)

1672 ¢ 322

Y1 =%=0. (5.164b)
We can see that the divergent term is contained in the ¥(m?) term. In the
one-loop expansion, we have ¥; = 0 and thus Z = 1. But in the two-loop
approximation, it can be shown that ¥; # 0 because the graph for the

two-loop approximation is p-dependent. Thus in general Z # 1.
Using the renormalized Lagrangian, we have the two-point function

i
Z(p? —m?) — Z8(m?) — Z(p* — m?)E; — To(p?) + 6m2Z + ie

i
 p2—m2—%y(p?) + i€’

(5.165)

Since ¥3(m?) = 0, G(p, —p) has the pole at the physical mass m with
residue . G(p,—p) has no those divergent quantities contained in ¥(m?)
and ;. The new effective coupling g defined by Eq. (5.150) is given by

§ = 9Z4[1 — gZ,0T (s, ¢, u)|
_ 9 [, _ 9
1 —gdI'(r) 1 — g60(r)
=g{1 —g[60(s,t,u) — 6T(r)]} + O(g*). (5.166)

0T (s,t, 1)

Since the divergent term ~ % does not depend on the variables s, ¢, u,
the substraction 40'(s,¢,u) — dT(r) removes the divergent parts. g does
not contain the divergent term ~ % and is thus finite. We obtain the
renormalized 1PT four-point function as

F(4)(P1,p2,103,104)
= —ig{l - [G(s,mQ) + G(t,m?) + G(u,m?)

3272
- 3G (%mZ, mQH } +0(g?) (5.167)
with
1
G(s,m?) = / In(m? — s2(1 — z))dz. (5.168)
0

T (py, pa, 3, pa) does not contain the divergent term.
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We can introduce the bare field ¢o, bare mass mo and bare coupling
constant gg to simplify the expression of the renormalized Lagrangian. We
define

b0 = V2, (5.169a)

mZ =m? + m?, (5.169b)
Z

9o = gufz—g. (5.169c¢)

Then we can express the complete Lagrangian in terms of the bare quanti-
ties by

1 ; ,
£ = 51(@00)° - mied) - Lot (5.170)

This bare Lagrangian has the same form as the original one and leads to
the finite physical quantities.

5.7 Effective potential

Due to the renormalization, the emergent values or the measured values
of physical quantities are different with the bare values in the original
Lagrangian. Although the relation between the measured values and the
bare values are complicated. We can use the effective potential to simplify
the relation.

As an example, we consider the case of a scalar boson field. The un-
derlining principle is the same and can be applied for all other fields. For
a scalar boson field, the Lagrangian is given by

1
£ = 10,000 - V() (5.171)
with '
V(g) = %m%qﬁg + %954. (5.172)

We consider the calculations of the corresponding classical field. Since
the loop expansion is an expansion in k, we consider the loop expansion.
The physical classical quantities are related to the renormalized quantities.
The renormalized mass m is given by

m? = —il3) (0) (5.173)

and the renormalized coupling constant g is related to the vertex function
4 by

g=irlY (p; =0). (5.174)
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The classical field ¢, is defined as expectation value (¢). We will show
that ¢. obeys the Euler-Lagrange equation with the Lagrangian whose pa-
rameters are the renormalized ones. The connected generating functional

W is given by
+ p—
awigy _ (07]07),
e = 5175
(10 (5.175)

Thus the classic field ¢. is related to the connected generating functional

by

_ {0%|g(@)|07)s

¢C($) - <O+}O_>‘]
_oWJ]
©8J(x)

(5.176)

¢. depends on the source J(z). The vacuum expectation value {¢)o is given
by

(¢)o = lim ¢ (5.177)

We introduce a vertex function I’ [¢C] which is related to the connected
generating functional by

T(p] =WI[J] - / d*zJ(z)o.(z). (5.178)
Eq. (5.178) gives
0T[p] .
o) = J(z). (5.179)

When J(z) — 0, ¢, is a constant. According to Eq. (5.178), ¢ becomes
the solution of the equation

dr
—M)l = 0. (5.180)
dde |g,
For a classical system, the vacuum state |0) should be replaced by a state
which has the expectation value of constant in microscopic scale and depend
on position in macroscopic scale. The dependence of ¢. on the coordinates

can be resulted from the boundary condition for a finite system. Then
Eq. (5.179) has the form

=0. (5.181)
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I'[¢.] can be expanded in ¢, as

Tl¢.] = Z;)—T%/d‘lwl e dir T (2, ) g (1) - Ge(@n). (5.182)

After Fourier transformation, we have

= 1
Pigd = 3 o [ oo dpabtion 4 o)
n=0

x T (py, o pn)e(p1) -+ felpn)- (5.183)

We can also expand T'[¢.] in the Lagrangian form in terms of ¢. and its
derivatives as follows:

Tlg] = /d‘*:c [—U(czac(x)) + %(amc)? +}
= /d4f”£c» (5.184)

where U(¢.(z)) is called the effective potential and I'[¢.] is thus also called
the effective action. Inserting Eq. (5.184) into Eq. (5.181), we have

oL, 0 [ L. \
D6, dar <a<au¢;>> =0 (5:155)

which is called the Euler-Lagrange equation.
Now we discuss the relation of I'®) in Eq. (5.183) with the amputated
Green’s function Fé?,l,,. According to Eq. (5.112), the amputated Green’s

function is defined by

Fg:r)lp(Pl,pm *»Pn)
=[G M Py, =G (P2, —p2) - GZ (Pry —pn)Ge(Pr, P2, D). (5.186)
In terms of the spacetime coordinates, we have
Fgmp T1,T2," " ,Tp)
/d4y1/d4yz /d4ynG (Y1, 42, +Un)
x (G2 (1 = 2] HCP (g2 — 22)) 71 [CP (ynyza)) 71 (5.187)

To simply the notation, we rewrite Eq. (5.187) in a compact form

i =GM(GE) (5.188)
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The generating functional Tgmp[J] of the amputated Green’s function
is defined by

LamplJ] = Z Fgﬁann

_ = (n) (2)y—n yn
n

= W[(GP)~1J] (5.189)
or
Camp|GPJ] = WJ). (5.190)

Thus W[J] is also the generating functional for the amputated Green’s
function.
Using Eq. (5.183), we have

"' (¢)

F(n)x7:c7..-’l'n = . 5.191
( 1,42 ) (5¢($1)(5¢($n) vy ( )
According to Eq. (5.175), W[0] = 0. Then we have
@ =, (5.192)
Using Eq. (5.181), we have
or
' =—=0. 1
50, (5.193)
Using the identity relation —2—5— =1, we have
8J 8¢, 82T §2°W
L= =1, 1
8¢ 6J 82 §J2 (5.194)
Taking J = 0, we have
r@6EeP) = 1. (5.195)
or
r® = Z'(G(Q))(—l) = iF(Q)p, (5.196)
Taking the functional derivative ¢ over Eq. (5.194), we have
83T 6°W 6% 83W §°T
=0. (5.197)

642 6J2  6¢2 6J° 62

Multiplying Eq. (5.197) with g;; and using Eq. (5.194), we have

T 8w (6r\°
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Taking J = 0, we have
I'® = @ @Y= = _ir((f;}l'p_ (5.199)

Similarly, we can obtain the following relation by further taking the func-
tional derivative %.

T sw s\t BwN\? /s621\°

Taking J = 0, we have
I = (), —i3re, 1) (5.201)

amp® amp’

For the case of ¢* potential, we have
I =l . (5.202)

Since I'™ has only minor difference with Ff,,?,)m, we often do not distingnish

them and use the same name to call them.
When ¢. = a is a constant in case of J(z) = 0, using Eq. (5.184), we
have

I'a] = —QU(a), (5.203)

where Q is the total volume of the spacetime. Comparing with Eq. (5.183),
we have

Ua) = — i %a”F(”) (i = 0). (5.204)

n=0

The relations to the renormalized quantities now read

d?U(¢.) 2
- = 2
352 . m*, (5.205a)
d'U(¢.)
= q. .205b
ot . g (5.205b)
Eq. (5.180) for the vacuum expectation value becomes
aU (¢,
@) (5.206)
déc d)c

Inserting Eq. (5.205) into Eq. (5.184), we have

[[¢c] = / d'z B(@ﬂmf - m2¢? — %gﬁg . (5.207)
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Using the Euler-Lagrange equation Eq. (5.185) and neglecting the interac-
tion term, we have the classical Klein-Gordon field equation with renormal-
ized mass

(O + m*)pe(z) = 0. (5.208)
We can also construct the classical Lagrangian density £ directly using
the renormalized quantities.

o= %Bugb@“gb —V(g) (5.200)
with
Vi(g) = %m2¢2 + %cb“. (5.210)
The classical action is given by
S.|¢] = /d4x£c. (5.211)

We choose a constant source function J to give a constant average field.
Now we calculate WJ] by the saddle-point approximation of path integral,
which is also called the stationary phase approximation or the classical
approximation.

W |[J] is calculated by

enWll = /D¢e B Se[6:7], (5.212)
where
S.l6,J] = / d*z[L. + o(x)J (2)l. (5.213)

We have used Planck constant A explicitly because we will use approxima-
tion for the calculations of the classical case. The saddle-point position is
determined by

6Sele 1| _ o
@) |, = J(z). (5.214)

Expanding the action around ¢g gives

amﬂ=swmﬂ+/fnam—%J

§S.
3o ()

¢a

+5 [ daislofe) —anllow) ol g+
=Mm—/fwmﬂm
4 4 628 -
/dxd ¢0]5¢( )M()‘ (@(y) — do] +--- .

(5.215)
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Performing the functional differentiation of the action gives
528,

so(z)dd(y) |,

Substituting Eq. (5.215) into Eq. (5.212) and performing the functional

integration, we have

eX WUl = g3 Sel®0.] fdet[0 + V" (o))} 3. (5.217)

=—[0+ V"(¢0)]é(z —y). (5.216)

Using the relation
det 4 = eTrin4, (5.218)
we have

WI[J] = Sc[do] + /d4$¢o(x)J(:c) + %Trln[D +V"(¢0)]. (5.219)

We express ¢p in terms of ¢.. Denoting ¢1 = ¢. — ¢g, we have

Sc[éo} = Scw)c - ¢)1]

= Se[pe] - / 'z (z) 5‘;?;) LT
= Sclde] + /d4x¢1 (z)J(z)+---. (5.220)

Using Egs. (5.219) and (5.220), we calculate I'[¢.] in Eq. (5.178).
Lol = Seldo) + [ dlodu(w)d () + 5D+ V7 (g0)
- /d4xJ(x)¢C (x)

_ S.lg] - / dha (2)J(z) + %’?mn[m +V"(60)]
= S.od + %Trln[D + V(o). (5.221)

When the source field is a constant, which is valid in microscopic scale, we
have

¢e(z) = a. (5.222)
Thus we have
S:la) = -QV (a), (5.223)

which gives

U(a) =V(a) - %Q_lTr In[0+ V" (a)]. (5.224)
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In the classical limit, A — 0, which corresponds to the tree approximation.
Egs. (5.221) and (5.224) show that the effective action I'[a] becomes the
same as the classical action and the effective potential U(a) becomes the
same as the classical potential. Eq. (5.181) with the I'[¢.] expanded in
the Lagrangian form in Eq. (5.184) is equivalent to the Euler-Lagrange
equation. Since the effective action is the same as the classical action, we
can use the classical Lagrangian density in the Euler-Lagrangian equation.

Since the divergence comes from the large k, the renomalization pro-
cedure can remove the integration over large k, which gives an effective
field and effective Lagrangian with effective potential in low energy. The
effective Lagrangian in low energy is applicable in quantum mechanics.

For the non-vacuum case, we shall use the Riemann spacetime. We
can first carry out the renormalization procedure in the local flat metric
approximately, which is feasible because the divergence comes from the
large k which is effective locally. The renomalization procedure gives the
effective field for the effective potential. Then we use the effective field and
effective potential in the action in the Riemann spacetime. Thus we have
the effective total action for the effective field in the Riemann spacetime,
which is invariant under an infinitesimal spacetime translation. Similar
to the procedure leading to Eq. (3.26), we obtain the classical Einstein
equations.






Chapter 6

From Quantum Field Theory to
Quantum Mechanics

We are now ready to deduce some approximate formalisms of physics which
are important for the applications. One is the formalism of quantum me-
chanics which is applicable in microscopic scale and low energy. The other
is the formalism of classical fields, which is applicable in macroscopic scale
where the fluctuation and correlation are small. First we consider the sys-
tems with low energy where the quantum mechanics is used. When we
say something is small or low, we should have a reference point. Here the
reference energy is the mass m of particles. When the energy variation is
much smaller than the mass of particles, the energy is said to be small.
This is also called the non-relativistic limit. In this case, the number of
particles is conserved because the loss of one particle costs an energy of
m, which is much larger than the available energy. We only use quantum
mechanics to describe the massive particles. For massless field, we do not
have the mass of particle as a gauge energy and the conservation of particle
number. Massless field is related directly to the classics massless field, such
as electromagnetic field in the case of photons. In the following, we will not
use the natural units so that we can write out the Planck constant # and
the speed of light ¢ explicitly in the discussions of the non-relativistic and
classical limits.

6.1 Non-relativistic limit of the Klein-Gordon equation

First we consider the scalar boson field described by the Klein-Gordon
equation.

. 2\
—h(x, 1) = (\72 _ %—) d(x,1). (6.1)
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In order to derive the non-relativistic limit of the free Klein-Gordon equa-
tion, we make an ansatz

Bx,8) = p(x,t) exp (-%mc%). (6.2)

We have split the time dependence of (ﬁ into two terms: the fast oscillating
term exp (—3mc?t) and the slow changing term @(x, ¢).

In the non-relativistic limit, the difference of the energy E of the particle
and the mass m is small. We define

E'=E —mc. (6.3)
In the non-relativistic limit, £’ <« E ~ mc?. Thus
0 . .

< (‘;t0> ~ (E'¢) < (mc*¢). (6.4)

Using the ansatz Eq. (6.2), we have

and

_51(;2} — 0 34,0 m_CZ _i 24
otz ot |\ ot — K % ) exp e

o (me0e  met0p it N E
S\ e T o T T P)R TR

= (z 27;;0 %% + mh2 <p> exp (—%mc%). (6.6)
Inserting Eq. (6.6) into Eq. (6.1), we have
1 /. 2me®0p mict i,
() )
= (Vz - mh2c > P exp (—%mczt) (6.7)
Eliminating the fast oscillating term exp (—%cht), Eq. (6.7) becomes

85 R

Eq. (6.8) is the Schrédinger equation in the operator form for scalar bosons.

ih
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6.2 Non-relativistic limit of the Dirac equation

Now we consider the non-relativistic limit of the Dirac equation Eq. (2.218)

[}

(thy* 0, — meyp = 0. (6.9)
or

o . .
z’ha—f = —ihca - Vi + Bmc*ip. (6.10)
The coupling of the Dirac fermion field with the photon field should
maintain the gauge invariance. We introduce the covariant derivative D, =
0, —i£ Ay, to replace the ordinary derivative d, to include this interaction
term. In the classical limit, A, is replaced by its classical value and becomes

the electromagnetic four-potential

A = {Ao(x), A(z)}. (6.11)
Then the Dirac equation in the electromagnetic potentials is given by
L O 4 2
zha = [ca - (—ihD) + eAo + Bmc]3. (6.12)

Since particle-antiparticle creation and annihilation are negligible in low
energy, we can consider particles and antiparticles separately. Thus the
four-component spinor ¢ is decomposed into two-component spinors

Y= (i) (6.13)

Then the Dirac equation Eq. (6.12) reads

30)- (2 e a @) eme () s

In the derivation of Eq. (6.14), we have used the explicit representation of

Dirac’s matrices
0 d; 10
P = . .1
@ (m 0>, 8 (O _I> (6.15)

where ¢; are Pauli’s 2 x 2 matrices given by Eq. (2.226) and I is the 2 x 2
unit matrix.

Similar to the case of the non-relativistic limit of the Klein-Gordon
equation, we use the ansatz

D-Qm()
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Inserting Eq. (6.16) into Eq. (6.14), we have

mail2) = (@ Camye) o (5) -2ne(5) o)

When the kinetic energy and potential energy are much smaller than
the rest energy mc?, i.e.

< fzaaf> < (mcx) (6.18)

and

{eAox) < (mc’y) (6.19)

X
we have from the lower component of Eq. (6.17)
)5,

o (—ihD

6.20
2me ( )

X =
This means that ¥ is the small component of the field operator 1[) and ¢ is
the large component of the field operator 1. Inserting Eq. (6.20) into the
upper equation of Eq. (6.17), we have

6<p o - (—ihD)][o - (—ihD)]

ih— gD 9 @+ eApp. (6.21)
Using the relation
(6-A)e-B)=A -B+ioc (A xB), (6.22)

we have

- (kD)o - (~itD)

= (v -2a) o [(-inw - Za) x (<inv - £a)]
_ (hV~—A) —Zha-(VxA)
-

h > en
A —A) - e—a B. (6.23)
Thus, Eq. (6.21) becomes

0P 1 ) e eh
i [2—m (—mv - EA) ~ 5o Btedo| s (6.24)

This is the Pauli equation in operator version. The two components of ¢
describe the spin degrees of freedom.
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In the case of a homogeneous magnetic field By,
1
A= §B0 X X. (6.25)
When the magnetic field is weak, we have
, e, \? , e 2
(—mv - EA) = (—mv — =By x x)

~ (—ihV)? = $(Bg x x) - (~ihV)

= (—ihV)? - S(Bo -L), (6.26)
where
L =x x (—ihV) (6.27)

is defined as the operator of orbital angular momentum. In the derivation
of Eq. (6.26), we have neglected the quadratic terms of A. We define

1
S=sho (6.28)

as spin operator. Then we obtain the Schrodinger equation in the operator
form

; 8_“0 = L(_mv)Q __c

= L+2S)-B 5. .
i a0 5 2mc( +28)-Bg +edg| P (6.29)

The factor 2 before S is the g factor for spin. When the relativistic effect
is considered, the g factor for spin has a little deviation from 2. Since the
spin degeneracy g; for spin—% fermions is 2, we often use the same notation
gs for them.

6.3 Spin-orbital coupling

In the derivation of Eq. (6.20), we have neglected the term z’h%t"i and eAgy
in the lower equation of Eq. (6.17). We can maintain the first order terms of
ih%t’z and eAgx and obtain a more accurate equation. The lower equation
of Eq. (6.17) has the form

ih%f( — eAoX + 2mc*y = co - (—ihD) . (6.30)
We consider the field Ay as time independent. We can write the solution

of Eq. (6.30) in the following form
X = [ih0; — eAg + 2mc?|Leo - (—ihD)p. (6.31)
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Inserting Eq. (6.31) into the upper equation of Eq. (6.17), we have

1

A 0A\G — cor - (—iFD
(ihO; — €Ao)p — co - (—ih )ihat—eA0+2m02

co - (—ihD)¢ = 0. (6.32)

We expand the operator [ih0; — eAp + 2mc?]™! and keep the first order
terms of ih% and eAg.

1 1 (1 ihat—eA(,)‘l

1ho; — eAg + 2mc? = 2me? 2mc?

_ 1 1— zh@t - €A0
T 2me? 2mce?

1 zh@t - 6A0

T 2mc2 T AmiEdt (6:33)
Then Eq. (6.32) becomes
i o - (—iRD)]? .
(1hdy — eAg)p = ug‘“‘lsﬂ
m
o - (—ihD)(ihd, — eAp)o - (—ikD)
o o (6.34)

In the following, we will neglect the A term for the first order correction.
Keeping the lowest order terms, the second term on the right hand side can
be rewritten as

o - (—ihD)(thdy — eAg)o - (—ihD)@
=0 - (—ihD)o - (—ihD)(ih0; — eAo)¢p
+ o - (~ihD)[ihd; — eAg, o - (—ihD)]¢
_ M_;;:ﬂ(ﬁ Vo (—ifD)[o - (—ihD),edlp.  (6.35)

Now we evaluate the commutator in Eq. (6.35)
o - (—ihD),eAq] = o - (—ihV)eAy — eAgo - (—1hV)
= —jeho - VA
= jeho - E. (6.36)
Then
o - (—ihV)[o - (—ihD), eAo
= o - (—ihV)(ieho - E)
=eh?(V-E+E V) +eho - (ihV x E —hE x V). (6.37)
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In the case of the static electromagnetic field, V x E = 0. Thus
Eq. (6.32) becomes

0 1 , 9 €
Zha—t B [%(—th) B 2mc(L +28) - Bo+edo

(V) e
8m3c2? 4m2c2(V E+E-V)
iehS - (E x V)] .

2m2c?

(6.38)

In the above equation, the (—’%,‘—72— term is the relativistic kinetic correction.

ZHTT(V E+E- V) is the Darwin term. Since it contains a non-hermitian
term E - V, a further transformation is usually performed to make the
Darwin term hermitian when the Darwin term is used in a Hamiltonian.
The last term is the spin-orbital coupling term which we denoted as H,,.
For a spherical potential Ag, the last term in Eq. (6.38) becomes

Hyp = 558 [E x (~ihV)
e 1 5A0 .
= omicy g O E X (SAV)]
€ 1 5A0
= ma@r or O L) (6:39)

which shows clearly that it describes the spin-orbital interaction.

6.4 The operator of time translation in quantum mechanics

When we inspect the Schrodinger equation, we can see that the left hand
side is {A0:¢@ and the right hand side contains no time derivative.
Since # = !, according to Eqs. (2.64) and (2.65), we have

{Pal(x,1),Ph(X', 1)} = bapd(x — X), (6.40a)
{Balx,t), pa(x' 1)} = {BL(x,1), gh(x' 1)} = 0. (6.40b)

Thus $(x,t) and $f(x,t) behave similarly as annihilation and creation op-
erators. It should be noted that we have used the complex field operator for
the Dirac fermions and thus we have the complex ¢ and ¢!. The operators
@(x,t) and p'(x,t) can be considered as complex annihilation and creation
operators. We often use @ and a' to denote ¢ and @', respectively, as an
indication of their properties.
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The Schridinger equation Eq. (6.29) in the operator form can be written

as
dg@ s
hp = & H] (6.41)
with
A= / d3 mvd) (—ihV$)
+ [-—(L+QS).BO +eA0}¢aT¢}., (6.42)
2mce

When we use the notation of annihilation and creation operators, Eq. (6.42)
becomes

H= /d“"{ (ihVal (x,1)) - (—ihVa(x, 1))

+ [—%(L +9S)-Bo + eAD] t(x,1)a (x,t)}, (6.43)
Since ¢ and ¢ obey the same equation of motion, we have also
maf B A). (6.44)
Using the notation of annihilation and creation operators, we have
maai at, H], (6.45a)
zh% &, H]. (6.45b)

H is then the generator of time translation. Thus, according to Eq. (2.288),
H is the Hamiltonian of the system.
The Hamiltonian can be written as

H=T+U (6.46)
with
. K2
T=— d3zal(x,1)V3a(x,t) (6.47)
and
U= /dSmU( yal(x,t)a(x, ). (6.48)

7 is the kinetic energy operator and U is the potential operator. U in
Eq. (6.48) is the local one-body potential operator. In the later sections,
we will show that U can be many-body potential operator.
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6.5 Transformation of basis

We consider a system of N-particles. We denote Hx the Hilbert space of
states for a system of N identical particles.

The creation and annihilation operators can operate in different bases.
Of particular important are the state vectors |z) = |x,t). The meaning of
\z) = a'(x,t)|0) is that there is a particle at position x.

Creation and annihilation operators in another basis can be derived as
follows: Inserting the completeness relation, we obtain a transformation
which transforms the orthonormal basis {|a)} into another basis {|&)}

=Y la)(ala). (6.49)

By the definition of the creation operators dg and &L, we have

Za|a bal |G, g, - - - G ). (6.50)

Since Eq. (6.50) is valid for any state |G1, Gz, - - - &n), we obtain the operator
relation

al =Y (alaal. (6.51)

fy

I
o
£

£
R

(6.52)

The commutation and anticommutation for the &g and ds can be ob-
tained straightforwardly from Eqgs. (6.51) and (6.52),

= b5z (6.53)
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Thus we can get the expansion of the operators ' (x, t) and a(x, t) on other

basis {|)}
6109 = 3 lal0al, = 3 el (6.54a)
a(x) = Z x|a)dy = nga X)Ga, (6.54b)

o
where v, (x) = (%, tla, t) = {X|a) is called the wave function in the coor-
dinate representation of the state |a). In quantum mechanics, we usually
use another definition for wave functions

Yalx,t) = (x,0]a,t). (6.55)
which contains the time evolution information of the state.

Since any operator can be expressed as a linear combination of the set
of all product of the operators (&L,da), we can discuss the properties of
any operator in terms of creation and annihilation operators.

If {|@)} is an orthonormal basis of H describing single-particle states,
the canonical orthonormal basis of H is the tensor products

lar--an) = o) @|a) @ -+ @ an). (6.56)
These basis states have the wave functions:
Gogogay (X1, XN)
= (x1,- xn|a1, - ay)
= ({x1] ® (x2| @ -+ ® (xn|)(Jon) @ |z) ® -+~ & |an))
= Pay (X1)9as (X2) oy (x8). (6.57)
The overlap of two basis states is given by
(a1, 02, - anlel, oy, - o)
= (1] @ {oa| @ - @ {an])(lo]) @ lon) @ @ |ay))

= (au]o}){aalop) - (anlaly)- (6.58)
The completeness of the basis is given by
> lene,c-anon, 0, an| =1 (6.59)

Q,02, N
The wave function of N bosons is symmetric and satisfies
@(XPUXPZW“XPN) Z@(Xl,xz,"'XN)7 (660)

where (P, P2, -+ , Py) is a permutation of the set (1,2,---, N). The wave
function of N fermions is antisymmetric under the exchange of any pair of
particles and satisfies

@(XPUXsz T XPN) = (_1)SP(/-7<X17 X2, XN), (661)
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where (—1)57 denotes the sign or parity of the permutation P. Sp is
the number of exchanges of two numbers which bring the permutation

(P, Py, -, Py) to the original form (1,2,---,N). For convenience, we
adopt a unified notation for both bosons and fermions
@(waxPz»"'xPN) zgspﬂo(xlaXQa"'xN% (662)

where £ = 1 or —1 for bosons or fermions respectively. These symme-
tries pose the restrictions on the Hilbert space of identical particle systems.
When a wave function ¢(x1,Xz,- - Xx) is symmetric under a permutation
of particles, it belongs to the Hilbert space of N bosons By. When a
wave function ¢(x1, Xz, --Xy) is antisymmetric under the permutations,
it belongs to the Hilbert space of N fermions Fly.

We use the symmetrization operator Pg and the anti-symmetrization
operator Pp in Hp to obtain the symmetrized wave functions

Pag(x1, %2, Xx) N,ZSS%XP“xPZ, xp.), (6.63)

where o = B, F. For any wave functlon ¢, we have
P(E@(xl’ x27 T XN)

N' N' ZZ&SP’ésP(P Xp'p s XP'Pyy ‘XP/PN)

N;Z(Nv Z €596 4(xq,, XQur XQN))

Q=P'P

= WZPQCP(XIJCQ,‘”XN))
P

= Popo(x1,Xz, - XN)). (6.64)
The symmetrized wave functions correspond to the symmetrized state
with one particle in state ay, one particle in state ag, -- -, and one particle

in state an defined by
Polat, a2, -an) ZSSPWP ) ®lap,) @ ® lapy)
x b bl N' 1 2 N

= \7‘]‘\'{-7‘01,(12,"'(11\{)5. (665)
Since Pylay, e, -+ - an) is the basis of By or Fy, the completeness relation
in By or Fy is given by
Y Palog,as,-on)on, 00, an|Pa

Qap,a2, N

1
=N Y. lanaz,--an)sslar,0p,an| =1 (6.66)

1,02, "N
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Similar to Eq. (2.32), we have

s(a'l,o/Z,--~a§\,|a1,a2,-~-aN>5:Hna!. (6.67)
(o3

The orthonormal basis for the Hilbert space By or Fy has the form

|011,02, ' "aN>SN
1

1
=S¢ ap) @ |ar
VNI ne! 5 ' ’

The overlap of a state |31, 2, - - 8n) constructed from an orthonormal
basis |3) and the state |a1, g, -an)sn reads

Y& @ |apy). (6.68)

(B1, B2, Bnlar,az, - an)sn

B Wﬁﬁ ;5sp<ﬁ1\aa><52|ap2> wo (Bl
1

= WS(W@), (6.69)

where S(M,;) is the permanent for bosons

Per{M;;} =Y Myp,Mzp, -+ Myp, (6.70)
P
and the determinant for fermions
det(M;;) =Y (=1)°* Mip, Map, - My - (6.71)
P

In the coordinate representation, we have a basis of the permanents of
wave functions for bosons

@alazmaN(Xl,"'XN) = <X1, "'XN\al,“'OtN>SN
1

WPH(@M (x:))

and a basis of the Slater determinants for fermions

(6.72)

(Pa1a2-“OtN(x17 T XN) = <X1, vt 'XN|C11, o 'aN>SN

1
= \/N_' det((pai (xi))' (673)

The overlap of two normalized bosons or fermions reads
1

SN(ﬁlaﬁ2a"'/8N|a1»a27"'aN>SN-_—\/WS«

,311(¥1>) (674)
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Inserting Eq. (6.68) into Eq. (6.66), we have the completeness relation for
the states |a, a2, --an)sn

!
Z H‘}W lan, ag, - an){ar, a2, - -an)| = 1. (6.75)

1,02, AN
By the definition of creation operator, we have
allar, - an) = avar, - ay)
= o) ®lay, - an). (6.76)
Thus we can also write
il =la)®. (6.77)
Since d, is the adjoint of the creation operator &L, we can write
o = ®{cl. (6.78)
The creation operator 4/, does not operate within one space By or Fy.
They transform states in the space By or Fy to those in By41 or Fny1
and thus operate within the Fock space B or F, which is defined as the
direct sum of the boson or fermion spaces.
B= BO ® Bl & Bz ®- = @%o:an, (6.798.)
F= FO & F1 (3 F2 &= ®$L°=0Fn (679]))
with By = Fy =(0) and B, = F1 = Hi. [0), |a), |a1,az2), - form the basis
for the Fock space. The completeness relation in the Fock space is

1
|0><0\+NZM Z lay, a2, - an)ss{or, az, - an]
=1

1,02, QN

SICIUES SEIED SR | €%
N=1"""

Qy,02, QN
X |a1,a2«,"-aN>SNSN<a1,6¥2""aN|
=1 (6.80)

6.6 One-body operators

A convenient technique is to use the basis in which an operator is diagonal.
An operator U is diagonal when the operator U is expressed as

U= Usla. (6.81)
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Eq. (6.81) can also be expressed as

U=>"|o)Ualo] (6.82)
When we calculate (a|U]a), we hzve
(@|Ula) = Y _(ala/)Uu(a'|a) = Us. (6.83)

o

Using Eq. (6.65), we have
s{ay, 0, dy|Ulen, az, -+ an)s

N
=365 5T [ b, low) (@, [T]axs)
P i=1 ki
N
= (Z Uai) s{od, oy, aylar, a2, an)s. (6.84)
7=1

Using Egs. (6.51) and (6.52), we may transform the diagonal represen-
tation of U to a representation with a general basis

U =3 UsMa)lalp)a)a,

[« 237)
=Y (AT Ipala,. (6.85)
Ap

where

MO w) = (Ma)Uslalp)

&

- f d*2d®y 3 (M) (x|o) U faly) (vl

- / ddy5, (@) @0 19) ouv) (6.56)

with @3 (2) = {A|z) and ¢, (y) = {y|w). .
In the {x} representation, the kinetic energy operator T reads

S 3,51 25
T = —%/d za' (x)V=a(x)

K2 3 2
= — . 6.87
5 /d z|x) V(x| (6.87)
A local one-body operator U can be written as

U= /deU(x)&T(x)d(x)
= /dBa:U(x)ﬁ(x)
= /d3wU(x)|x><x. (6.88)
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6.7 Schrédinger equation

Since H is the generator of time translation, for a state |x;, %z, - xx}, the
time evolution is given by

|X1,XQ,"'XN,t> :eiﬁt xlaxzv“‘xN70> (689)
or

3 .
—iha|x1,xQ, XN, t) = H|xy,Xg, - XN, 0). (6.90)

Now we consider the wave functions in the x representation. We use
the definition Eq. (6.55) of the wave functions for quantum mechanics.

Poan,az,an (X1, X2, - XN, 1) = (X1, X2, Xn|ar, a2, - an, ) sN

= (X1,X2, XN, tlar, a2, - aN)sN

= (x1,%2,---xnle” a1, a2, - an) s
(6.91)
When we express H as diagonal in the bases |x), we have
Por,02,-an (XI: X2, XN, t)
= (xl,xz,---lee_im/d%'ldeé---d33:§\,
1 / / ! / ' !
x m‘xleQ""xN>SS<x17x2a'"xN|alya21"'aN>SN
1 .

= /d3z'1d33:'2~'-d3xﬁvms(x1,xQ,---xN e Hx) xh, %) s

X (X1, Xg,+ Xylag, @z, an)sN- (6.92)

In the derivation of Eq. (6.92), we have used P2 = P,. Thus

ihgi('pal,azr“azv (xlv X2, XN, t)

1 .
33,0 43,/ 3,./ ! / !
= /d xld xzd xN—-N'S<X1,X2,---XN|H|X1,X2,~~-XN>5

X Pay,az, N (xllvxf?v T x/N7 t)' (693)
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Using Eq. (6.84), we have

ih_—cpalaab“'ﬂlv (xla X2, " XN, t)

ot

= / e\ d3zh - dPx

N

! 1 H 7 ! !

N7 O Hag s X, Xl o, X s
T =1

Pon,az,an (xllv xl2’ o 'xl]\f’t)
N
= /dBw'lde’z cdPTy Z Hyrd(x1 — x)8(x2 — X3) -+ 8(xn — Xly)
i=1

Pay,az,ay (xlla x/27 e x?wwt)
N
= ZHx#Pahaz,---aN (x1,X2, XN, 1). (6.94)
=1
where

_h2
Hy, = — V2 2 6.95
4 2m vxi + U(x ) ( )
Eq. (6.94) is called the Schridinger equation. We introduce the total

Hamiltonian

-y

i=1

.A [E—ffvi +U (xi)] : (6.96)

Then Eq. (6.94) becomes

h
ih%<ﬂ(X1,X2,. . .xNat) =H ({:sz} ,{Xi}> (p(xl’xz’ .. 'XN7t)7 (6.97)

which is the Schrodinger equation for an N-particle system. In Eq. (6.97),
for simplicity, we have omitted the subscript oy, aq, - -an, which is im-
portant only when the initial configuration matters. ¢(x1,X2, - Xn,t) is
called the wave function for N-particles non-relativistic quantum system.
It should be noted that in a system of quantum mechanics, the particle
number N is conserved.

We can introduce the operators for the physical observables of particles
in quantum mechanics. |x) = a(x)|0) has the meaning that there is a
particle at position x. When an operator A for the physical observable A
of particles acts on the state |x}, it should give the value of the physical
observable A of the particle at position x.

Alx) = A(x)|x). (6.98)
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In particular, the position operator X acts on |x) to give the value of the
position x of the particle.

X[x) = x|x}. (6.99)

Thus |x} is also the eigenstate of the position operator. For any function
of position operator f(%), we have f(%)|x) = f(x)|x). f(x) is the value of
f(x) at x.

We define the Hamiltonian operator H ($,§) in quanturn mechanics as

N .
Hp,g) =) [% + 0(@-)} : (6.100)
i=1

with
pi = —ihVx,. (6.101)

and
¢i = % (6.102)
i = —ihAVy, is called the momentum operator in quantum mechanics. The

momentum operator p and position operator § obey the following commu-
tation relation

[G,5) = [, —ihV;] = ih. (6.103)

Similar to [x), |p) = a}|0) is a state that there is a quanta with mo-
mentum p. When the momentum operator p of a quanta acts on |p), it
gives the value of the momentum p of the quanta.

plp) = pIp)- (6.104)

[P} is thus also the eigenstate of the momentum operator.
The Schrédinger equation Eq. (6.97) for an N-particle system can be
expressed as the operator form of quantum mechanics

i ooz, an)sy = (. dler.az,ax)sx.  (6.103)
Composite fermions can behave as bosons. When two fermions are
strongly bound, they can be considered as one identity and a pair of fermion
field operators are used as one operator. The operators composed of a pair
of anti-commuted operators obeys the commutation relations of bosons.
Therefore, a pair of bound fermions can be considered as a boson. In this
case, the Schrodinger equation Eq. (6.97) can also be used for the composite
Dirac fermions that behave as bosons.






Chapter 7

Electromagnetic Field

7.1 Current density

We consider the photon field (also called the electromagnetic field in the
classical limit) coupled to a spinor fermion field (also called Dirac fermion
field). The Lagrangian of the photon field coupled with the spinor fermion
field is given by Eq. (2.530) with the form

L= EDirac + L:photon + »Cint

_ 1 L, -
= Y(iv*0, —m)yY — ZFWF” —epy'pA,. (7.1)
The coupling term in Eq. (7.1) is j#A, with
& = eyt (7.2)

j# is called the Dirac current. In terms of j¥, the Lagrangian of the massless
vector boson field with the coupling term can be expressed as

1
L= —ZF/_WF#V‘—ngﬂZ,CO + Lint- (73)

As the coupled field, the field operator 1[) of the spinor fermion field
satisfies the Dirac equation Eq. (2.218),

ihg—di = (h—,ca -V + ﬁmc2> W (7.4)
ot 1
with
d}l(xv t)
j— | valxt) 7.5
V= Y3(x,1) (7:)
¢4(X7 t)
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188 Principles of Physics

Now we construct the four-current and the equation of continuity. Mul-

tiplying Eq. (7.4) from the left by ¢t = (4] (x, 1), 3 (x, 1), ¥(x, £), %1 (x. 1)),
we obtain

3
-0 -~ ke . d . NN
it —p = — E T — 201 8. .
ik atw : k:11/1 akaka—i—mcw, P (7.6)
We further use the hermitian conjugate of Eq. (7.4)

—Lh— =—— Z ak +meptpt. (7.7)

Multiplying the equation from the right by 1/) and taking into consideration
the hermiticity of Dirac’s matrices (aT = qy, ,83 = 3;), we have

—z’h— =—— Z —akw + moc® i), (7.8)
Subtracting Eq. (7.8) from Eq. (7.6), we obtain
B oo R B o
h— T )y = — —— 1 . .
ihs (1)) = ~ kz:jl 5 (@l ond) (79)
We define a positive definite density operator of the form
px) = 91 ()x) = (3,04 03,0 | 57 | = o0l (r10)
. i=1
(2

and the current density operatorj

j=cdtard, (7.11)
Then Eq. (7.9) becomes the equation of continuity

op s
—+V.j=0. 7.12
5 TV (7.12)
We obtain the conservation law directly from Eq. (7.12)
0 s
a0 / Pt (x / V. jdz=— /j .ds=0, (7.13)

where V denotes the volume of the system and s is the surface of the volume
V. ¢p and j form a four-vector, which reads

{7} = {ep.d} = (%3} = {cd!¥, cdlad} = {ef!y'y"}  (T.19)
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or

(@) = e (2 (). (7.15)
j

According to Eq. (2.266), j#(z) transforms under the Lorentz transforma-
tion as a four-vector.

Since j“(z) is a four-vector, we can write the equation of continuity in
the Lorentz cnvariant form

i (7.16)
Comparing with Eq. (7.2), we have
j& = gj“- (7.17)

7.2 Classical limit

Now we consider the photon field. It is easy to deduce the classical limit
using the path integral formalism

- / DAexp {% / d%ﬁ(A)} , (7.18)

where £ is given by Eq. (7.3). In the classical limit, the action is much
larger than h, we can calculate the path integral using the stationary phase
approximation. In the limit & — 0, the path integral is given by the value of
the integrand at the extremum of § = [ d*zL(A.), where A, is determined
by the Euler-Lagrange equation. The Euler-Lagrange variational procedure
is often called the principle of least action.

In the electromagnetic unit, the action has the form

1 1
S = _T F“VF#"d‘lz — 22— /j"eLAI_Ld‘l.Z‘. (719)
The variation of the action gives
171 1
55 = - / : (ngéAH + 8—7TF‘“’6F,“,> diz = 0. (7.20)
Inserting F,, = g‘?ﬂ - %ﬂi we have

1 0A 1 d00A
F/_w v _ — fuv H 4
¢ (c]e S4u T8 Oz 8w Oz )d v

1 d0A,
o _ g
- (cgca F o ) diz. (7.21)
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Integrating by parts and using Gauss’s theorem, we have

171 1 oFk”
65=— [ = (Lp+ L 5A,d*
/c(cJ6+47r8x”> nd'e

1
—— | FPH0A . .
Imo 00A,,dS, (7.22)
Neglecting the surface integration, we obtain
1 1 OF#
—/ ( ” + IW) 5Aud4l' =0. (7.23)

Since the variations §4,, are arbitrary, the coefficients of 6A, should be
zero, which gives

OFHv 4 .
5 —7_]5. (7.24)

7.3 Maxwell equations

Expressing Eq. (7.24) in terms of E and B, and also using j* = {cpe,j.},

we have
10E  4m
VxB=-— i 7.2
s T g e (7.252)
V -E = 4mp,. (7.25D)
According to the definition of E and B given by Egs. (2.511) and (2.512),
B=VxAand E = —la—A — V4. Taking the divergence of both sides

of the equation B =V x A we have

vV-B=0. (7.26)
Evaluating V x E gives
1
VxE:——QVxA—VxVAO
cot
10B
=——— 7.27
c Ot (7.27)
Altogether we have the following four equations
V -E =4np,, (7.28a)
V-B=0, (7.28b)
10B
E=_--"" 2
V x e (7.28¢)
10E 4n
VxB=-— j 7.28d
at + c .]e? ( )

which are called the Mazwell equatwns . When j# is replaced by its classical
values, Eq. (7.28) is the classical Maxwell equations.
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7.4 Gauge invariance

Usually we denote Ay as ¢. A and ¢ are also called the vector potential and
scalar potential, respectively. The Lagrangian for photon field is invariant
under the gauge transformation

Ao A =A+VA, (7.29a)
po o = LOA 7.29b

The electric field E and magnetic field B are also invariant under the gauge
transformation Eq. (7.29).

VxA =V xA=B, (7.30a)
10A" _ ,  10A

Thus E and B are independent of the gauge type.

7.5 Radiation of electromagnetic waves

Inserting B=V x A and E = —la—A — Vy into Eq. (7.25), we have

16°A 16 47r
VxA)=—5—F5 - .
x (V x A) 22 o ch+ (7.31a)
10
— - =V A -V =dnp,. .
- 8tv Ve =dmp (7.31b)
Eq. (7.31) can be reformulated into the form
1 6%A 18yp 4
‘A-—-—-V (VA =——] .
v c? 2 T3 c ot ¢ Je (7.32a)
v? +—1‘2V~A“—47’r (7.32b)
Tt B Pe: '
We introduce the Lorentz gauge
19p
A =0 .
VA4 - - Bt ) (7.33)

which can be satisfied by appropriate selection of the gauge transformation
Eq. (7.29). Using the Lorentz gauge Eq. (7.33), Eq. (7.32) becomes

1 0%A 47
_=ga__my 34
VA 2 52 e (7.34a)
2
2 1 O = —47p,. (7.34b)

—EW
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Egs. (7.34a) and (7.34b) are the d’ALembert equations for A and ¢, re-
spectively. They are wave equations. The solutions of the inhomogeneous
wave equations Eq. (7.34) can be obtained in the following way.

First we counsider the solution of the equation

2
2 50 = Q). (7.35)

which is the wave equation Eq. (7.34b) for a source of a point-like charge
at the origin of coordinates.

Outside the origin r = 0, we have

2 1 0%

The source Q(t)d(r) is spherically symmetric. We formulate the Laplacian
operator in the spherical coordinates. Eq. (7.36) becomes

10 [ ,0p 1 9%
G IR (737)
We introduce
u(r,t) = p(r, t)r. (7.38)
Inserting Eq. (7.38) into Eq. (7.37), we have
0%u 1 0%

Eq. (7.39) is a one-dimensional wave equation, which has the solution of
the form

u(rt) = fi (t - g) +f (t + (—’;) . (7.40)

We choose only f; (t — f) because the solution f, (t + f) does not satisfy

C

the causality principle. Thus the solution of Eq. (7.36) has the form

t—T
olr ) = w (7.41)
When r — 0, the potential Q(¢)63(r) approaches to infinity and thus the
spatial derivatives become much larger than the time derivative. The second

term in Eq. (7.35) can be neglected when r — 0. Using the formula
1
A (—) = —4r83(r), (7.42)

r
we obtain the solution of Eq. (7.35)

p(r,t) = (7.43)
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For an arbitrary distribution p.(x’,t), we replace Q(t) by p.d®z’ and
integrate over the whole space, which gives the solution of Eq. (7.34b)

(] X,,t -z
p(x,t) = / p—(—r——‘id’sx’ (7.44)
with r = |x" — x|. Similarly we have the solution of Eq. (7.34a)
1 fj.(x,t~Z
A&J%=—/li———ilfﬂ. (7.45)
¢ r
In the region outside the source, we have
1 8%A
2
A—-— = 4
A% T 0, (7.46a)
1 8%¢
2
- 7= =0. .46b
Vi 25 0 (7.46b)
The solutions of Eq. (7.46) are the superpositions of plane waves
A = Agellkx—wt) (7.47a)
p = poe’x ) (7.47b)
with
w
k=— 7.48
: (7.48)
Using the Lorentz gauge, we have
¢
Yo = -k- Ao. (749)
w
Eq. (7.47) shows that the propagation speed of the wave is c.
7.6 Poisson equation
For an static electric field, the Maxwell equations have the form
V -E =4np,, (7.50a)
VxE=0. (7.50b)

The electric field E is expressed by the relation
E=—Vq. (7.51)
Substituting Eq. (7.51) into Eq. (7.50a), we have
Ay = —4rp.. (7.52)
Eq. (7.52) is called the Poisson equation.
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In vacuum, p. = 0, the scalar potential ¢ satisfies the Laplace equation.

Ap =0. (7.53)
We define the Green’s function G(x — x') of the Laplace equation by
AG(x —x') =8 (x - x'). (7.54)
G(x — x') has the form
1 1
Gx—-x)=—-—— . 7.55
(x = x7) 47 |x — x| (7.55)

Using Eq. (7.42), one can easily check that the function G(x — x') given
by Eq. (7.55) is the solution of Eq. (7.54). Thus the scalar potential ¢
determined by Eq. (7.52) takes the form

o= %dv. (7.56)

7.7 Electrostatic energy of charges

Now we calculate the energy of the electromagnetic field coupled with the
source j,(z). The canonical energy-momentum tensor ©*¥ reads

oL
O = —3"A, — "L, 7.57
3(B,A,) 7 (7.57)
where £ is given by Eq. (7.3). Using the relation
OF g FoP
————— = 4F#° 7.58
56, 4,) : (7.58)
we have
S T S R S
167 4m 7 et Ut
We introduce the symmetric energy-momentum tensor
TH = @M 4 O, x™ (7.60)
with
4 1 1 ,
X = ——F"AY = — FPRAY, (7.61)
in 47

Using Eq. (7.24), we find
1 1
T = ——" Fap F*® + —FF F,”
4w

167
1 . 1.

+ -7 A, — —jEAY. (7.62)
c c
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Then the energy is given by

H:/deTOO
1 1 1 1
— 3 —F'Faﬁ —FOUFGO — i a__-O 0
/d$<167r st +c]‘3A c]EA
1 . 1
= [z | —(E*+B? - =j.-Al. 7.
JE = R (7:69

Now we determine the electrostatic energy of a system with charges. In
this case, j, = 0 and B = 0. The electrostatic energy of charges is given by

1 2
= d . .
U o /E V. (7.64)
Using E = —Vy, we obtain

8T
1 1

=—— | V- -(cEMV + — V - EdV. 7.
= [v-B) +87r/99 v (7.65)

Using Gauss’s theorem, the first term in Eq. (7.65) can be changed into
a surface integration. Neglecting the surface integration, we have

1
U= §/pecpdV

]' e [ !
=3 / p—(i)f—(x—)d%d%’, (7.66)

which is called the Coulomb energy. U can be considered as an effective
interaction term for Dirac fermions and is added to the Lagrangian for
Dirac fermions when we study the Dirac fermion field.

7.8 Many-body operators

When we use the operator form g, = euAJWA) for p., we obtain the interaction
term of the Coulomb type in the Hamiltonian operator

U= -;- / d%d%"x—e_;,—lw (x)d! (x") b (x' ) (x), (7.67)

Uisa two-body operator. A two-body operator U can be expressed in
the following form using the basis in which U is diagonal

N 1 1
_ - _ - ~ 1 At a A
U= 5 55 UaslaB)aB| = 5 gﬁ Uapliodpaata (7.68)
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with
Uag = (aB|U |aB). (7.69)
We can evaluate a general matrix element similar to the case for an

one-body operator (see Eq. (6.84))

sla, ab, - ay|Ular, as,- - an)s

N
= Zésp Z H <ajgk|ak>(a'3alpj |U\aia]~)

P i#] k#i,j

= (—;— Z Usia, )], oy, - - - aiy o, g, - an) 5. (7.70)
i#]
The factor %Ef; ; Uaia; 1s the sum over all distinct pairs of particles in
the state |ay, a2, - an). If |a) and |3) are different, the number of pairs
is nang. If ja) = |3), the number of pairs is n,(ny — 1). To help counting,
we define an operator ]5&5 which counts the number of the particle pairs in
the states |o).and |3).

Pop = fiails — dapiia, (7.71)
Pag can be expressed in terms of the creation and annihilation operators

~

Pag = &T &a ﬁ g - 5an aa
= AT{aﬁaaa,@
= ala Tagaa (7.72)
Using the operator Paﬁ, Eq. (7.70) becomes
S<alla al27 T a:‘VIU‘alv G, aN)S
/ / / 1 »
= s{of,0h, - olyl5 D UasPaslon, 02, -an)s.  (7.73)
af
U can also be expressed in terms of the operator 15&5 by

= %Z(aﬁlﬁlamagagaﬂaa. (7.74)

We can transform the diagonal representation to that of an arbitrary
basis, which gives the general expression for a two-body potential

A 1 e
U= 3 Z(/\,LL|U|1/p)a a,,a,0, (7.75)

Auvp
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Using symmetrized states, Eq. (7.75) becomes

0= 3 3 wbve) + € pv))alalaye
Ayup
= - Z )\u|U|up gaAaT aply. (7.76)
Auup
The Coulomb interaction U in Eq. (7.67) is an interaction that is diagonal
in the {x} representation.
Generally, for a two-body interaction U diagonal in the {x} representa-
tion, we can express U in the following form

0=3 / Brdyo(x — y)ot ()8 () (y)d(x). (7.77)

We can generalize the two-body interaction to the n-body interaction
described by an n—body operator

U, n' Z Z Lo AnlUnlpr - - ftn)
n M1
x T coeat .G
ay, oy Ay, (7.78)
In the expression of Eq. (7.78), the normal ordered form is used, in which
all the creation operators are in the left of all the annihilation operators.

7.9 Potentials of charge particles in the classical limit

In a classical system, the distances between the particles are large and thus
the particles can be considered as point-like particles, we have

p = T;e:0(x —x;), (7.79)
where the sum is over all the charges. x; is the position of the particles
with charge e;. Then we have

Ao(x) = / ng = Z = iixz-l' (7.80)
and . Z
€€,
U=; Z FTJx] (7.81)
In particular, the interaction potentlal of two charges is
U=_—22 (7.82)
%1 — Xa]

Eq. (7.82) is called the Coulomb interaction for the point-like charged
particles.






Chapter 8

Quantum Mechanics

8.1 Equations of motion for operators in quantum
mechanics

Now we consider an operator A diagonal in the {x} representation. We
define the mean value of the operator as

ZE(a|/i|a):/de/dsr'(a|x)(x\A'x')(x'|a)zfgo*AcpdSrEA. (8.1)
Let us calculate the temporal variation of A.

d—= dA dp* d

—A= /(p*—cpd3x+/( L4 A¢+¢*Ad—f) &, (8.2)

dt dt
The second integral can be simplified with the aid of the Schrédinger

equation

Jp i
o ly :
5 = " piY (8.3)
and B0 ) _
AL I S
= hH P th,, (8.4)

We have used the hermiticity of H in the derivation of Eq. (8.4). Then we
have

%A = /cp*d—cpd333+ %/cp*[H, Alpd®x

dt
6—,4. e
= — + -[H,A] 8.5
5t A (53)
If we define the mean value of % as the temporal derivative of the mean
value A o _
d—A- = %, (8.6)
t t
we have . .
dA  O0A i ..
— =—+-[H,A] 8.7
=+ A 87)

199
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8.1.1 FEhrenfest’s theorem

We use a Hamiltonian of a particle in a potential U(x). According to
Eq. (8.7), the time derivatives of the position and momentum operators are
given by

dk Qg .
= =z 1.3, (8.8a)
dp i .

L , 8.8

[H,%] = {%p{&} = 7;-7% (8.9)
and
H,5) = [0R).6) = 2 52 (5.10)

Thus Egs. (8.8) becomes

dx p
- == 8.11
dt  m’ (8.11a)
dp au
L= 8.11b
dt 0% ( )
Taking the mean values of Eqs. (8.11), we have
- dx _
p= md—)t( = mv, (8.12a)
dp U
— = . 8.12b
dt ox ( )

where v = % is called the velocity operator. This is Ehrenfest’s theorem.

Since the mean values are equal to the most probable values in the clas-
sical limit, Eqgs. (8.12) are the quantum version of the Newton equations
(Newton’s second law) written as

dx
p=mv=m_ (8.13a)
dp _ 9U(x)

= (8.13b)
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8.1.2 Constants of motion

When an operator A commutes with the Hamiltonian operator and is not
time dependent explicitly, we have

dA 9A i

= 4=

dt otk
Thus A is a constant of motion. The Hamiltonian operator H apparently
commutes with itself. It is a constant of motion, which is the law of the
conservation of energy. When g—g = 0, we have p =const. In the classical
limit, it is Newton’s first low.

[H,A] =0. (8.14)

8.1.3 Conservation of angular momentum

For a central potential, the potential is only a function of the radius 7.
There is a constant of motion related with the angular momentum operator
defined as

L=%xp=—ilxx V. (8.15)
In the Cartesian coordinates, the components of L read
L, =iip. — 3p, = —zh( 2 - 2%) ., (8.16a)
Ly, =2p, — 3P, = —zh( aaz - f:%) , (8.16b)
L, = i&p, — §p, = —ih (5”38@ - gé%) . (8.16¢)

Using Eqs. (8.16), we obtain the following commutation relations of the
angular momentum components by straightforward calculations

(Ly,L.]=LyL, — L.L, =ihL,, (8.17a)
[L.,L.]=L.L.—L,L, =ikL,, (8.17h)
Loy Ly =LoLy—LyL, =ihL,. (8.17¢)

For example,

= [0pz, 2Ps] + [2Dy, 2D]

= 0Pa[Dz, 2] + Py[2, Pe]

= 1h(&py — §pz)

= ihL.. (8.18)
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Eq. (8.17) can be written in a compact form
[Li, Lj) = ihe¥* Ly, (8.19)

where €% is the antisymmetric Levi-Civita symbol in three dimensions de-
fined by Eq. (F.3) in the Appendix F. The commutation relation Eq. (8.19)
is equivalent with the operator relation

L x L = iAL. (8.20)

For the spin operator, we have the similar commutation relations. Using
the relation for Pauli’s matrices

005 = 055 + i oy, (8.21)
we have
[92— %] - ieif"“”—;. (8.22)
Using Eq. (6.28), we find
[Si, 85] = ihsR S, (8.23)
or
Sx§=inS. (8.24)

The spin operator obeys the same commutation relations as the orbital
angular momentum operator.
The square of angular momentum operator is given by

L:=L[2+ L2+ 12 (8.25)
L? commutes with all components of the angular momentum operator
(L, 2] = [L, By] = [£, 2] = 0. (8.26)
Eq. (8.26) can be verified by straightforward calculations. For example,
] = [kt Byl + al 2
= iy[ﬁyaii] + iyvif]iy
+ Lo(Lo, Le] + (L, L2 L
= L,(—ihkL.) + (—zhﬁz)ﬁy

= 0. (8.27)
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In a system with spherical symmetry, it is convenient to write the an-
gular momentum in the spherical coordinates
r? =22 +y?+2% cosf= ;, tang = % (8.28)
or
z=rsinfcosp, y=rsinfsing, z=rcosé. (8.29)

In the spherical coordinates, Eq. (8.16) becomes

0 0
=il <sm ¢56 + cot 6 cos w@gp) (8.30a)
L,=ih|— —8—+ ot 8 si 9 8.30b
y =4 cospms +e smcpa@ , (8.30b)
0
= —lh% (8300)

Inserting Eq. (8.30) into Eq. (8.25), we have

1 0 ) 1 02
L2 = -} {sin&% (sm 96—0> -+ Wa_tpz} = —ﬁQAQY‘p. (8,31)

The operator L? commutes with U (7).
Since Hamiltonian operator can be written as

A

. . L2 .
=T+ —= 3 .
H + P + U(#) (8.32)
with
K1 0 5 0
Tr = —‘2%7.—25 (7’ E) s (833)
we have
[H,L?% =0. (8.34)

This is the law of conservation of angular momentum (Kepler’s second
law). Because [L? L,] = 0 and thus [H,L,] = 0, the 2 component of
angular momentum is also conserved.

8.2 Elementary aspects of the Schrddinger equation

We consider a system of N-particles with Hamiltonian operator given by

HZ(

)+Zf/ij(§ci,§cj), (8.35)

i#7
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where V;(%,,t) is the external potential, which is the so-called one particle
potential. ‘Zj(i(i7)ij) is the interaction potential between two particles ¢
and j, which is the two particle potential, such as Coulomb potential.

The Schrodinger equation reads

in2 =g

where ¢ is the wave function.

Let us derive the equation of continuity for the wave function. First
we consider one particle case. The wave function is a function in three-
dimensional space. We define W = p*p = |p|?. Since

Prpa = (xlayt){a, tlx) = (x]al (t)aa(t)]x) = (xlAa(O)]x),  (8.37)
the meaning of
W(x;t)dV = ¢*pdV (8.38)
can be interpreted as the probability of the particle occurring in the volume
element dV at the position x and time ¢ for the state |a, t).
For an N-particle system, the wave function is a function in 3V dimen-
sional space, which is called the configuration space of the system. We

denote an infinitesimal small volume element in the configuration space as
av

dV =dVidVy - dVy = d*z1d%zy - Py, (8.39)
Then
W(x1,Xz2, -, Xn; 1)dV = o pdV (8.40)
is the probability of the particle 1 occurring in the volume element dV; at
x1, -+ and Nth particle occurring in dVy at xn at time ¢.

Integrating Eq. (8.40) with respect to the coordinates of all particles,
excluding the particle k, we obtain

W(xk)de = de /(p*godﬂk, (8.41)

where d€)y, is defined by dV = dVidQdy. W(x)dVj is the probability of a
particle occurring in dVj at xj.
Using the Schrédinger equation, we can obtain the equation of continu-

ity for the probability W in the configuration space. Multiplying Eq. (8.36)
by ¢* and then subtracting the corresponding complex-conjugated equa-
tion, we have

. 8 * 2 al 1 * 72 2 %

ihe (¢") = =5 ) —(¢"Vie — oVig). (8.42)

=1 ¢
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We define

h * *
(eVie™ —¢* Vi), (8.43)

JiE%

which is called the current density of the particle i. Eq. (8.42) becomes
N
ow .
E‘—F;V'Ji(xl,}(%“- ,XN;t)=0. (844)

Eq. (8.44) is the equation of continuity for the probability W. When we

integrate Eq. (8.44), we have
0 0
/EW(xl,xz, c L XN DY = EW(xi,t). (8.45)

The second term in Eq. (8.44) becomes

N
Z/Vi/ irdQ = /Vi-jidﬂi+
il =1

The integral [V - jid§; for i # i is zero because it can be transformed
into surface integrals. Thus we obtain the equation of continuity for each

N
> / Vi jedQ.  (8.46)

i #£i

particle
OW(Xi s t)

ot -+ v 'Ji(xi, t) =0. (847)

8.3 Newton’s law

The total momentum operator p of the N-particle system is given by

N N
p=)> pi=—iry V. (8.48)
i=1 i=1
Let us consider the time derivative of the momentum operator p.
dp i, - -
— = -(Hp - pH). 4
5 = 5 (HP—DH) (8.49)

Inserting H in Eq. (8.35) into Eq. (8.49), we have

B[ (%)

kit

- (i ?z) (i Vi + if/k])} : (8.50)

k=1 k+#j
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We use the following formula to simplify Eq. (8.50),

N N
Vi (Z ei) B (Z Vi)f/k = —ViVi(%). (8.51)
i=1 i=1
When V; is only a function of the distance between particles, we have
o o dVie . dVig
ViV SR .52
kVkj = dAkJ V d’f'Akj TA'kj , (8 5 a)
PSR de‘ 2 . de I‘k
ViVij = =LV = 18 8.52b
iVkj iy Vitkj drkj Fry ( )
which gives
ViV = ~V;Vij. (8.53)
We define
ij = @kaj. (8.54)

Fy; is called the force exerted by the particle j at x; on the particle £ at
X. Then Eq. (8.53) becomes

Fyj = —Fji. (8.55)
Eq. (8.56) is the so-called Newton’s third law of classical mechanics, which

states that the action is equal to the minus reaction.
Using Eqgs. (8.51) and (8.53), we find
N

dp .
== —ZViVi(xi,t). (8.56)
Using Eq. (8.12), we have in the classical limit

‘;—I; = Z dv’ ZF (8.57)

which is Newton’s second law for the whole system When V; = 0, we have
dp

i 0, (8.58)
which is the law of momentum conservatz’on If we consider p;, we have
dpl = Zv Vi(x ZV Vi (F45)- (8.59)
Using Eq. (8.12), we have in the classical lf:rélit
dvl = Z ViVixi,t) - EN:Vz-Vij(rij). (8.60)
J#

which is Newton’s second Zaw for the particle 2. When there are no forces
(Vi =0,V;; =0), we get d—"k = (. This is Newton’s first law, which states
that the velocity of partlcle remains constant if there is no force acting on
it.



Quantum Mechanics 207

8.4 Lorentz force

We use the Hamiltonian operator Eq. (6.43) for a particle in the electro-
magnetic field. The corresponding Hamiltonian operator of one particle in
quantum mechanics is given by

.2

N P e ~ ~ ~ n
A=— - —(L ‘B .
5 = 5ol T 28) - Bo + edo (8.61)

with L = % x p. Using Eq. (8.8) and mathematical relation a - (b x ¢) =
b-(cxa)=c-(axb), we have

dx i -
= = J[H.%
i~ RbX
Pl i
=+ 3 (=ih)5— (X x Bo)
_ P € ixE
= + 2mc(x x Bo) (8.62)
and
dp i .
> _ g
e
B E. )
ch(p X 0)+€ (8 63)
Eq. (8.62) can be rewritten as
. dic e % x B
Inserting Eq. (8.64) into Eq. (8.63), we have
d’% e [(dkx - e (dx .
mﬁ - 2—6 (E X B0> - (E X BO) + eE. (865)

Expressing in terms of ¥ = 2%, Eq. (8.65) becomes

(lt !

dv e
dt E(V X Bo) + eE
=1 (8.66)
with
f, = ¢E + Z(v x By). (8.67)

f; is called the Lorentz force, which is the force that an electromagnetic
field exerts on a particle with a charge e.
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8.5 Path integral formalism for quantum mechanics

8.5.1 Feymann’s path integral for one-particle systems

The observable operator A is a function of momentum operator p and
position operator §. Let us describe the dynamics of non-relativistic system
in path integral formalism, as we did in the quantum field theory. First
we consider the simplest case of a particle moving in a potential in one-
dimensional space. The commutation relation of the momentum operator
p and position operator § is given by

14, 8] = ih. (8.68)

The eigenstates of these operators span the Hilbert space. Their eigen-
equations are

dla) = dlg), (8.69a)
plp) = plp). (8.69b)
The state vectors are normalized by
(d'lg) =d(¢' ~ q), (8.70a)
®'lp) = 6(p" —p) (8.70b)

and obey the completeness relations

/ dalhlal = 1, (8.71)
/ dplp)(p] = 1. (8.71b)

According to Eq. (6.101), p = —ihd%. We apply p to the eigenstate |p) and
then project it onto (g|. We obtain

. L d
{alplp) = plglp) = —ih—{qlp)- (8.72)
dq
Solving the differential equation, we have
1 4
lalp) = 5—em™. (8.73)

Thus the coordinate representation of the momentum eigenstate is a plane
wave.

Using the relation of the wave function of particle ¢,(g,t) with the
quantum state |, t)

Palg,t) = (gla, 1), (8.74)
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we can expand the quantum state |a,t) of the system by

a,t) = /dq’cpa(q’,t)lq’>. (8.75)

The wave function of one particle satisfies the Schrodinger equation in
the non-relativistic limit.

L0
ihoy#ale:t) = H(p.a)pa(q.1)- (8.76)
The formal solution of this equation is
Palg,t) = e 704 (q,0). (8.77)

In Eq. (8.74), |¢) forms a basis in the Hilbert space. Since |q) does not
change with the time, |g) is considered as a rest basis in the Hilbert space.
We can also define a time dependent basis |g,t); by

lg,1)p = e#7%g). (8.78)

lg,t)s plays the role of a moving basis in the Hilbert space. For simplicity
of notation, we usually omit the subscript ‘b’. Since

o, t) = / dgpa(g,t)lq)
/dqe "Hs4(q,0)l), (8.79)

we have

1)

‘Pc)(qf t) = < |a 3
= [’ tale #%pa(a', )

= /dq'(q,t|<pa(q/70)|ql>
= <qat|a70>
@t (8.80)

where |a)y = |a, 0) is called the Heisenberg state vector. Meanwhile |a)s =
|a, t) is called the Schrédinger state vector.

Since Eq. (8.78) is a unitary transformation, the orthonormality and
completeness relations remain valid for the time-dependent states. We have

g, t)
(¢',tlg.t) = (g’ F itk |g)
= (d'lg)
g —q) (8.81)
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and
/dqlq,t)(q,tl = /dqenHt|q>(q|e~%ﬁt
E%Hte—%m
=1 (8.82)

According to Eq. (8.8a), the time evolution of the coordinate operator is
given by

4(t) = exHtge— kAt (8.83)
lg,t) = eRfit|q) is the eigenstates of q( ) because
§(b)lg,t) = eRtge=H Mtk Y g)
= e#f1q|q)
— qlg,1). (8.84)
Now we consider the transition amplitude
(d,t']g,t) = (¢'le” KA -D|g). (8.85)

(q’,t'|g,t) is also called the Feynman kernel in quantum mechanics, which
is similar to the Feynman kernel in quantum field theory. The Feynman
kernel contains all the information one can get by solving the Schrodinger
equation Eq. (8.76). We can obtain the time development of the wave
function at arbitrary ¢’ by the integration

0alq’ ) = (¢ ¥ |)
- / dg(q,t'|g, ), tle)

= /dq(q’,t’|q, thoalg,t). (8.86)

In order to construct the path integral formalism, we divide the time
interval (¢,t’) into many small slices with equal length.

n =1+ ne (8.87)
with
t—t
= —. 8.88
=" (8.58)
We insert a complete set of basis states |¢n,t,) at each of the grid points
tn (n=1,- — 1) in the Feynman kernel

(d,t']q,t) /qu 1 /dQ2/dQI

x (g, t'lgn—1,tN-1) - - (g2, t2lg1, t1){q, talg, ).  (8.89)
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Using Eq. (8.78), each of the kernel elements under the integral can be
written as

A, (8.90)

This kernel element is also called the transfer matrix, which is denoted as
T(gn+1.9n)- When e is small, the time-evolution operator can be approxi-
mated by a Taylor expansion

(gna1stnsilgn.tn) = {(Gnyrle™™

(nsrstutalansta) = lansl [1= 3 HG.0)] o) + 0. (500

Since the Hamiltonian depends on p and §, we also insert a complete
set of the momentum eigenstates

(an+11H (P, d)|gn) = /dpn<qn+1lpn><pnlﬁ(ﬁ, q)lgn). (8.92)

The operators p and § can act to the left or to the right on their eigenstates,
we have

<anH-(ﬁ~ ‘j)|Qn> = <pn’Qn>H(pnaQn)- (8.93)

One can also use a more symmetric prescription, the so-called Weyl’s
operator ordering. (pn|¢n)H(pn,q.) in Eq. (8.93) can be replaced by
(pnlgn)H(Pr, 5(gn+1 + gn)). We will use the notation H(p,,q,) in the
following so that we can choose ¢, = ¢, or ¢, = %(Qn+1 + ¢n) in the
derivations. Using Eq. (8.73), we have

dp i
<qn+latn+l|Qn7tn> = / o T;_Lexp (ﬁpn(qn+l - Qn)>

X {1 - %H(pnﬁn) + O(e?). (8.94)

Taking the limit € — 0 or N — 0o, we have
T i€ g g
t'lg,t) = 1 d Zp,ntl " dn
(d,t'lg. ) lm/H qnno p<hp -

% H {1 - —H pn,qn)} . (8.95)

We can rewrite Eq. (8.95) using the representation of the exponential
function
N-1

(1 + %) = exp (A}Enoo N Z xn> (8.96)

n=0
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Then Eq. (8.95) becomes

N-—
(¢, ¥lg.t) = Jim /qunﬂf——

n=0
je N q q

x — nm — H On . 97

eXp(hT;{p - (Pn @) (8.97)

In the limit N — o0, the sample values become continuous. The inte-

gral becomes the functional integral, which is also called the path integral
physically. We introduce the notation of path integral.

N-1 N-1
/ 11 4. — /Dq and / 11 v — /Dp. (8.98)
Yon=1 ! Y n=0 .

In the limit € — 0,

N-1

WO ), e S [ i) (89

€
n=0
Then we obtain the path integral expression for the Feynman kernel

{d,t'lg,t) =/Dqu§1TﬁeXP (%/t df[pq'—H(p,q)])- (8.100)

The path integral is over all function p(t) in the momentum space and g(t)
in the position space with the boundary conditions

g(t)=¢ and q(t')=¢q. (8.101)

8.5.2 Lagrangian function in quantum mechanics

The Hamiltonian of an one-dimensional non-relativistic system of one par-
ticle has the following standard form

Hp.a) = 5 1*+ V(a) (3.102)
The first term is called the kinetic energy term and the second term is
called the potential term. Since the dependence on p is quadratic form,
the integration over p can be carried out explicitly. We use the Gaussian

integral formula
1
oo 92 2 2
/ dre~ 7oz +Iz - (—75) e%. (8.103)

oo a
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The path integral expression for the Feynman kernel Eq. (8.100) becomes
(d,t t)—/DDiex i/t/dr '—iQ—V()
q,t1q,t) = q p27rh p A/, rq 2mp q

= N/quxp (% /ttl dr [%42 - V(q)]), (8.104)

where NV is the normalization constant. We introduce

S = /t drL{q,q) (8.105)
with
L(g,q) = %42 -V(g). (8.106)

S is called the action functional and L is the Lagrangian function in quan-
tum mechanics. Eq. (8.104) becomes

1

{q'-t'"lg,t) =N/quxp (hS[q,q}). (8.107)

8.5.3 Hamilton’s equations

For a classical system, the action is much larger than the Planck constant .
We can use stationary phase approximation. The path integral is approxi-
mated with the extreme value of the integrand. The extreme condition of
the action is given by

35 =0, (8.108)
which leads to the Euler-Lagrange equation
d L 0L
—— - — =0. .
&9 9q (8.109)

Inserting the Lagrangian function in Eq. (8.106) into the Euler-Lagrange
equation Eq. (8.109), we have

1%
§=——%—, 8.110
mi=-7 (8.110)
which is the Newton’s equation of motion. § is called the acceleration of
particle.
The momentum can be obtained by

oL

= —. A1
5 (®111)

p
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We use p as an independent variable to replace ¢ in the Lagrangian and
call it the canonically conjugate momentum here. Instead of the variables
g and g, we express the Lagrangian in terms of ¢ and p. The Hamiltonian
is then obtained from the Lagrangian as a Legendre transformation

H(q,p) = pd(p) — L(g,4(p)). (8.112)

the equation of motion (Euler-Lagrange equation) is equivalent to the fol-
lowing equations

OH
h = e 11
p T (8.113a)
o
j = —. 8.113b
=5 ( )

Eq. (8.113) is called Hamilton’s equations and is equivalent to Newton’s
equation.
We introduce a notation for the following derivatives of two functions
A and B.
OAOB 0AOB
W Ber =G0 o0 ~ w00
which is called the Poisson bracket. With the help of the Poisson bracket,
the time evolution of a physical quantity A can be evaluated with the
following formula

(8.114)

dA _0A 04 0
o T T et
A OAOH 0AOH

ot 8p8q+8q8p

8A
5 T4 H}ps. (8.115)
In particular, when H does not depend on time explicitly, we have
dH O0H
—=—+{H H =0. 8.116
I 5 T {H,H}pp=0 ( )

Thus H is a constant of motion for a classical system, which means that
the energy is conserved.

8.5.4 Path integral formalism for multi-particle systems

We can easily extend the path integral formalism of one particle in one-
dimensional space to general systems of multi-particles in three dimensional
space. We use the simplified notation. (q;,qs,- - ,qn) is denoted as (¢)
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and (p1,p2, -+ ,Pn~) as (p). The path integral for the transition amplitude
(Feynman kernel) is given by

<q,17q,2"" ﬁq/N’t/|QI,QQ"“ 7(?1N7t>

/ N
a=

. t N
xexp{%/ dr lz pa-qa—H(p,q)} } (8.117)
i a=1

The integration is over all functions p(t) in the momentum space and over
g(t) in the position space with the boundary conditions ¢(t) = ¢ and
/() =4

We use the general Hamiltonian form

i 1
Daa [ Dpﬁ@h—)g
1 B=1

1 _
H(g,p) = 5p"M~'p+V (). (8.118)

The path integral Eq. (8.117) can be derived from the amplitude
{@1+1,ti+1]q1, t1) in a similar way as for the one particle system.

(d,t'lg,t)
N L-1

= /H I Paele’stlgp-1,t0-1) - (@2, talar, t1) (qr, ta g, ).

L—oo
a=1 =1

(8.119)
Inserting the completeness relation of the momentum eigenstates |p;), sim-
ilar to Eq. (8.94), we have

(@1t g )
N dp 1€
al T.
- T1 “lg —H
/a . (27Th)3 €xXp (h LDZ ql (plvql)}>

dpa ie[ 1 _ _
= / H (2:?1;3 exp (E [—ipzTM "o +pld -~ V(ql)D, (8.120)

which leads to Eq. (8.117).
Using the Gaussian integration formula

/dda: exp (—%xTAa: + xTy)

1 1
= (27)% exp (—§Tr1n A) exp (§yTA-1y), (8.121)
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We obtain
(q;+17 t2+1|ql, tr)

= (2rh)~%(2m) % exp [_%mn (EM_N

h
x exp [% ¢ (-h—M) (EQH exp | =V (@)

= (27rh)_3(27r)% exp [—%'ﬁln (%I)} exp (—%TrlnM_l)

1€, ) i€
X €Xp (§EQZTM(”) €xXp [E(—V(Ql))}
N8 1 € (1 0.
= (2mike)” 2 exp éTrlnM exp | = | 5di Mg —-V(g) || (8122)
We define the Lagrangian function by
. 1, .
Lig, q) = §QzTMQz - Vig). (8.123)

Then the Feynman kernel can be written as

N L-1
iy \—BLN 1
(q',t'|q,t) = Lli_r}r(1>0(2mh6) = / H H d®gas exp (?ﬁln M)

a=1 {=1

L-1
1€ R
X exp {E E L(Qlﬂ]l)} (8.124)
1=1

We absorb the extra factor exp (3 TrIn M) into the normalization constant
N. The Feynman kernel becomes

(¢, t'q,t) zN/quxp {%/dTL(q,q')]. (8.125)

8.6 Three representations

In the calculations of quantum mechanics, there are three types of for-
malisms. We call them Schrédinger, Heisenberg and interaction represen-
tations, which will be discussed in the following.

8.6.1 Schréodinger representation
The elementary equation of quantum mechanics is the Schrodinger equation

D galt) = Hiolt), (8.126)
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which has the formal solution

alt) = e 70, (0). (8.127)

The operators p = %V* and X do not contain the time t as an explicit
variable. The average value of an operator O(p, X) is given by

0 = (0O, %))
_ /90;;0 (-?V,x) oads. (8.128)

This is the formalism of the so-called Schrédinger representation. In the
Schridinger representation, we have time dependent wave function ¢, (t)
and time independent operators.

8.6.2 Heisenberg representation

Since the experimental measured properties of quantum system are mani-
fested in the average values of the operators given by Eq. (8.128), we can
transform the average value formula Eq. (8.128) into the following form

0 = s{o,t|0s|o t)s
= ¢{a, 0[e**04(0)e # ¥t|a, 0) 5. (8.129)

We have used the subscript S to denote the Schrédinger representation.
We now define a new representation of operators and state vectors

)i = |a, 0)s (8.130)

and
Ox = exHtOg(0)e #HY, (8.131)
This representation denoted by the subscript H is called the Heisenberg

representation. In the Heisenberg representation, we have the same formula
to calculate the average value of operators

0 = s(a|Os|a)s
s{a, 0ler "t 05(0)e™*Har, 0)

#{0|Ok|a) . (8.132)

Il

Therefore, the Schrodinger representation formalism, in which the wave
function ¢(t) is time dependent and operators are time independent, can
be transformed into an equivalent formalism, in which the wave function is
time independent and operators are time dependent.
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In the Heisenberg representation, operators are time dependent. The
equation of motion which has the solution of Eq. (8.131) can be easily found
to have the form

L0 A -
ihz-O(t) = [0(¢), H). (8.133)

This equation has the same form as the Heisenberg’s equations of motion
in quantum field theory (for example Eq. (2.163)). In quantum field theory,
the operators are the field operators. Heisenberg’s equations of motion are
the physical time evolution equation for quantum field. Here Eq. (8.133) is
an artificial equation defined to facilitate the calculations.

8.6.3 Interaction representation

Many-body Schriédinger equations are often difficult to be solved. The
usual approach is the perturbation expansion method, which can be dealt
more easily in the interaction representation. We divide the Hamiltonian
operator into two parts

H=Hy+V, (8.134)

where Hy is a Hamiltonian that can be solved exactly. Generally Hy is
taken to the Hamiltonian without interactions. In some cases, Hy is chosen
to be a solvable Hamiltonian including some specific interactions. The term
V is the remaining parts of H. The principle of choosing Hy and V is to
make the effect of V small while maintaining Hy solvable.

In the interaction representation, both operators and state vectors are
time dependent. They are defined by the following formulas:

O1(t) = entiotOge= ot (8.135)
and
loy, tyy = e%f{”te_%ﬂt!a,O)I
— e%ﬁote_%ﬁt\@]{
= e#Hot|q 1), (8.136)

where we have used subscript I to denote the interaction representation. In

the interaction representation, the average value of the operator Ois given
by

O = 5(a|Osla)s
= g(a|e_%H°t016%ﬁ°t|a>s

1(|Os o). (8.137)

Il
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‘We have the same formula in the interaction representation to calculate
the average values of operators as in the other representations. The time
dependence of the operators is governed by the unperturbed Hamiltonian
Hy

L0 A ;
zhEOI(t) =[O (t), Hol. (8.138)
Differentiating Eq. (8.136), we have

%[a,th = %E%ﬁot(ﬁg — f[)e_%m\aﬁ)[

U i foge, iR
= ——_ertotye wftg 0);
h ]

—%e%gotf/e‘%f{ot [e%Hote‘%mm,O)[]
- —%V}(t)}a,t);. (8.139)
The time dependence of the state vectors is governed by the interaction V.
We introduce an operator U(t) defined by
U(t) = exHote=RHE (8.140)

which has the meaning of the operator of time translation for states in the
interaction representation. From Eq. (8.136), we have

la, t); = U(t)|a,0); (8.141)
with U(0) = 1. The time derivative of U(t) reads

d A Loifie Ay _if)
EU(t) = ﬁehHOt(H() —-H)e R

= _ie—%HotVe_%Ht
h

— _ Lot Hotyr —$Hot [ f Hot .~ £ HY
h

= —%Vl(t)U(t). (8.142)

We can solve this equation in the following way. Integrating both sides
of the equation, we obtain

Ut) - U(0) = -}% / L dt V(U (). (8.143)
0
Since U(0) = 1, we have

o) =1—% /0 AT (B0 (). (8.144)
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Repeating the iteration procedures, we obtain
i

Ut)=1- 7_1/0 dt\ Vi (t1)

N\ 2 i 11
+(J) /dtl/ dta Vi (41)Vy (t2) +
h 0 0
o —i n 1 11 tn—1
:Z(—) /dt1/ dt2-~-/ dtn
o\ h 0 0 0

x Vi(t)Vi(ta) - - Vi(tn). (8.145)
Using the time-ordering operator T', we can reform Eq. (8.145) into the
following form

fJ(t)=§)%(%—i)n/otdtl/otdtz---/()tdtn
x T(Vi(t1)Vi(ta) -+ Vi(tn)]

—Texp[ / dtlv,(zl)] (8.146)

The interaction representation formalism can be used to do perturbation
calculations.

8.7 S Matrix

In terms of the operator U (t), we introduce another important operator §
(often called S matrix)

S(t,t')y = U@)UH). (8.147)
We can also express the time evolution of the states in the interaction
representation in terms of S matrix.
o, t)r = U(t)]e, 0)
= S(t,t)U(t")]e, 0)r
= S(t,t’ Ve, t') . (8.148)
Thus the S matrix changes the wave function ¢ (t) at time ¢ into the wave

function ¢;(¢') at time . One can easily check that S operator has the
following properties:

S(t,t) = (8.149a)
S, t’) ( () = 8(¢, 1), (8.149b)
S, tYS(t, ") = S(t,t"). (8.149c¢)
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8.8 de Broglie waves

Although we start from the constituent principle of identical particles, all
the equations of motion are wave equations, we have the particle-wave
duality naturally. When there is no interaction between particles, a particle
state with momentum p is a plane wave state with wave function given by

o(x,t) = Aexp [i(k - x — wkt)]. (8.150)

where A is an amplitude factor. k and wy are the wave number and fre-
quency respectively (as an example, see Eq. (2.353) for Dirac fermions).
The momentum p is given by

p=Ffk=—-—. (8.151)
The energy of the state is given by

E = huy. (8.152)

Egs. (8.151) and (8.152) are called the De Broglie relations.
For massless photons,

E = hwy = hke. (8.153)
For massive particles,
E = hwy = Vm2et + B2k2c2 = \/m2ct + p2c2. (8.154)
In the nonrelativistic limit, expanding Eq. (8.154) gives
E=m02+p—2+---ﬁi+mcz. (8.155)
2m 2m

When the constant factor me? is subtracted, the energy becomes
2 P’
E =F— = —. .156
me” = o (8.156)

For a plane wave, we have two types of velocities. One is the phase
velocity vy, defined by

_wk  E /m2ct 4 p2c?

v, == === 8.157
Another is the group velocity v, defined by
dw dE 2
Sl J S NN (8.158)

Vg = —— .
T dk dp m2ct R
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The phase velocity is larger than the speed of light in vacuum, while
the group velocity is smaller than the speed of light. A plane wave is not
a local state. The state extends the whole space. Therefore, the phase
velocity can not be assigned as a velocity of the particle. When we talk
about motion of a particle, we actually talk about the energy transport and
thus the particle should be in a localized state. We can show that the group
velocity corresponds to the velocity of the energy transport. A free particle
in a localized state is described by a finite wave packet. For simplicity, we
assign the direction of the wave vector as z direction. A group of waves
propagating in the z direction can be described by the following localized
wave packet state.

ko+Lk
oz, t) = /k A c(k) exp [i(kz — w(k)t)]dk, (8.159)

where ky = i—’g is the mean wave number of the group and Ak measures

the extension of the wave packet. We consider a localized wave packet with
Ak < kg. We can expand the frequency w in a Taylor series around ky.

dw
o) =ulhn) + (5) (k=)
k=kgo
1/ d*w
| =3 k—ko)?+--. 8.160
+2(dk2)k:ko( o ( )
Inserting the expansion Eq. (8.160) into Eq. (8.159) and taking k' =k — kg

as the new integration variable, we obtain

o(z,t) = exp [i(kox — w(ko)t)]

Ak
X / exp [i(z — vyt)k|Clho + k' )dk'. (8.161)
—Ak
Since k' < ko, we have C(ko + k') = C(ko). Then Eq. (8.161) becomes
Ak
o(z,t) = exp [i(kox — w(ko)t)]C (ko) / exp [i(x — vyt)k'|dk’
N

sin[Ak(z — vyt))
T — vgl
= C(z,t)exp [i(kox — w(ko)t)) (8.162)

= 2C (ko) exp [i(kox — w(ko)t)]

with
sin[Ak(z — vgt))

Cle,t) = 20(k)————

(8.163)
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C(x,t) is the amplitude of the wave packet. C(z,t) has its maximum at

vet —z =0, (8.164)
which means that the maximum of the amplitude moves with a velocity
v = de _ ) (8.165)
Cdt Y '

The velocity of the wave packet is the one that amplitude maximum
of the wave packet propagates with. Thus the velocity of a particle is the
group velocity, with can only be smaller than the speed of light in vacuum.
For massless photons, its group velocity is given by

_dw  d(ck)
Ve dk T dk
which is the reason we call ¢ as the speed of light in vacuum. Any massless
particles have the velocity of ¢. Since in vacuum, only photons are massless,
photons have the maximum velocity in nature.

= (8.166)

8.9 Statistical interpretation of wave functions

As for the meaning of the wave function ¢(x,t), according to Eq. (8.37),
©*(x,t)p(x,t) = (z|fi,|z) is the probability that there is the particle at
x. This is the statistical interpretation given by Max Born. However,
one may ask why there is only a probability of finding a particle at a
position x instead of finding it definitely. A particle should be in one
position at a time. If a particle is in one place, how does it manage to
move to another place in distance simultaneously. This will give a nonlocal
existence for a particle. The interpretation is that a particle can be in a
state which is nonlocal. This state could be characterized by some guiding
fields as termed by Born. The guiding field could be energy, momentum,
or spin. These quantities are generally conserved due to the symmetry and
the corresponding states are stable. However, the particles themselves are
local. We can only find a particle when the particle is at x. The particles
are always created and annihilated everywhere with a probability. Due to
the conservation of energy, the number of particles is conserved. For a
single-particle state, although particles create and annihilate everywhere
for all time. there is only one particle in total at any moment, which occurs
in someplace. If we make a measurement, we could pick up the particle
only when it is created. The probability of creating a particle at x is |¢|?.
Thus we have only a probability of J¢|? to pick up the particle at x. After
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we pick up the particle, the particle can not be annihilated back as usual.
This is the irreversibility of the measurement, which leads to the quantum
collapse to the state that the measurement selects. A path of a particle in a
classical limit is only the path of the localized state guided by the equations
of motion and conservation laws.

8.10 Heisenberg uncertainty principle

In the microscopic scale, we are not able to measure the exact position
and momentum of a particle simultaneously, which is called the Heisenberg
uncertainty principle. We will show in the following that the Heisenberg
uncertainty principle is just a property of the position and momentum
operators.

First let us make a qualitative analysis, we consider a one-dimensional
wave packet. From Eq. (8.163), we can see that the distance Az of the
first minimum at z = x,,, of the wave packet amplitude from the maximum
at £ = 0 is determined by the factor sin (Ak - zp,) = sin (Ak - Az). This
distance can be characterized as the extension of the wave packet. We
obtain

AkAx =T, (8.167)

Using de Broglie relations, the momentum extension is determined by AAK.
We have

ApAz = wh. (8.168)

This relation shows that the position and momentum of a particle state can
not be determined exactly at the same time.

Now we derive the uncertainty principle. The average values of the
momentum and position operators are given by

Pz = /cp*(:c) (-—ih%) o(z)dz, (8.169a)

I = /cp*(m)mcp(m)dm. (8.169b)

The deviation from the average value is characterized by the mean-
square deviations (Ap;)? and (Ax)? defined by

(Ap.)? = (pr — pz)? = P2 — P2, (8.170a)
(Ax)? = (z—2)? =22 — 32 (8.170Db)
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p2 and 22 can be evaluated by
— H?
P2 = /cp*(a:) _hza_:ﬁ) e(z)dz, (8.171a)
2 = /cp*(x)xzap(x)dx. (8.171b)

To establish the connection between Ap2 and Ax?, we consider the integral

2

I{a) = / aAzg(z) + %Aprgo(x) dr acR. (8.172)
Since the integrand is positive, we have
I(a) = 0. (8.173)

Expanding the integrand, we have

I{a) =a? /00 Az?|p(z)|?dx

—0C

va [~ ne[(3an@) elo) @) (aneeto)) | do

+ / Z <%Apr<p*(x)) (%pr(x)) dz. (8.174)

The second term on the right hand side of Eq. (8.174) can be simplified
using integration by parts.

[ [(%Apmx)) o) +¢*(2) (%Apzm))} ds

— o0

- /oo Az [Mgo(x) + p*(x)dz—(;:)}

—oC

=—1. (8.175)
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The third term can be evaluated as follows:

/_Z (%Apmso*(m)> (%MM(%)) dx

= w*(x)dzgf) : /::sa*(w)d? AT g —%‘i
— i [ oo (-1 s ) wlarde - g
_ %m. (8.176)
Then we have
I(a) = (Az)20® —a + hQ(Apx)Q > 0. (8.177)

Since o can be any real number, the minimum of I(x) should be larger
than or equal to zero. The minimum I(cy,) of I(«) is given by

Iam) = 5 (Ap)? — >0, 8.178
(am) = 35 OnaF == (3.178)
which gives

B2

Eq. (8.179) is called the Heisenberg uncertainty relation for momentum and
position. The Heisenberg uncertainty principle is not limited to the posi-
tion and momentum operators. We can derive the Heisenberg uncertainty
relations for arbitrary observables.

Let us consider two hermitian operators A and B. The commutator of
the two operators has the form

(A4, B] =iC. (8.180)

C is called the remainder of commutation (or commutation rest). When
A and B commute, C is zero. It is easy to see that C is also a hermitian

operator. The deviation of the operators from the mean values is defined
by

AAd=A-
AB

(8.181a)
(8.181b)

1

m>

|

m>' :B)l
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It is easy to prove that AA and AB obey the same commutation rela-
tions as A and B

[AA,AB] =iC. (8.182)
Similar to the discussions for p, and Z, we define an integral
I{o) = / (aAA —iAB)o|*dz >0 aeR. (8.183)
We can evaluate I(«) in the following way

Ia) = /(aAA —iAB)"¢" (0AA — {AB)pdz

/g@* (aAA + iAB)(aAA — iAB)pdx

J
|

A)? +ia(ABAA — AAAB) + (AB)?] pdz

*
*

¥
¥

[*(A
[a?(AA)? + aC + (AB)?] wdzx
i

(AA)? +aC + (AB)?

v

(8.184)

Since I(«) > 0 for any real number, the minimum I(a,y,) of I(a) should
also be larger than or equal to zero.

—2
C

I(am) = (AB)? — >0, (8.185)

which leads to

o] O,

(AA)2(AB)? > (8.186)
Eq. (8.186) is the Heisenberg uncertainty principle in its most general form.
In particular, the energy operator Ein quantum mechanics is defined as
E= ih%. For the quantum system governed by the Schrédinger equation,
the energy operator is equal to Hamiltonian operator. The commutation
relation between energy and time operators is given by

[E,{] = ih. (8.187)
Thus the uncertainty relation between energy and time reads

(AE)2(AD)? > hzz (8.188)
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This relation means a particle state with short life time will experience large
energy change. This phenomenon is related to the conservation of energy.
If one wants to transform a state with a definite energy (an eigenstate of
Hamiltonian) to a state with a different energy, one needs apply external
disturbance. Otherwise, it would not change. The change can be achieved
either in a short time by applying a large external disturbance or in a long
time by a small disturbance. A state which does not change with the time in
average is called the stationary state. We will show that it is the eigenstate
of Hamiltonian.

8.11 Stationary states

When the Hamiltonian operator H is not time-dependent explicitly, we
have
df

U _aa) =0, (8189

The energy is a constant of motion. In this case, we can separate the
variables z and t of the time-dependent Schrédinger equation

ih%cp(x, t) = Hp(x,t) (8.190)
with the separated form of solutions
p(x,t) = p(x) f(1). (8.191)
We have
: ]
inp(x) 2= £(t) = Hip(x)1 (1) (8.192)
After separating the variables, we have
ih& = Helx) = const = E, (8.193)
@) ex)
which gives the time dependent part as
E
f(t) = foexp <—z7t) (8.194)

The function with the spatial argument obeys the stationary
Schrodinger equation

Hy(x) = Ep(x). (8.195)
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This equation is also called the Schrodinger equation and is used mostly
because H does not depends on time explicitly in most applications. Math-
ematically, Eq. (8.195) is an eigenvalue equation of Hamiltonian. E is the
energy eigenvalue, which is real because the Hamiltonian is a hermitian op-
erator. Generally the eigenvalue equation Eq. (8.195) has a set of solutions
wn(x) characterized by n. n is called the quantum number. The energy
eigenvalues E, is also numbered using n. The solution ¢, (x,t) then has
the form

on(X,t) = on(x) exp (—2’%), (8.196)

which is an oscillatory function in time, with the phase factor exp (—2Q)

R
We generally normalize the solutions with

/%(x,t)*%(x,t)dv = /cpn(x)*cpn(x)dv =1. (8.197)

This normalization condition means that a state contains one particle. It
can be shown that ¢, (x) are orthonormal, i.e. {¢p|wm) = §,m. The general
solution of the time-dependent Schrédinger equation is a superposition of
all pn(x,t).

e(x,1) = 3 Cal0)pn (x)e !

= Z [/gp(x',O)ga:(x’)dsx' ©n(X)e"nt, (8.198)






Chapter 9

Applications of Quantum Mechanics

9.1 Harmonic oscillator

9.1.1 Classical solution

We consider a one-dimensional system. When the interaction potential
V(x) has a local minimum at xg, we can expand the potential V(z) in a
Taylor series about the minimum

V(z) = V(xg) + V(zo)(x — z0) + %V"(wo)(x —zp)2 4+

= V(zg) + %k(w—w0)2+--- (9.1)

with
k=V"(xp). (9.2)
When energy is small, we can neglected the higher order term. V(zg) is a

constant term and can be dropped since it only affects the reference energy.
Thus the potential in Eq. (9.1) can be written as

Viz)= —21—mw2a72. (9.3)

w = \/g (9.4)

where m is the mass of particle.
For a potential given by Eq. (9.3), Newton’s equation is
Pz P oV (x)

with

dt? Oz
Eq. (9.5) is also called Hooke’s law. The solution of Eq. (9.5) is
z(t) = Asin(wt) + B cos(wt), (9.6)

which consists of the harmonic functions. This is the reason we call this
system the harmonic oscillator.

231
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9.1.2 Hamiltonian operator in terms of &' and &

The Hamiltonian of the harmonic oscillator is given by

H= —ﬁ—zvz + lmwaQ. (9.7
2m 2
The Schrodinger equation for the harmonic oscillator has the form
Rde 1,5,
“omdr? + Emw x“p = Fo. (9.8)

Instead of expressing the Hamiltonian operator in terms of the mo-
mentum operator p and position operator &, we define two non-hermitian

operators
) mw [, 0D
E —— ——— '9
a 57 (3:+ mw)’ (9.9a)
it = J7 (5 B
6l =45 (.r mw)' (9.9b)

We will show that they have the same properties as the annihilation and
creation operators we introduced previously in the quantum field theory.
Historically, physicists first introduced the hermitian operators p and £, and
found that p and & satisfied the canonical commutation relation (Z, p| = iA.
Then using Eq. (9.9) to introduce the annihilation and creation operators
and a'. The second procedure is thus called the second quantization. In this
book, we use the annihilation and creation operators to derive the canon-
ical commutation relations in the quantum field theory. The procedure is
reversed in the quantum field theory.
Using the commutation relation of p and %, we have

1] = o= (=il + 5, 4]) = 1. (9.10)

Eq. (9.10) shows that @ and 4! have the same commutation relation as
the annihilation and creation operators. Similarly, we can also define the
number operator

N =dla. (9.11)
Using the definition of @ and &' in Eq. (9.9), we have
-2
o ™ (p2 PP YL A
4= on ( m2w2> ol
a1
= - - —, 9.12
ik (9.12)
Thus we can express the Hamiltonian operator in terms of @ and af as

ﬁ:m(a*m%):m(ﬁw%). (9.13)
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9.1.3 FEigenvalues and eigenstates

Since the Hamiltonian operator H commutes with N, H and N can be
diagonalized simultaneously. We introduce |n) to denote the eigenstate of
N with the eigenvalue n.

Nn) = nn). (9.14)
Using Eq. (9.13), we have
An) = hw <n + %) In). (9.15)
Thus the energy eigenvalues are given by
E, =hw (n + %) . (9.16)

Now we show that n is a nonnegative integer. First we note that
Natjn) = ([N,al] + &' N)|n)
= (a'[a,a’] +aT N)n)
= (n+ a'|n). (9.17)

and

= (n - 1)a|n). (9.18)

Thus a'ln) and ajn) are also the eigenstates of N with eigenvalue n + 1
(increased by one) and n — 1(decreased by one), respectively. This is the
reason we call @' and @& the creation (or raising) operator and annihilation
(or lowering) operator.

Since @|n) is the eigenstate of N with eigenvalue 1 — 1, we have

dln) = cjn - 1), (9.19)
where ¢ is the normalized constant, which can be determined by
(njataln) = |c|*(n —1jn — 1) = | (9.20)
Thus
n=|c>0. (9.21)

Eq. (9.21) shows that n is a nonnegative number. Thus we can write
Eq. (9.19) in the following form

aln) = e /nln — 1), (9.22)



234 Principles of Physics

where 4 is a phase parameter. Similarly, we have
aTln) = e ®v/n+ 1ln + 1). (9.23)

Applying the annihilation operator a to Eq. (9.22) consecutively, we
have

a¥n) =™ \/n(n=1)--- (n—k+1)|n k). (9.24)

If n is not an integer, we will have an eigenstate [n'} = |n — k) with n’ a

negative number for k£ > n, which contradicts with Eq. (9.21) demanding

that n’ has to be a nonnegative number. Thus n can only be a nonnegative
integer. When n is an integer, the sequence |n) terminates at n = 0.

Since the smallest value of n is zero, the ground state |0) of the harmonic

oscillator has the energy

Eo = %hw, (9.25)

which is called the zero-point energy. Other eigenstates can be obtained by
applying the creation operator a' successively

my = @0y (0.26)
2, |

Thus A has the eigenstate [n) (n =0,1,2,---) with the eigenvalue
1
E, =hw (n + 5) . (9.27)
The orthonormality requires
(' laln) = e v/nln'|n ~ 1)
= e\/nbn n1 (9.28)

and
(n'la’|n) = e vn+ 1{n'|n+ 1)
= e /N 16 nss- (9.29)

Expressing Z and p in terms of & and at.

2:@ (a+al), (9.30a)

. fhmw
p= 2\/—2—— (—a+al). (9.30b)

We have the matrix elements of the operators & and p

(W) =\ g (Vb + € VA T Tbns), (9310)
/h
< ‘p|n> =1 et ( 16\/—571,’ n-17+ e_“svn + 16, n+1) . (9.31b)

T =
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9.1.4 Wave functions

Now let us derive the energy eigenstate in the x representation. For the
ground state, we have

al0) = 0. (9.32)
Multiplying Eq. (9.32) with (x|, we have

wlalo) =\ 2eel (2= L) o
= \/%? (x+ ;%%) (z]0)

—0. (9.33)

Eq. (9.33) is the differential equation for the wave function ¢y (x) = (z|0)
of the ground state, which has the following solution

wo(z) = (z/0) = L o [—% (£>2}, (9.34)

T%\/Io Zo
where
h
=4/ —. 9.
o e ( 35)

In the normalization of the wave function, we have taken the irrelevant
phase parameter § to be zero.
The wave functions of other states read

pn(z) = (zln)

@ [2 L0

! 1 r—zh 4y e NEAY (9.36)
= g | T2 xp |[—= | — . .
7ri ann! xg"‘% Odl‘ P 2 \ xp

Using the Hermite polynomials defined by the Rodriguez formula

H(6) = (~1)"ef” (jé) ¢ (0.37)

we can rewrite Eq. (9.36) as

Eq. (9.38) can be derived from Eq. (9.36) using the following recursion
relations for the Hermite polynomials

Hypy1(€) = 26Hn (§) — 2nHp 1 (§) (9.39)

dH,,
d€

and

= 2nHp_1(§). (9.40)
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9.2 Schrodinger equation for a central potential

9.2.1 Schrédinger equation in the spherical coordinates

In order to treat the problem of central potential, we express the
Schrodinger equation in the spherical coordinates. The Schrodinger equa-
tion for a particle in a central potential V (r) reads

W,
—5 VAU + V() = By, (9.41)

In Eq. (9.41), we have used 9, instead of ¢, to represent the wave function
in order to avoid the confusion with the angular coordinate ¢ used in the
spherical coordinates.

In the spherical coordinates, the Laplacian operator V2 has the form

2_10(,0 1 o (. 0 1
Vo= 25 \" 3 ) T 7Zend 50 smeae + Zen’0 0 (9.42)
The Schrédinger equation Eq. (9.41) becomes
B2 11 0 28’1# 1 o . 871) 1 32,¢
_%[r_?f?_r (r 5;) + 2 5in0 80 (sm959—> + 232 sin295<,§]

+ V(W = B (9.43)

9.2.2 Separation of variables

Using the following separation of variables

b(r,8,9) = RO)Y (6, ), (9.44)

we can separate Eq. (9.43) into a radial and an angular part. Inserting
Eq. (9.44) into Eq. (9.43), we have

2m Lr2 dr dr r2sinf 00 06 72 sin? f Op?
+ V(r)RY = ERY. (9.45)
Eq. (9.45) can be rewritten as

(12 (+2)- B -5}

1 1 9 oY 1 9%
1 ) (ng2¥ ) L Y1 _ g 0.46
+Y{sin989 (Sln989)+sin29 3902} (9.46)

The terms in the first curly bracket depend only on r and the remaining
terms depend only on # and ¢. Thus, each must be a constant. We write
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the separation constant in the form of I(l + 1). Then Eq. (9.46) becomes
two equations

1d{ ,dR 2mr?

- - | = Vir)—El=1{l+1 4
Rdr (7' dr ) e V) - E] =1 +1), (9.47a)
1 1 9 Y 1 0%Y

Sy T | sinf— )+ ————==-l({+1) 9.4
Y{siné)aé) (Sm630>+5in263¢2} (1+1) (9.47b)

Eq. (9.47b) for the eigenvalues and eigenstates of the angular part can
be written as

1 0 aYy 1 0%y
IS BN Bl L orl_ 2
h { - (sm@ ) + Y 8992} L+ DRY  (9.48)

or
LY = (1 +1)R?Y. (9.49)

Thus Y is the eigenstate of L? and [(I + 1)4? is the eigenvalue of L,

9.2.3 Angular momentum operators

Now we derive the eigenstates and eigenvalues of the angular momentum
operator. For the applications to more generalized cases, we consider the
total angular momentum operator

J=L+8. (9.50)
s given by
22 so 32 52
J =J.+ Jy +J;. (9.51)
It commutes with each component JAZ of J

[J,Ji] =o0. (9.52)

~2 ~
Thus J and J, can be diagonalized simultaneously. We denote the eigen-
A2 ~
values of J and J, by a and b, respectively. We have

J|a,b) = ala, b), (9.53a)
2la,b) = bla,b). (9.53b)
We introduce two non-hermitian operators

Je =J, +id,. (9.54)
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Ju are called the ladder operators. They satisfy the following commutation
relations

[(Jo,J_] =2nJ,, (9.55a)
[Je, J1] = £hJs, (9.55b)
(3%, Ju] = 0. (9.55¢)

Using above commutation relations, we have

J.(Jila, b)) = ([J,, J&] + JeJ2)|a, b)
= (b= h)(J+la,b)). (9.56)

Eq. (9.56) shows that Ji\a b> are the eigenstates of J, with the eigenvalues
b+ h. When we apply J+(J ) to an eigenstate |a,b) of J,, we obtain an
eigenstate of J, with its eigenvalue increased (decreased) by one unit of .
This is the reason why Jo are called the ladder operators.

Applying 3’ to Jx|a,b), we have
P (Jela,n) = Jo3%a,b) = asla,b). (9.57)

Eq. (9.57) shows that Jx |a,b) are also the eigenstates of J ? with the eigen-
value a. Thus

ji|a7b> = C:I:|a7b>7 (958)

where Cy are the normalization constant.

9.2.4 FEigenvalues of J? and J,

First we prove that the eigenvalue b of J, has an upper limit for a given
) a2 .
eigenvalue a of J . We use the following formula

. v 1a s . .
f—ﬁ:?hL+Lh)
1 ~ = ar A
=§Aﬂ+ﬂhy (9.59)
Thus
2 20 1 PR P
(avbl(‘] - Jz)la’b> = §<aab1(‘]+‘]+ +J+J+)|a’b>
= S +o) 20, (9.60)

which means that

(a,b|(3% = J2)a,b) = a b2 > 0. (9.61)
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Eq. (9.61) is equivalent to

m.-.
m|>—-

<b<a (9.62)

Therefore, b has an upper limit for a given a. When we apply J, succes-

sively to |a,b), we could obtain the eigenstate of J° and J, with increased
eigenvalue of J, until the upper limit of the eigenvalue of ./, is reached. We
denote the maximum eigenvalue of J as byaz- Then

Ji|a, bmaz) = 0. (9.63)

Otherwise J|a, bmqz) would be the eigenstate of J, with the eigenvalue
bimaz + A, which contradicts with the statement that b,,,, is the maximum
eigenvalue. Applying Eq. (9.63) with J_ gives

J_Jy|a,bmaz) = 0. (9.64)
J_ j+ can be rewritten as
Jody = JP 4 i d - )
—J° = 2 k.. (9.65)
Inserting Eq. (9.65) into Eq. (9.64), we have
(3 = J2 = R0, bmas) = (@ = bz = Womas)|a,brnas)

=0. (9.66)
Since |a, bmqz) is not a null state, we have
— b2, — Bbpmar = 0. (9.67)
Solving a gives
a = bmaz(bmaz + A). (9.68)

Eq. (9.62) also shows that there is a lower limit of the eigenvalue . We
denote the minimum value of b as b,,;,. Then

J_|a, bmin) = 0. (9.69)
Similarly, we have
Jod \abysn) = (3 = J2 + 1J.)\a, buin)
= (a — b2,;, + Bbmin) |G, brnin)
= (. (9.70)
Then we obtain

@ = bin (brain — ). (9.71)
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Comparing Eq. (9.68) with Eq. (9.71) gives
bmaz = —bmin. (9.72)
The allowed values of b are limited within
—bmaz < b < brgs- (9.73)

Applying J. successively to |a, byin}, we will be able to reach |a, bz ).
Suppose that we obtain |a, b, after n time operating J+, we have

bmaz = bmin + Nh = —bpes + nh, (974)
which gives
nh
bmam = _2‘ (975)
We introduce a quantum number j defined by
n
= —. 9.76
J=3 (9.76)

Since n is nonnegative integer, j is either an nonnegative integer or a half-
integer. Using Eq. (9.68), we have

a=FRj(j+1). (9.77)
We also introduce m = b/k as another quantum number. Thus
b=mh. (9.78)
m takes the following 25 + 1 value for a given j.
m=0,+1,£2,--- ,+j. (9.79)

2 R
We usually use |j, m) to denote the eigenstates of J and J, instead of
|a,b). We have

35.m) = 4G + V)R, m) (9.80)
and
J2|j,m) = mhlj,m). (9.81)

Since the eigenvalues of L’ is I(1+1), Eq. (9.49) is the usual form of

-2
the eigenvalue equation for L™, which is the reason we use [({ + 1) as the
separation constant in Eq. (9.47).
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9.2.5 Matriz elements of angular momentum operators

Now let us evaluate the matrix elements of the angular momentum opera-
tors. From Eqgs. (9.80) and (9.81), we have

(|37, m) = 3G+ DA 50j6mm (9.82)
and
G’ m!| T, m) = mhdjibmim. (9.83)
The matrix elements of J+ can be determined using the following
equation
Jeljom) = CEhljym £1). (9.84)

Eq. (9.84) is just Eq. (9.58) rewritten in terms of j and m. Using the
relation

~2 ~ ~ .
jom) = (jym|d” = JZ F hJ:|j,m)
=[j(j + 1) —m® F m]h?, (9.85)

(GymlJLJe

we obtain
(Cil? = [ + 1) = m(m & 1)|A?
= (jFm)(j+tm+1)h% (9.86)
Thus the matrix elements of ji are given by

G/ Jzlg,m) = VG Fm)(G £ m+ D)Eb8mme;. (9.87)

9.2.6 Spherical harmonics

In Eq. (9.48), Y (8, ¢) is the wave function of the angular part in the spher-
ical coordinate representation. We have shown that there are two quantum
number { and m. For the spherical coordinate representation, we introduce
the direction eigenstate [it). Then

(alj,m) =Y,"(n) =Y,"(6,¢). (9.88)
Since |j, m) is the eigenstate of J., we have
2 0 m
—255(5)’1 (0,) = mhY,™(0,¢). (9.89)

Thus

Y0, ) = ™ ¢ (6). (9.90)
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In order to fulfill the requirement that the wave function is single valued,
we impose

eim(np+27r) — eim«p’ (991)
which demands m to be an integer. According to Eq. (9.79),
m=0,+1,42, -+l (9.92)

Thus I should be integer. To obtain the 6-dependence of Y,"(6, ¢), we start
with the case of m = I. According to Eq. (9.63), we have

Lijt,ly =o. (9.93)

or equivalently
—ihe*? <z(,% — cot 66—?0) Y™, ¢)

(. o\ .
= —ihe* (Z% — cot 95{;) € l‘Pd)f(Q)

=0. (9.94)
The solution of Eq. (9.94) is given by
6H(8) = ¢;sin' 6, (9.95)
where ¢; is the normalization constant. The normalization condition is
27 1
/ dp / d(cos O)Y™ (0,0)Y™(0,90) = Swdmim.  (9.96)
0 -1

From the normalization condition, we can only determine the modula
of ¢;. There is an undetermined phase factor e?®. Generally we take § to be
zero. The undetermined phase factor comes from the complex wave func-
tion of the Dirac fermions. We have shown in the chapter of quantum field
theory that the Dirac fermions are composite in order to fulfill the causal-
ity and covariance principles. The doublet field operators are needed and
thus the Dirac fermion field operators are complex. Although the doublet
field operators are not independent, there is an constant phase factor un-
determined because the composite can not be broken into two independent
particles due to the causality and covariance principles. The phase factor
can be important in some periodic systems and adiabatic evolution where
the phase factor is called Berry phase or geometric phase.

Inserting Eq. (9.95) into Eq. (9.96), we have

(-t J@r+1)@2)!

_ - 9.97
“a= o in (9.97)
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~

Starting from |[,1), we can apply L_ successively to |I,[) to obtain all
other |I,m) with [ fixed. We use the following formula
- d d o
e (z% + cot 98_<p> [f(0)e™7]
i . 1-m A(f(8)sIn™ )
- _ i(m—1)yp 1-m 6
ie sin ———~———d(cos )
We define the term on the right hand side of Eq. (9.98) as f;(#)el(m~ ¢
and apply e~ (i a—ae + cot 0%) repeatedly, we obtain

(9.98)

I—m
[—ihe‘w <z% + cot 9%)} Y48, ¢)

i [ 9 9 o il 11
= |—ihie e + cot 98_90 (c;e*? sin* )
d'~™(sin® 6)

— _EYi-m imy o —m g .
c(—R) " ™e"¥ sin (dcosB)

(9.99)
Using the relation

L_jl,m+1) =/ =m)(I+m+1)|l,m) (9.100)
and Eq. (9.99), we obtain

@+1)({+m) 1 d"™(sin? )
dr(l—m)t  2Ulsin™ @ (dcos@)i-m

Y/ (8, ¢) = €™ (~1)"

where P/™ is the associated Legendre function defined by

= (-

" d [m|
rr@=a-% () Ae (9,102
and F, is the lth Legendre polynomial defined by the Rodriguez formula
_ 1 d\' 2 1
Eq. (9.101) is for m > 0. For m < 0, we use the definition
Y 0,0) = (=)™ [0, 0)]. (9.104)

Then the complete expression of the spherical harmonics for all the values
of m is

Vi (B,g) = (1) i‘\/ e A cosgyeme. (0.105)
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9.2.7 Radial equation

Now let us consider the radial part of the wave function R(r). R is deter-
mined by Eq. (9.47a), which can be rewritten as

d ( ,dR 2mr?
We define
u(r)y =rR(r). (9.107)
Then
in_ 1 o
ar e \ar ) 108a)
d [ ,dR d?u
Substituting u for R, Eq. (9.106) becomes
h? d*u B2 1(1+1)
mdr? T [ tom 2 }u Eu, (.109)

which is called the radial equation. It can be considered as one-dimensional
Schrodinger equation with an effective potential

R2U(1+1)
Vs =V 4+ —
11 +2m

o (9.110)
The term ;_;g%g is called the centrifugal term. The normalization con-
dition for u is

/Oo uj?dr = 1. (9.111)
0

9.2.8 Hydrogen atom
9.2.8.1 Reduction to one-body problem

An electron with negative charge —e and a proton with positive charge e
can form a composite particle, which is called hydrogen atom. The positive
charge particle has a much larger mass than the electron and is localized
in an atom. Thus we call it the nucleus. Since a hydrogen atom consists of
two particles, the proton and electron, it is a two-body problem. However,
it can be reduced to one-body problem. The Schridinger equation of the
electron and nucleus is given by

L0
zha\ll(xe,xp,t)

W oo G
(-2 W(Xo, X, 1) 9.112
( 2 V. 2m,, Vi, ¥ U) (e %p:1) ( )
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where x, and x, are the coordinates of the electron and nucleus respectively.
m. and my are the masses of the electron and nucleus respectively. U is
the Coulomb potential between the nucleus and electron. According to
Eq. (7.67)

62

Ulxe — Xp) = — (9.113)

|xe — Xp] .

We introduce two coordinates, the relative coordinate and the mass cen-
ter coordinate to replace the coordinates x. and x,. The relative coordinate
x is defined as

X = Xe — X, (9.114)

and the mass center coordinate X is defined as
MeXe + MpX
X= <S¢ PP (9.115)
Me + Mp
We can express the differentials in terms of the relative and mass center
coordinates

o _oxio w0 m 8 0 oo
dri  Oxi 0X'  Oxidxt me+m,0X' Ozt '

O _(_me O ON(_me & 0 9.117
(8zi)2  \m,+m, 0X* 0zt ) \'m,+m, X! Ot (9:117)
and

o 0X 8 o o mp, 0 8

e s A e s g

(9.118)

d? mp 0 0 mp 3} a
— = - — || —— === ] (9.119)
(0z}) me +my X' 0zt ) \me +mp 0X*  Ox?
Inserting the above equations into the Schrédinger equation Eq. (9.112),
we have

ov H2 B2
A L 2
"ot < VX o

V24 U(x)) 0. (9.120)

where M = m, +m,, is the total mass of a hydrogen atom and m = mie_i_—":f—
is called the reduced mass. We consider the solution which is separatezl

into the product
U(x, X, t) = ¢(x)D(X)e~ 7B, (9.121)
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Then we obtain the stationary Schrédinger equation

——hz—lw d— 5—21v2w+u =F
21 3 VX o X (x) = Ey. (9.122)
The first term depends only on X. The other two terms depend only
on x. Therefore, each should be a constant, We have

52
—%—viw + U(x)y = Ey (9.123)
and
h2
-m—v@ = (E; — E)®. (9.124)

Eq. (9.124) is the Schrodinger equation for the wave function ®(X) of
mass center. It is equivalent to that of a free particle with the energy
E; — E. Eq. (9.123) is the Schrédinger equation of an electron in a relative
coordinates. It is equivalent to that of a particle in a central potential

Ur) = - (9.125)

where r is the distance of the electron to the nucleus. Thus we can consider
the nucleus as a localized charge. We introduce Z to denote the charge
number of the localized positive charge so that we can easily generalize
our results to more applications. For the hydrogen atom, Z = 1. The
potential energy for an electron in the Coulomb potential field generated
by a localized charge of Ze is

A 2
U(r) = —Te. (9.126)
9.2.8.2 Solution of the radial equation in a central potential
The radial equation reads
h? d*u Zer  R2I(l+1)
S T L SR A A PR 5 0.127
2m dr? T + 2m 1?2 “ “ ( )
To simplify notation, we introduce
= Y2mE (9.128)

R
We consider the bound states for which E is negative. Thus & is real.
In terms of k, we can rewritten Eq. (9.127) as

1 d?u 2mZe? 1 1(1+1)
= |1= - . 9.129
k2 dr? ! h?k  kr + (kr)? “ ( )
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we introduce

2mZe> o2mZe?
= = 9.130
PO="rk T h/=2mE (9.130)

and
p= &l (9.131)
Then Eq. (9.129) becomes
d*u po  lI+1)
— =|1-— 9.132
dp? p * p? (9.152)

First we consider the asymptotic form of the solutions of Eq. (9.132).
As p — 00, keeping the dominated terms in Eq. (9.132) gives

d*u
The solution of Eq. (9.133) is
u(p) = Ae™” + Be”. (9.134)

The term e” goes to oc as p — oo. Thus it should be dropped and then
Eq. (9.134) becomes

u(p) = Ae. (9.135)
On the other hand, as p — 0, the dominated terms in Eq. (9.132) gives
Zipt; = l(l;; l)u. (9.136)
The solution of Eq. (9.136) is given by
u(p) = Cp'™' 4+ Dp~L. (9.137)
Since p~! — 00 as p — 0, we have
u(p) = Cpt*L. (9.138)
Thus the solution of Eq. (9.132) should have the form
u(p) = CplTle=Pu(p). (9.139)
In terms of v(p), the radial equation becomes
pz—ig+2(l+1—p)z—z+[po—2(l+1)]v=0. (9.140)

To find the solution, we expand v(p) into a power series in p

v(p) =Y Cip". (9.141)
k=0
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Inserting Eq. (9.141) into Eq. (9.140), we have

Zk (k+ DChrip® + 20+ 1) (k+ 1)Crirp”

=0 k=0
- QZkapk +lpo =201+ 1)] Y Cep* =0 (9.142)
k=0 k=0
or
> {k(k + 1)Cryr + 200+ 1)(k+ 1)Crpa
k=0
— 2kCr + [po — 2(L + )]Cx}p* = 0. (9.143)

The coefficient of p* should be zero. We have

k(k+ 1)Cry1 +2(0 + 1)(k+ 1)Crar
= 2kCx + [po — 2(1 + 1)]Cy, = 0, (9.144)
which gives
2(k+14+1)—po
(k+1)(k+20+2)

Eq. (9.145) is a recursion formula which determines the coefficients of the
expansion Eq. (9.141).

If 2(k+1+1)—pg # 0, we have infinite terms in the expansion Eq. (9.141).
As k — 00, we have

Ck+1 = (9145)

2
Ck+1 = EC;C (9146)
Inserting Eq. (9.146) into Eq. (9.141), we obtain

o (i %I;pk) = O(e*). (9.147)
k=0 "

Then v(p) = 00 as p = 00, which is not the solution we want. Therefore,
there should be an integer k = ko fulfilling the relation

20k+1+1)—po=0. (9.148)
We introduce
n=ko+1+1, (9.149)

which is the so-called principal quantum number. From Eq. (9.148), we
have

po =2n. (9.150)
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Inserting pg = 2n into Eq. (9.130), we obtain the energy

. h2k2 mZ2et

Bn=—m =~ (9.151)
Eq. (9.151) is the Bohr formula. The smallest n gives the energy of the
ground state. Since the smallest ky and [ are zero, the smallest n is 1. Thus
n takes the values n = 1,2,---. For the ground state, n = 1. The energy

of the ground state is

mZ2e!
2R
When Z=1, E; = —13.3¢V. n =1 yields | = 0 and m = 0. The recursion
formula Eq. (9.145) gives ¢; = 0. So v(p) = ¢p is a constant. Then we have

E = (9.152)

Rlo(’l‘) = EB 3 (9153)
with
h2

When Z=1, a = ap = 5 = 0.529 x 107'9M, which is called the Bohr
radius. The radial part of the wave function for a hydrogen atom is given
by

1
Ru(r) = ;pl"'le_p’u(p), (9.155)

where v(p) is a polynomial of the order £k = n—[—1in p. Inserting pg = 2n
into the recursion formula Eq. (9.145), we have

2k+14+1—-n)
k+1)(k+20+2)

Using the recursion formula Eq. (9.156), we obtain v(p) in an expansion
form

Cryr = ( Ck. (9.156)

n—1{—1

v(p) = Z Cep”
k=0

= n—l-1,, (-1-1n-1-2), .,
_CO{l‘m(QP)‘F A 2@+ 3) (2p)% + - --
+(_1)n—l—1 (n“l—l)(n—l—Q)...l

(n=1-D2I+2)21+3)- - (n+1) (20~

ki), (0157

= —CO



250 Principles of Physics

where £2:11(z) is the associate Laguerre polynomial defined by

n+l
n—i—1 i
2l+1 ) -1 [(n + 1)) 22"
! 1; (n—1—-1—k)Q2+1+k)k" (9.158)

From Eq. (9.128), we have

mZe? Z
Thus Eq. (9.155) becomes
27r 27r
Rpu(r) = Npye me J Ol e 9.160
)= v (220 g (20) o)

where N,,; is the normalization constant. The normalization condition for

R, is
/ R2,(ryridr =1, (9.161)
0

which gives N, as

22\ n—1-1) :

Together with the angular part, the wave function for hydrogen is given
by

wnlm(rﬁ g, 90) = Rn (7‘)Ylm(97 90)’ (9163)

which is labeled by the three quantum numbers n, [ and m. Eigenvalue of
energy E, depends only on n. Thus the energy is degenerate. For a fixed
n, | takes the values 1 =0,1,2,.-- ,n — 1. For a fixed I, m takes the values
m=0,£1,£2,---,4l. Thus the degeneracy of energy is

n-1

> o@i+1)=n’ (9.164)

=0



Chapter 10

Statistical Mechanics

10.1 Equi-probability principle and statistical distributions

For an isolated system which does not exchange energy and particles with
external environment, the energy of the system is fixed. The different states
are the degenerate states of energy. We call these states microscopic states
in statistic mechanics. One can not tell the differences between these states.
We have the basic principle that all the states are equally probable to be
occupied in an isolated system. This is called the Boltzmann equi-probability
principle, which the standard assumption in statistical physics. A set of
identical isolated systems is called the micro-canonical ensemble. Thus the
statistical distribution for a system in micro-canonical ensemble, which is
called the micro-canonical distribution, is a constant.

Now we consider a system (denoted as system 1) in contact with a
larger system (denoted as system 2). The larger system is called the ther-
mal reservoir. The two systems contain large number of particles N (typ-
ically N ~ 10%3). We call the systems with large number of particles the
macroscopic systems. When the two systems are isolated, the states in each
system are equally probable to being occupied. After the two systems are
in contact, the two systems will be in thermal equilibrium with each other
when the thermal quantities of the two systems are not changed. The sys-
tem and the thermal reservoir can be considered to form an isolated system.
This is valid because we can always include the surroundings in contact into
the thermal reservoir until the total system is isolated. For a macroscopic
system, the boundary part can be neglected. Thus the two systems are
sufficiently weakly interacting that we can write

E,=E+FE, (10.1)
where E is the energy of the system 1 and E’ the energy of the system 2.
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E, is the total energy of the two systems. According to the equi-probability
principle, the probability p(E,,) (also denoted as p,) that the system 1 in
a state n with the energy E,, is directly proportional to the number of the
possible states of the total system for this situation.

p(En) x 1+ QY (E), (10.2)

where Q'(E) is the number of the states of the system 2 with energy E’. In
the derivation of Eq. (10.2), we have used the condition that the two systems
are not correlated statistically because the two systems are macroscopic
ones with large number of particles and the contact boundary between
them is only a minor part of the total system. Eq. (10.2) does not hold in
the microscopic scale. Thus the two systems fulfilling Eq. (10.2) should be
macroscopic systems. We introduce a macroscopic quantity

S = kInQ(E), (10.3)

where Q(E) is the number of the states of the system with energy E. S
is called the entropy of the system. k is a constant defining the unit of
entropy. Eq. (10.3) is usually called the Boltzmann entropy relation. Using
Eq. (10.1), we have

p(E,) xY(E, — E,) (10.4)
with

V(E; - E,) = exp [%S'(Et - En)} . (10.5)

When the thermal reservoir is large, we have E,, < E' =~ E;. We can
expand S’ in a Taylor series:

08 1_,0%8
"By —E)=8 —E,—+-E——+---. 10.
S'(E, n) = S (Ey) E”8E+2E"8E2 + (10.6)
We define the temperature of a macroscopic system as
JFE
T=—. 10.7
53 (10.7)

For any macroscopic system, we have the lowest energy state as the ground
state. However, there is no limit to the highest energy generally because we
have selected the positive sign in the kinetic term for the Hamiltonian. An
opposite selection would result in an opposite sign of temperature but the
physics is not changed. When we increase the energy, the increased energy
allows the particles to occupy the states with higher energy. The number
of possible microscopic states will increase. €} represents the number of
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the microscopic states. Thus the increase of energy leads to the increase of
entropy. Thus, according to Eq. (10.7), the temperature should be positive.

T > 0. (10.8)

There are some artificial systems which have only finite energy levels. In
these systems, negative temperature can be achieved.
In terms of temperature, Eq. (10.5) becomes

E, 1 _,88
2 +) (10.9)

/ _n -
Q(E; En)ocexp( kT+2kE"8E2

T is the temperature of the thermal reservoir. We usually use 3 to denote

1
kT
(10.10)

For a large thermal reservoir, the high order terms in Eq. (10.9) can be
neglected. Then Eq. (10.4) can be rewritten as

p(En) = Z7te PEm (10.11)
with

Z=>3 e (10.12)

The summation is over all the states in the system 1. The normalization
factor Z is called the partition function. We usually call a set of the identical
systems contacted with a thermal reservoir as canonical ensemble. Thus
p(E) is called the canonical distribution. Using the symbol of the trace Tr
defined by

TrA=) (n|An), (10.13)

where {|n)} is an arbitrary completely orthonormal basis states, we can
express Z in terms of the Hamiltonian operator,

Z=Y e = Tre oM, (10.14)
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10.2 Average of an observable A

10.2.1 Statistical average

Now let us consider the mean value of an observable A. When a system is
in the state |1/), the quantum mean value of the observable A is given by

(A) = (vl Ajw). (10.15)
In order to distinguish with the statistical average, we have used the no-

tation (/1) instead of /Al, to denote the quantum mean value. We denote
p; the probability for the state |¢) to be occupied. Then the statistical
average of the observable A reads

A= pitwil Ajws). (10.16)
We introduce the density ma‘lcrix p defined by
p= " pilti) (il (10.17)
with Z
Trp=) pi=1 (10.18)

Eq. (10.18) is the normalization condition for the probability p;. Using
Eq. (10.17), Eq. (10.16) becomes

A= Zpiwilfu > Ind{nlyi)
= Yl Y pil) i Aln).

= TrpA. (10.19)

10.2.2 Average using canonical distribution

The canonical density matrix is defined by

=S el
= Z"1 Ze‘ KT ) (n
=Z7'Y e in)nl

=z le ¥, (10.20)
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The mean value of the observable A which acts only on the states of the
system 1 is given by

A=TrpAd=2"Tr (e—%fi) : (10.21)

10.2.3 Awerage using grand canonical distribution

In Eq. (10.20), the partition function Z depends on the number of particles
N. There are cases that calculations are made easy if we write the N
dependence of partition function Z explicitly. We denote N as the average
number of particles in the system. Since the fluctuation of particle number
is small for a macroscopic system, we can expand In Z at N. We have

InZ(N) =InZ(N + AN)
olnZ
ON

=InZ(N)+ (AN)+ -, (10.22)

y.8

where AN = N — N. y is the other parameter in the energy of the system,
such as the volume V' of the system. We define the chemical potential u by

0 1
n= o (—Eln Z) y (10.23)
Then Eq. (10.11) becomes
PEn, N) = Z(N) " epsaN 05
= Z(N) e #ON g=B(En—uN) (10.24)

Thus the probability for a system that particle number is changeable is
given by
p(E,, N) =g le7AlEa—uN), (10.25)
To simplify the notation, p(E,, N) is often denoted as p, n.
We usually call a set of identical systems contacted with particle reser-
voir as grand canonical ensemble. Systems contacted with particle reservoir

are called the open systems. p(E,,N) is thus called the grand canonical
distribution. Z is the normalization constant. We have

== 33 e AEa)
N n

= Z Tr e~ P H-1N)

N
=Y Z(N)eN. (10.26)
N
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E is called the grand partition function. We introduce the density matrix
of the grand canonical ensemble defined by

po =T le BUH—uN), (10.27)
Then the average value of an observable Ais given by
A =Tr(pgA). (10.28)

The trace here is to be understood as a double summations ), Tr. The
first summation Tr is over the state for a fixed particle number N and the
second is over all the particle numbers N =0,1,2,---.

10.3 Functional integral representation of partition
function

According to the definition of the partition function Eq. (10.12), we have

z=Y P =" (nje"PH ). (10.29)

n
Similar to the derivation of the functional integral representation of the
transition amplitude {¢’|e~*t|¢), we can derive the functional integral rep-
resentation of the partition function as

Z =Y (nje"#|n) = | Dge Jo a7/ eL6:9), (10.30)
T P

where the subscript P denotes the periodic boundary condition which de-
mands that the functional integral should be done over all ¢(x, 7) with the
boundary condition ¢'(x, 8) = ¢(x,0). In comparison with the transition
amplitude, Eq. (10.30) can be obtained by simply replacing the time t by
—i1f3 in the transition amplitude and summing over |¢, 0) with the condition
#(B) = ¢(0). Thus the functional integral formalism of the partition func-
tion is equivalent to the Euclidean quantum field formalism with 0 < 7 < 3
and the periodic boundary condition imposed.

In Eq. (10.30), we have used the Lagrangian of the boson field. The
functional representation for the fermion field can be given similarly. One
can obtain the functional representation for the fermion field by simply
replacing the Lagrangian of the boson field by that of the fermion field.
Also, we can use the Hamiltonian of quantum mechanics and obtain the
partition function when quantum mechanics is applicable.

Z =Tre ?H = / Dge™ J& 4TLiad), (10.31)
P
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In statistical mechanics, we deal with the many-particle systems. We usu-
ally use the field expression Eq. (10.30).

When temperature approaches zero (5 -— o), we recover the Wick
rotated quantum field theory in the Euclidean representation, which gives
the ground state properties as is expected.

10.4 First law of thermodynamics

Let us consider the properties of the macroscopic systems. The properties
of the macroscopic systems are described by a set macroscopic quantities
such as temperature, entropy, etc. The relations of macroscopic quantities
are determined by the laws of thermodynamics. We will derive these laws
of thermodynamics from the principle of statistical mechanics.

We consider an equilibrium system. We denote the probability for the
system in the state r as p,. The average energy of the system is given by

E=Y Emp. (10.32)

The energy can be changed with a small external disturbance. The
variation of the energy can be written as

dE =Y E.dp, + Y pdE,. (10.33)

The second term comes from the change of E,. E, is the energy of a
quantum state which can only be changed by applying an external field.
This way of changing energy is called performing work. The change of
energy from the first term is caused by the change of p,.. Since E, is not
changed, there is no work done on the system. In this case, the way of
changing energy is called heat transfer. We define the heat transfer @Q by

Q=Y _ E.dp,. (10.34)

The second term in Eq. (10.33) corresponds to the work performed on the
system. We denote the work performed on the system by @ W. Then

aw = _p,dE, = dE,. (10.35)

The small bar is added in the symbols @W and @ because the work W
and heat @ are not state functions. @ W and @@ depend on the process.
In terms of @W and @ Q, Eq. (10.33) becomes

dE =dQ+adw. (10.36)
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Eq. (10.36) is the so-called first low of thermodynamics. Tt states that for
any process of a macroscopic system, the variation of the energy is equal
to the sum of the adsorbed heat and the work performed by the external
fields.

The energy E, is a function of the parameters y; related to the external
fields.
E.=E.(y1,"** ,Yn). (10.37)

y; (1 =1,2,---,n) are often called the generalized coordinates in thermo-
dynamics. According to Eq. (10.35), we have

dW =) p.dE,

"~ 0F
= Zpr _Tdyi
o O

r 3=l
=Y Yidy (10.38)
=1
with
— 0E, OF
Y, = —t = . 10.39
' zr:p Ay By ( )

Y; is called the generalized force. Eq. (10.38) shows that the work done
on the system is equal to the generalized force times the variation of the
generalized coordinate. For example, the general coordinate is the volume
V for a hydrodynamic system. The work done on a system is equal to force
times displacement. We define pressure P as the force on a unit area. We
denote the displacement of area ds by dx. Then work done on the system
is given by

aw = /Pds -dx = —PdV. (10.40)

In the hydrodynamic systems, the generalized force corresponds to the
negative pressure.
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10.5 Second law of thermodynamics

10.5.1 Entropy increase principle

Let us consider an isolated macroscopic system with the energy E and
volume V. For a macroscopic system, we can divide the system into small
parts (macroscopically small, but still microscopically large). We divide
the system into N parts (we call them subsystems) with the same volume
v = V/N. We use n; to denote the number of the subsystems taking the
energy £;. FEach energy ¢; has a degeneracy €2;. Then the number of the
microscopic states of the subsystem with the energy ¢, is €2;. For an isolated
system, we have the following constrained relations:
N=)n, (10.41a)
1
E=) ne. (10.41b)
i
We call the distribution {n;} as a macroscopic state of the system with N
subsystems.
Now we calculate the number of the microscopic states (,.} for a sys-
tem taking a macroscopic state {n;}. Qy,,} is just the number of different
possible ways to select n; subsystems taking energy €1, no subsystems tak-

ing energy eq,---. We first select n; subsystems to take the energy &;.
There are
N!
N — 10.42
o (N —ng)! (10-42)

ways of selecting n; subsystems. Then we select the remaining N — n;
subsystems to take £5. There are
(N —mny)!

CN—nl —
TLQ'(N —np — nz)‘

2

(10.43)

selecting ways. We continue the selections in a similar way until all the
subsystems are consumed. In total, we have W selecting ways.
N ~N—
W=C,Cm™
_ NI (N —ny)! (N —np —ng)!
’Ill'(N — nl)' TLQ'(N - Ny — TLQ)' TZ3Y(N — TN —Ng — n3)’
N!
Lt
For each selection, the subsystems with energy e; can occupy any of the
; degenerate states. We have an additional factor 27" to count the possible

(10.44)
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ways to arrange n, subsystems with energy £; onto different degenerate
states. Thus we have

N ns Qp
Qniy = WHQ = N!H T (10.45)

Different distribution {n;} gives different number of microscopic states
Q.. There is a maximum value for €,,;. The macroscopic state {n;}
with the maximum €y, ; is called the most probable state. In the probabil-
ity interpretation, any initial macroscopic state {n;} has the largest prob-
ability to evolve into the most probable state. Thus the equilibrium state
should be the most probable state {n;},. Since there are two constraint
conditions given by Eq. (10.41), we use the Lagrange multiplier method to
determine the most probable state. We introduce two Lagrange multipliers
a and § for the constraint conditions Egs. (10.41a) and (10.41b), respec-
tively. Then the most probable state {n;}, is determined by the following
equation

OlnQy,, O(N =3, n;)
Bni : T 8711 * ﬁ
Since In{2¢,,) has the same maximum position with Q¢ ;, we have equiv-
alently used In€y,,  instead of Q,,} in Eq. (10.46). To simplify the de-
duction, we consider that the subsystems are so small that they already in
equilibrium and €; remains unchanged. From Eq. (10.45), we have

Ny =N+ > (0 InQ; — Inml). (10.47)

ANE — % nig;)
3 =0.

n;

(10.46)

Since n; > 1, we can use the Stirling formula
Inz!2z(lnz—1) for z>1. (10.48)
Then Eq. (10.48) becomes
M Qny =N+ (1 InQ; = nilnn; + 1)

=N+ n (m% + 1). (10.49)

The derivative of (2, is given by
InQy,. ,
OOy | & (10.50)
on; o
Inserting Eq. (10.50) into Eq. (10.46), we have

n; = Qe" >0, (10.51)
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Eq. (10.51) is called the Boltzmann distribution. n; is the number of the
subsystems with the energy ¢;. Then

p; = ”N = %e-a—ﬁfl (10.52)
is the probability that a subsystem, which can be considered as an arbitrary
macroscopic system contacted with a heat reservoir or an environment, have
the energy ¢;.

Since the entropy is given by 8 = k1n€, the most probable state is
also the state with the maximum entropy. Any state will evolve to a more
probable state. Thus we have for an isolated system with constant E and
|4

5S> 0. (10.53)

Eq. (10.53) is the co-called principle of entropy increase or Clausius
principle, which states that the entropy of any isolated macroscopic system
always increases. The principle of entropy increase is one of the formulations
for the second law of thermodynamics. The second law of thermodynamics
have many equivalent formulations. Any formulation showing the evolving
direction of an irreversible process can be used as one of the formulations of
the second law of thermodynamics. We can show that all these formulations
are equivalent.
According to Eq. (10.12),

Z=3 Qe (10.54)

is the partition function of the subsystem.
Using the normalization condition

Zpi =1, (10.55)

we have
Qe = N (10.56)
From Eq. (10.54), we have
o 2 10.5
et = (10.57)
Then
Qi g,
pi = —re P (10.58)
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Each energy ; has ; equivalent quantum states. Dividing p; by €,
we get the probability pio (@ = 1,---,€;) for a macroscopic system on a
microscopic state

1 s
Pia = e Bei (10.59)

Dio 18 the canonical distribution. p; and p;, in Eqgs. (10.58) and (10.59) are
also called the macroscopic and microscopic distributions for an equilibrium
state, respectively.

10.5.2 FExtensiveness of InZ

From Eq. (10.54), we can show that In Z is an extensive quantity. For a
system consisted of two subsystems I and /I, we have

InZ=1In (Z le-ﬁ€k>

k

=In |y ala{emae+4™)
ij

F (1) - pei" (1) el
=In ZQi e~ Pe ZQj e 5%

i

=InzW +1nzUD, (10.60)
where we have used the relation
Q= QP (10.61)

in the derivation of above equation. Eq. (10.61) means that the two macro-
scopic systems are not correlated statistically. Thus In Z is an extensive
quantity.
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10.5.83 Thermodynamic quantities in terms of partition
Sunction

The entropy is defined as S = kln{. Using Egs. (10.49), (10.52)and
(10.57), we have

S = klnﬂ{m}
=kInN'+k Y (nilnQ; — nilnn; +ny)

=kN(InN-1)+k> ni(a+pe+1)

1

= kN(n Zsyup + BEsup). (10.62)

In Eq. (10.62), Z,.5 and E,.» are the partition function and average energy
of one subsystem. /N is the number of subsystems. We have shown that
In Z is an extensive quantity. Thus we have

S =k(lnZ + BE), (10.63)

where Z is the partition function of the system and E is the total energy
of the system. Eq. (10.63) shows that S is an extensive quantity.
If we calculate the average of p;, we have

Inp=1In(Z-tePei)=—~InZ - BE. (10.64)
Thus Eq. (10.63) becomes
S =—klnp = —kTr(p1n p). (10.65)

Eq. (10.65) is the Gibbs formulation of entropy.
Now let us express E in terms of the partition function Z.

F = anEn

= Z‘lene BEn
8z
—_— _1___
=_Z 55
= (10.66)
Inserting Eq. (10.66) into Eq. (10.63), we have
dlnz
S=k(lnzZ~- . .
(n 555 ) (10.67)
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Using Eq. {10.39), we obtain the formula to calculate the generalized

force Y,
Evd aEn
Y'i = n
;p Oyi
= Z Z_l—aEn e_ﬁEn
10lnZ
=—= . 10.68
B Oy ( )
Eq. (10.68)} is also called the equation of state. If y; is the volume V of the
system, the corresponding generalized force is —P. Then the equation of
state for hydrodynamic system is

10InZ

== . 10.69
g ov ( )
According to Eq. (10.36), we have
dQ=dE-daw
=dE - Z?-dyi
81n Z dln Z
= . .70
% T3 Z vi (10.70)
Using
olnZ 0lnz
dlnZ) = ———d ——dy;, 10.71
(n2) = —5=d8 + Z vi (10.71)
we can eliminate the summation over ¢ in Eq (10 70} and obtain
81nZ Gan
dQ - 8 B Z Yi
olnz 1 olnZz
=—d +—{dan ~————dﬂ}
o8 B (n2) o
1 olnZz
—d{InZ -
"3 (w7 -5%5)
= TdS. (10.72)

Eq. (10.72) is the Clausius relation. Thus Eq. (10.36) becomes
dE =TdS + > Yidy.. (10.73)

1
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Eq. (10.73) is called the fundamental thermodynamic relation. When y; is
the volume V', we have

dE = TdS — PdV. (10.74)

We often denote £ as E or U to simplify notation.

10.5.4 Kelvin formulation of the second law of
thermodynamics

The second law of thermodynamics determines the direction of irreversible
processes. There are infinite kinds of irreversible processes. Thus we can
have infinite kinds of formulations of the second law of thermodynamics.
They are all equivalent. We have shown that AS > 0 for a process in an
isolated system. Now we will show another formulation of the second law of
thermodynamics, the Kelvin formulation: There exists no thermodynamic
transformation whose sole effect is to convert entirely a quantity of heat
from a heat reservoir into work. We will prove the Kevin formulation from
the entropy increase principle.

We consider a heat machine as shown in Fig. 10.1. There are two
processes supposed to be operated by the heat machine. One is the nor-
mal process. In this process, the work w is transferred into heat ¢ by a
machine and released into the heat reservoir. The conservation of energy
demands ¢ = w. The second process is the reverse process. In the reverse
process, the heat in the heat reservoir is transferred into work and released
to outside. The Kelvin formulation is equivalent to the statement that
the reverse process is not possible. We will prove the Kelvin statement by
reductio ad absurdum. Suppose that the Kelvin formulation is false. The
reverse process is possible. We evaluate the change of entropy AS in the
reverse process. There are three parts: the machine, the heat reservoir, the
outside. (i) The machine returns to its starting position after a cycle of
operation. We have the change of the entropy AS,, = 0 (ii} Only work is
released to the outside. We have the change of the entropy AS, = 0. (iii)
The heat reservoir release a quantity of heat ¢. Thus the change of the
entropy is given by AS, = dQ/T = —q/T. Then the total change of the
entropy

AS = ASp, + AS, + AS, = -% <0. (10.75)

This is in contradiction with the entropy increase principle. Therefore, the
reverse process is not possible and the Kelvin formulation must be true.
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Normal process Reverse process

Fig. 10.1 Heat engine with one heat reservoir.

10.5.5 Carnot theorem

Now we consider a thermal engine as shown in Fig. 10.2. A machine oper-
ates between two heat reservoirs. It absorbs heat ¢; from the high temper-
ature reservoir and transfer the heat into work w. According to the Kelvin
statement, the machine can not transfer the entire heat into work. It should
release some heat g2 into the low temperature reservoir. The conservation
of energy demands w = q; — ¢2. Using AS > 0, we have

@1 @ @1 W
AS= -+ > =—=— >0. 10.76
T * T, T * I, ~ ( )
Eq. (10.76) can be rewritten as
w T2 T1 - T2
=—<1—-—==—". 10.77
T=a=Th T ( )

where 7 is called the efficiency of engine. The equal sign holds when the
process is the quasi static process, which is defined as an ideal process
which is so slow that the system can be considered as in equilibrium during
all the process. The quasi static process is reversible. A thermal engine
that operates with the reversible process is called the Carnot engine. The
efficiency of Carnot engine is given by

ne=1-—=. (10.78)

All Carnot engines operating between two given temperatures have the
same efficiency. According to Eq. (10.77), we have the Carnot theorem:
No engine operating between two heat reservoirs is more efficient than a
Carnot engine.
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Fig. 10.2 Heat engine with two heat reservoirs.

10.5.6 Clausius inequality

We examine a system in contact with a heat reservoir. The temperature of
the heat reservoir is T. The system absorbs an amount of heat @ . When
the heat reservoir is large, the heat releasing process of the heat reservoir
can be considered as a quasi-static process. However, the process in the
system is not a quasi-static process generally. The change of entropy in the
heat reservoir is given by
iQ
T
We denote dS as the change of entropy in the system. Then the total
change of the entropy is given by

ds, = — (10.79)

d
The heat reservoir and the system together can be considered as an
isolated system. We have

a
dS; =dS — TQ > 0. (10.81)
Thus
a
ds > —;2 (10.82)

Eq. (10.82) is called the Clausius ineguality, which can also be considered
as a formulation of the second law of thermodynamics. For an adiabatic
process, @ ) = 0, we recover the entropy increase principle

ds > 0. (10.83)
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10.5.7 Characteristic functions

We define the free energy F by

F=E-TS. (10.84)
Using Eq. (10.63), we have

F=—-kT'InZ. (10.85)

F is also called the Helmholtz free energy. The variation of the free energy
is given by

dF = —SdT — PdV. (10.86)

We call the replacement E by F' = E — TS as a Legendre transforma-
tion. The term TdS in Eq. (10.74) is replaced by —SdT in Eq. (10.86).
Eq. (10.74) is often used when S and V are independent variables while
Eq. (10.86) is used when T and V are independent variables. When a
function with suitable variables (so-called natural variables) contains all
thermodynamic information, we call this function as a characteristic func-
tion. E(S,V) is such a function. We can obtain all other thermodynamic
functions when we know the function E(S,V). From Eq. (10.74), we have

- () . r--(2). a0

The equation of state P = (V,T) can be obtained by eliminating the vari-
able S in Eq. (10.87). Therefore, E(S, V) is a characteristic function.

F(T,V) is also a characteristic function. There are two other important
characteristic functions which can be constructed through the Legendre
transformation. One is the enthalpy defined by

H=E+PV. (10.88)

H(S, P) is a characteristic function with the variables S and P. The other
is the Gibbs free energy defined by

G=F+PV=E-TS+PV. (10.89)

G(T, P) is a characteristic function with the variables T' and P.
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10.5.8 Mazwell relations

The following fundamental relations are related through the Legendre
transformations:

dE = TdS — PdV, (10.90a)
dH = TdS + VdP, (10.90b)
dF = —SdT — PdV, (10.90¢)
dG = —SdT + VdP. (10.90d)

From Eq. (10.90), we can easily obtain the following four relations be-

tween derivatives
oT oP
( ) ( 85) (10.91a)

-G, e
I
B,

2 2
or OFE _O°F __(0P) (10.92)
8v ), oves  asov . \aS/,

The four relations between derivatives are called the Mazwell relations.
They are useful to express the thermodynamic variables in terms of mea-

For example,

surable variables.

10.5.9 Gibbs-Duhem relation

One of the most important functions in statistical mechanics is the chemical
potential i defined by Eq. (10.23)
oF

3] ( 1
v 2 ()
ON\ S vsg ON
According to Eq. (10.60), F(T,V,N) is an ertensive quantity with the
property

(10.93)

v.T

F(T,aV,aN) = aF(T,V,N), (10.94)

where « is a factor by which the system is enlarged. Since T = 0E/8S, T
is not changed by enlarging the system. We call T as intensive quantity.
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Differentiating Eq. (10.94) with respect to o and then setting o = 1, we
find

F = Vg((f—V)F(T, aV,aN) + Né(gﬁjF(T, aV, aN)} -
= —PV + uN, (10.95)
which gives
E=T8—- PV 4+ uN. (10.96)

Eq. (10.96) is called the Gibbs-Duhem relation. Using Eq. (10.96), we
obtain

G=E-TS+ PV =uN, (10.97)
which shows that the chemical potential p is the Gibbs free energy per
particle.

10.5.10 Isothermal processes

We have shown that in an isolated system, the entropy of the system always
increases. It reaches its maximin when the system reaches its equilibrium
state.

When the system is in contact with a heat reservoir and is not isolated,
we have other criteria to determine the process direction. For a system
with constant temperature T and volume V, we have

AF = A(E - TS)

= AE —~TAS

= AQ + AW — TAS

= AQ —TAS

<0. (10.98)

In the derivation, we have used AW = 0 because V = const. Eq. (10.98)
shows that an isothermal and isochoral process takes the direction that the
free energy F decreases.

For a system with constant temperature T and pressure P, we have

AG = A(E —TS + PV)
= AQ + AW — TAS — PAV
= AQ - TAS
<0. (10.99)

Eq. (10.99) states that an isothermal and isobaric process takes the direction
that the Gibbs free energy G decreases.
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10.5.11 Derivatives of thermodynamic quantities

In this section, we will introduce several important thermodynamic deriva-
tives. We define the heat capacity by

aqQ
ar |,

Cy (10.100)
The specific heat capacity is the heat capacity per unit mass. Since @Q
depends on the path of a process, the heat capacity also depends on the
path of process. For an adiabatic process, @ Q = 0. Thus the adiabatic heat
capacity Cg = 0. For an isothermal process, dI" = 0. Then the isothermal
heat capacity C7 = oco. The two most important heat capacities are the
heat capacity Cy at constant V and the heat capacity Cp at constant P.
They can be expressed as the derivatives of state functions

S OE
=1 (ar),,~ (@), e
and
(0S\ _ (0H
comr(B) -(2) 0102

Other important thermodynamic derivatives include the compressibility,
the coefficient of thermal expansion, and the thermal pressure coeflicient.
The compressibility is defined by

K= —— . (10.103)

When there is no heat transfer, it is called the adiabatic (isentropic) com-
pressibility

%
ks=—— 7= . (10.104)
V\OP) gy

For a compression at a constant temperature, we have the isothermal com-
pressibility

1 /8V
Ky =—= (—) : (10.105)
V\OP /),y

To describe the thermal expansion, we use the coefficient of thermal
erpansion defined by

a=L (W 10.106
VAT )y (10.106)
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The thermal pressure coefficient is defined by

1 /6P
=5 <ﬁ)v,zv' (10.107)

Using Eq. (G.7) in the Appendix G, we have
o = kpfP. (10.108)

The quantities such as k7 show how the extensive quantities vary with the
change of the intensive quantities. We also called them susceptibilities.

10.6 Third law of thermodynamics

When T = 0, the value of the entropy depends on the degeneracy of the
ground state. We denote the degeneracy of the ground state energy Ey as
Q. The density matrix of the canonical ensemble can be written as

e~ PH
Tre-AH
_ TPl
Zn e—BEn
R 10)is{0] + 3 g P E B ) (]
Qo + 3., e PEn—Fo) ’

ﬁ:

(10.109)

where |0); is the it* degenerate ground state. Thus the entropy at 7 = 0
is given by

S(T=0)=—-kTr(pInp) = kInQy. (10.110)

The ground states of all known systems are found to have degeneracy
Qo = O(1). We have

. S
;Hj}) k—]V_ =0. (10111)

N-=oo

Even if Qy = O(N), Eq. (10.111) is still hold. Eq. (10.111) is not a proved
results. It is only a summary of known properties of the ground states.
Although Eq. (10.111) can not be proven strictly, it is expected to be hold
generally because all the calculation results on the ground states suggest
the validity of Eq. (10.111). Eq. (10.111) is called Nernst’s theorem or the
third law of thermodynamics. The Nernst’s theorem has some restrictions
on the specific heat capacity and other thermodynamic quantities.
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Using Eq. (10.100), we have
C

S(T) - S(T=0) = ]OT dT%. (10.112)

Since ﬂTNiOZ = ( in the thermodynamic limit N — oo, Eq. (10.112)
becomes

r_C
S(T) = ] dT—=. (10.113)
0 T
In order to have convergent integration, we have
C:(T)—>0 for T—>0. (10.114)

Let us consider other thermodynamic derivatives. For the coefficient of
thermal expansion «, we have

1 /oV 1 /08
- — [ = =—— [ = — 0. 10.11
YTy (aT)p % (aP)TT—rO (10.115)
The ratio of the thermal expansion coefficient « to the isothermal com-
pressibility k1 also approaches zero when T' — Q.

1 /8V
. vl
kr 1 [8V

(%),

N (g;>v
= <g§>T - 0. (10.116)

In the derivation of Eq. (10.116), we have used Eq. (G.7) in the Appendix
G and the Maxwell relations.

When Eq. (10.111) holds, we can show that one needs infinitively many
steps to reach the temperature of zero, which is called the Nernst principle.

10.7 Thermodynamic quantities expressed in terms of
grand partition function

Thermodynamic functions can also be evaluated using the grand partition
function. The average value of an observable A is evaluated by Eq. (10.28).
First we calculate the average number of particles for an open system in
equilibrium with an heat and particle reservoir.
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= — 10.11
ba (10.117)

where

o = —fp. (10.118)

The energy E of the system is given by

_E—Z%:ZESPS,N
EY ) BN AR
N s
-1 0 —aN—-BE,
- _= 15—5%:2;@ N-BE

0lnZE
= — . 10.119
8‘8 ( )

The generalized force is the average of %%.

ZZ psN
= 1228& —aN-BE,
_ = ﬁayzz o—aN—8E,

18In=
= —— . 10.120
3 oy ( )

If y; is the volume V of the system, we have the equation of state for a
hydrodynamic system

10IlnZ=
P=5%v

(10.121)
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Using Eq. (10.65), the entropy is given by

S =—klnp
=kB(E - uN) +kIn=
dln= dlnz=
= Z—-a—— — f——— ). )
k(ln o 5 T ) (10.122)

Similar to the free energy defined by Eq. (10.85), we introduce the grand
potential J defined by

= —kTInZ. (10.123)
Replacing kInZ by S — k3(E — uN), we have
J=E—-TS—uN. (10.124)
Since G = uN = E —~ TS + PV, we have
J=-PV, (10.125)

which gives
PV =kTInE. (10.126)

10.8 Relation between grand partition function and
partition function

Eq. (10.26) shows that the grand partition function has the following rela-
tion with the partition function

Ee.By) = Y N Zn(B,y) (10.127)
N=0

=Y P (10.128)

8
Zy 1s the partition function for an N-particle system. When N = 0, we
define Z, = 1. Using the fugacity g defined by

[03

g=e "% =i, (10.129)
Eq. (10.127) can be rewritten as

with

=(q,8,y) = Zq Zn(B,y). (10.130)

Generally, for a classical system, 1t is more easy to calculate the par-
tition function Z. The grand partition function can also be calculated
using Eq. (10.127). For a quantum system, the grand partition is usually
more easy to obtain. Then the partition functions can be calculated using
Eq. (10.130) from the grand partition function as the expansion coefficients.
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10.9 Systems with particle number changeable

10.9.1 Thermodynamic relations for open systems

Let us consider the free energy F(T,V, N) with variables T, V, N.

oF oF oOF
dF = (& el or N
(6T>V,N i+ (aV>T,NdV+ (6N>T,Vd

= —SdT — PdV + pdN. (10.131)

For a system with multi-components, we denote u; as the chemical po-
tential of ith component (¢ = 1,--- ,n). The chemical potential term in
Eq. (10.131) should be replaced by a summation over all components for a
multi-component system. Then we have

dF = —SdT — PdV + Y j;dN;. (10.132)

Eq. (10.132) is the fundamental thermodynamic relation for the open
systems.

The other derivative relations can be obtained through Legendre
Transformations.

dE = TdS - PdV + Y :dN;, (10.133a)
dH =TdS + VdP + Y _ pdN;, (10.133b)
dG = —SdT +VdP + Y dN;. (10.133¢)

Thus the chemical potentials can be evaluated through a variety of relations.

(o)
Hi = |\ 377
ON; T,P,N;#N;

_ ( OF )
ON; T,V,N;#N;

B ( OF )
ON; S,V,N;#N;

_ <3H> . (10.134)
INi ) s.p.n; 2N;

The Gibbs-Duhem relation for multi-component systems is given by

G=> wli (10.135)
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For the grand potential J, we have
dJ =dF - dG

=dF —d()_ Vi)
= —SdT' — PdV ~ Y Nudp,. (10.136)

Eq. (10.136) is the fundamental thermodynamic relation for the grand po-
tential. Inserting J = —PV into Eq. (10.136), we have

SdT —~ VdP + ) Nidp; = 0. (10.137)

1
This is the differential Gibbs-Duhem relation. In the case of one component,
it shows that T, P, and p can not be varied independently. We have only
two independent variables for a homogeneous system with one component.

10.9.2 Equilibrium conditions of two systems

Let us consider two macroscopic systems. In the following, we discuss what
is the conditions that these two systems are in equilibrium with each other.
We denote the two systems as A; and A,. The two systems A; and A, can
be considered to form an isolated system A; with the total energy E; and
total volume V;. We have two constraint conditions

Ey = E) + E, (10.138a)

Vi=Vi+Va. (10.138b)
If the particle number is conserved, we have another constraint condition

N, = N; + Na. (10.139)

The number of microscopic states €2; of the total system is given by
Qi (Ey, Vi, Ni) = Q1(E1, Vi, N1 )Qa(Ea, Va, Na)
= W (E1, Vi, N1 )Qa(Ey — E1,V, — Vi, Ny — Ny). (10.140)
The equilibrium state is the state with the maximum entropy. Thus the
equilibrium condition is
88 = ké(InQ2y) =0, (10.141)

dln Ql dln QQ
- dE
( dE, dE, ) !

OlnQy  Olnfy
(T - T av

811191 Olnﬂg
+< 3N " oW, )le_o. (10.142)

which gives
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Using Eq. (10.133a), we have

Oln Q2 1
5E T (10.143a)
OlnQ2 P
= o (10.143b)
OlnQd i
N =TT (10.143c)
Since dE1, dV; and dN; in Eq. (10.142) are independent, we obtain
Ti =T, (thermal equilibrium condition), (10.144a)
P, = P> (mechanical equilibrium condition), (10.144b)
p1 = pz  (chemical equilibrium condition). (10.144c)

These are the three equilibrium conditions between two macroscopic sys-
tems. Eq. (10.144a) is also called the zeroth law of thermodynamics, which
states that when two systems are in thermal equilibrium with a third sys-
tem, then they are in equilibrium with one another.

10.9.3 Phase equilibrium conditions

Let us consider a macroscopic system. When the system is homogeneous,
there is only one phase in the system. If the system can be divided into two
homogeneous parts, then there are two phases in the system. For example,
in the low temperature, the atoms arrange themselves orderly to form the
solid state to achieve the lowest energy. With the increase of temperature,
the entropy begins to have effect. The entropy makes the system become
disordered. When the temperature is high enough, the solid phase begins
to melt into a disordered state (called liquid phase). Then we have a system
with two phases.

The equilibrium conditions for two phases are similar to the equilibrium
conditions Eq. (10.144) for two systems. We can generalize Eq. (10.144) to
a system of the ¢ phases with & components in each phase. The equilibrium
conditions are given by

Ty=Ts=-=T,, (10.145a)
Po=Py=--=P, (10.145b)
Mol = HB1 =" = L1, (10.145c¢)

(10.145d)
Bak = Bk =" = ok (10.145€)
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Together we have (k + 2)(¢ — 1) equations. Since the concentrations z, ;
satisfy the following normalization condition

To,1 + Zg,2 + o+ Lok = 17 (10146)

we have 2¢+ (k—1)p = (k+1)¢ variables. Then the number of independent
variables(also called freedom number) f is given by

f=k+D)p-(k+Dp—-1)=k+2-¢>0. (10.147)

Eq. (10.147) is the Gibbs phase rule. For a system with one component,
there are only pure phases. From Eq. (10.147), we have ¢ < 3. Thus the
maximum number of the coexistent phases is three for a pure phase system.
For example, liquid water, water vapor, and one type of solid ice can coexist
at Ty = 273.16 K and P, = 4.58 Torr. The coexistent point is called the
triple point. The absolute temperature scale is defined by the triple point
of water. The constant & in § = In{2 fixed by this temperature unit is
called the Boltzmann constant. We usually denote the Boltzmann constant
as kg.

10.10 Equilibrium distributions of nearly independent
particle systems

Now we discuss the calculations of the thermodynamic properties of the
systems composed of nearly independent particles. For example, in a gas,
the distance between particles are large. Thus the interaction of particles in
such systems are weak and can be neglected. When the interaction can be
neglected, the energy of the system can be described by the single-particle
energy. We can then use the distribution functions of single particle to
describe the statistical properties of the system.

10.10.1 Derivations of the distribution functions of single
particle from the macro-canonical distribution

10.10.1.1 Ezxpressions in terms of single particle quantities

We denote ¢; as the single-particle energy and g; as the degeneracy of the
energy ;. We define the distribution function n; as the number of particles
occupying the energy level £;. The distribution {n;} is a macroscopic state
of the system. For a system on the state s with particle number N and
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energy E;, we have
N=Y n, (10.148a)
i
E, = & (10.148b)
i
The equilibrium state is described by the macro-canonical distribution

psN = E 7 leT N FEs, (10.149)

ps,N is the probability of the system occupying the state s with the particle
number N and the energy F;. If there are €2} microscopic states for the
distribution {n;}, the probability of the system occupying the macroscopic
state {n;} is given by

Pln N = E7 Qe N A (10.150)

where N is the particle number of the system in the macroscopic state {n;}
and Ey is the energy of the system in the macroscopic state {n;}. They are
given by Eq. (10.148). Using the normalization condition

D PmaN =1, (10.151)
N A{n:}
we have
Bl Boy) =) Y Qngye N E. (10.152)
N {n;}

where the prime in {n;}’ represents that the summation is over all the
distributions {n;} at fixed N.

For an independent particle system, €2,,} is the number of the micro-
scopic states corresponding to the distribution {n;}. We denote Q; as the
number of distinct ways of assigning the n; particles to g; degenerate states
of ;. Then Qy,.y is equal to the multiplying of all ;, which gives

Uy =[] Q- (10.153)
Inserting Eq. (10.148) into Eq. (10.150), we have
PN =B 1Qpppe e Tami e (10.154)
and
Z(a, 8,9) Z 3 Qe Bimm B (10.155)

N=0 {nl}’
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The second summation is over all the distributions {n;} at fixed N. Since
we have the summation over N together with that over {n;}’, which releases
the restriction on {n;}’, we can change the summations over N and {n;}’
to the summation over {n;} without restriction. Eq. (10.155) becomes

(o, B,y) = Z Z Z HQ g (atBen

TL]—OTIQ—O n;=0
_ Z Qle—(a+ﬁ€1)"1 Z Qze—(a+ﬁ€2)nz .
ni1=0 na=0
o0
— H Z Qie‘(a‘FBEi)ni
i mn;=0
with
(a, B,y) Z Qe (atBen: (10.157)
n,;=0

Now we calculate the average particle number n; on the &; energy level.

iy = Z Z iP{n;},N

N {n.}

=z="! Z Z niﬂ{ni}B_QNhﬁES
N {n;}

D h T
N {ni}’
00 oo

== ) muemerFedn [T 3" Quemletfedn (10.158)
n;=0 n;#n; n;=0

Using Eq. (10.156), we have

s =
ny =271 E ni Qe athen: — =

n;=0 E Qie—(a+ﬁ61)ni
;=0
1 0E
o EZ 6a
81HE,5
=——" (10.159)

In order to calculate Z;, we need to evaluate ;. There are two types
of identical particles: bosons and fermions.
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Bosons

First we discuss the system with bosons, which is called Bose system.
To facilitate the calculations, we use the graph in Fig. 10.3 to represent the
configurations of the n, particles occupying g; quantum states of ;. We
use circles (o) to represent the particles and squares ([J) to represent the
quantum states. There are g; squares. In Fig. 10.3, the circles on the right
of the quantum state {1 denote the particles occupying the quantum state
on their left. Since every particle should occupy one quantum state, the
first position on the left should be a quantumn state represented by a square.
As an example, the graph in Fig. 10.3 represents a configuration that ten
particles on an energy level with four quantum states. In this configuration,
there are two particles on the state 1, zero particle on the state 2, five
particles on the state 3 and three particles on the state 4. Let us count the
number of the distinct configurations of graphs, which gives the number £2;
of the different ways of assigning the n;-particles to the g; degenerate states
of £;. Since the first position on the left has to be put a quantum state,
we have g; selections. There are n; circles and g; — 1 squares left. If the
circles and squares were labeled, there would be (n; +g; —1)! different ways
to arrange them. However, the circles represent identical particles and are
all equivalent, we need divide the configuration number by the number of
the ways permuting particles (n;! ways). Likewise, quantum states are all
equivalent and a factor g;! should be divided. We have

Q. — gilni + g —1)! _ (ny+g;—1)!

’ - : 10.160

Multiplying all the factors ; of each energy level ¢;, we have the total
number of the microscopic states for a boson system

B _ 11 (nit+g—1)!
Q) = H——-———m!(gi_ o (10.161)

Fig. 10.3 Schematic configuration of a microscopic state for a boson system
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Fermions

The system with fermions is called Fermi system. Since fermions obey
the Pauli exclusion principle, no more than one particle can occupy each
quantum state. The number of possible ways to select n, states from the
g; quantum states of ¢; for n; particles to occupy is

Q=9

ni!(gi — ni)!
Multiplying all the factors €; of each energy level ¢;, we obtain the total
number of the microscopic states for a fermion system

" _ 79
Uy = 5755 -t (10.163)

(10.162)

i
10.10.1.2 Bose distribution

Using §2; given by Eq. (10.160) for Bose systems, we can evaluate =;(a, 3,y)
in Eq. (10.157). For Bose systems, we have

e i (n'L + gl - 1)!6—((14-;351)711'
- Tli!(gi - 1)'

Tli=0

= (1—e o fe)7%, (10.164)
In the derivation of Eq. (10.164), we have used the following formula for

summation
mm+1) ,

(l—a:)‘m=1+ma:+——2'———:1: +
~(m+n-1) |
n=0 ) ’
Inserting Eq. (10.164) into Eq. (10.159), we have
o = Oln Ei
e Qo
_g:0In(1 — em>Fex)
B da
_ 9i
= (10.166)

Eq. (10.166) is called the Bose-Einstein distribution or Bose distribution.
The grand partition function = for the independent boson systems is given
by

e, B.y) = H (1—exfe)™® (10.167)
or '

Z(e, B.y) Zgzln 1— >R, (10.168)
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10.10.1.3 Fermi distribution

For fermions, we insert €; in Eq. (10.162) into Eq. (10.157) and obtain
gi

= g:! —(a+Bei)n;
— —_— e i)7

= (1L+e o Fe)™, (10.169)
In the derivation of Eq. (10.169), we have used the following formula for
summation

-1
(14+z)™=1+mz+ ﬂ%—)‘$2+"'

= m!

=y " (10.170)
= nl(m —n)!

Then Eq. (10.159) becomes
o = 61IIE1;
v Ja

_ —giOIn(l + e~ Fe)

B oo

=3 10.171

= T (10.171)

Eq. (10.171) is called the Fermi-Dirac distribution or Fermi distribution.
The grand partition function Z for the independent fermion systems is given
by

e, By) = [[ (1 + 7o) (10.172)

i

InE(a, B,y) = Y giln (1 +e7>77e). (10.173)

1

or

10.10.1.4 Semi-classical distribution

The Bose and Fermi distributions can be approximated by the classical
distribution when the quantum correlations can be neglected. When

9 > ng, (10.174)
which is called the non-degenerate condition (or semi-classical condition),

Q; for both boson and fermion systems are approximated by
(ni+¢;,— 1)

for bosons

0; = ni!(gs “ !
— % for fermions

ni!(gi - nl)'

(10.175)
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Using Eq. (10.175), we have

(11

g;
1

2

e‘(a+»‘95i)nl

I
Il
3

3
1l
o

—a—ﬁz’:‘i)n‘

I
NIE
A

(gie

-
i

<

1; 0
= exp (gie” 7). (10.176)
Inserting Eq. (10.176) into Eq. (10.159), we have
dlng; —a— B,
= L= giem o B (10.177)

Eq. (10.177) is called the semi-classical distribution or Boltzmann distribu-
tion for identical particles. From Eq. (10.177), we have

e = Lohei, (10.178)

n;
If e* > 1, then the non-degenerate condition g; > #i; holds. The condition
e > 1 (10.179)

is also called the non-degenerate condition.

10.10.2 Partition function of independent particle systems

Now we discuss the calculations of the partition function for independent
particle systems. For quantum boson and fermion systems, we have shown
that the grand partition function = can be calculated easily. For semi-
classical cases, we will show that partition function Z can be calculated
easily.

For the case of independent classical particles, whose positions can be
designated, the particles can be labeled. The particles can occupy the
energy €, independently. The energy E, of the system is given by

En :551 +852 +"'+€sN, (10180)

where s, is the quantum number and &, is the single-particle energy of
the particle a. The partition function of the system is given by

7 = Z e BEn
_ ZZ'__Z6—5(531+552+‘..+55N). (10.181)

S1 82 SN
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Since there are no quantum correlation and particles are distinguishable,
the summations in Eq. (10.181) are independent. We have

7 = Z Z .. Z e~ Blesy Teay ttesy)

$1 82 SN
N
=N (10.182)

with
=) e fe (10.183)

z is called the partition function of single particle. If we use i to denote
different energy levels £; with the degeneracy of g;, we have

2= gie ? (10.184)
A

Eq. (10.182) leads to the relation of the partition function Z of the system
with the partition function z of single particle for the classical independent
particle systems

Z =2 (10.185)

When the particles are indistinguishable, exchanging two particles gives
the same microscopic state. Since exchanging two particles on the same
quantum state of &; also gives the same microscopic state for the classical
system with distinguishable particles, we need to exclude this possibility
to simplify the calculation. For the semi-classical case, n; < g;, we do not
have the possibility that one quantum state is occupied by two particles.
Since exchanging two particles gives the same microscopic state, we need
divide a factor N! which is the number of ways of permuting particles in
Eq. (10.182). Thus we have

Z = j\lﬁ ZZ cen Ze_ﬁ(681+532+"‘+55N)

§1 82 SN

_ Ll w

Eq. (10.186) is the relation of the partition function Z of the system with
the partition function z of single particle for the semi-classical independent
particle systems.



Statistical Mechanics 287

It should be noted that Eq. (10.186) can not be applied to the general
quantum boson and fermion systems. For a boson system, one quantum
state can be occupied by more than one particles. For a fermion system,
there is a limitation that one quantum state can only be occupied by one
particle, the summation in Eq. (10.186) is not independent for general boson
and fermion systems.

10.10.3 About summations in calculations of independent
particle system

For an independent particle system, the Hamiltonian of the system contains
no interaction term. There is only kinetic term

H=H(p). (10.187)

The summations involved in the calculations of thermodynamic quantities
often have the form

> F(e.) = Te F(H) = Tr F(H(p)). (10.188)

The trace in Eq. (10.188) can be transformed into integration in the I" space
that spanned by the momentum p and position q.

Tr F(H(p)) = / & p(p| F(H(5))Ip)
- / d'p / & g{plF(H(B))|a)(alp)

_ / itp / & ¢F (H(p))(pla)(alp)

s
:/d pdf;]F(H(p)). (10.189)
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‘When the energy-momentum relation is € = ‘QL; and f = 3, Eq. (10.189)
has the form

Tr F(H(P)) = (—2—;;—)3/d3pF(6(p))

= (—;17%5 / p*dpF(e)

= e [ e )
= QW m)3 / VEF(e)de
= / 9(6)Fe)de (10.190)
with
g(e) = 22—3‘/(2771)%\/5 (10.191)

g(e) is called the density of state.

10.11 Fluctuations

The thermodynamic properties of a macroscopic system are determined
by the statistical average of observables. However, there are always fluc-
tuations around the average for a finite system. Now we discuss the
fluctuations.

10.11.1 Absolute and relative fluctuations

For a physical quantity u, its deviation from the average is Au = u — 4.
Since u — u = 0, we define

1
2

AT = [m] (10.192)

as the fluctuation of u.
1

o [(A—u)_z] P (W —w?)t, (10.193)

AT is called the abselute fluctuation. The relative fluctuation is defined as

_ _2_ _oy 1
Aw_ (wr-ah)z (10.194)

]

=4}
il

7 7
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10.11.2 Fluctuations in systems of canonical ensemble

First we consider the closed systems in which there is only energy exchange
and no particle exchange. They are the systems of canonical ensemble. The
fluctuation of energy is defined as

AE = (E2 - E%)t. (10.195)
E is given by Eq. (10.66). EZ can be evaluated as follows:

E? = anEg

2Inz InZ\?
9 In (an ) . (10.196)

a8

Thus we have

= (kpT*Cy)?. (10.197)

The relative fluctuation is given by

1
2

§E = = (ksT*Cv) (10.198)

1
E
Eq. (10.197) shows that the heat capacity Cy is always positive
Cv > 0. (10.199)
Since E «x N and Cy x N, we have
§E x N7z, (10.200)

For a macroscopic system (N ~ 1023), the relative fluctuation is very small.



290 Principles of Physics
10.11.3 Fluctuations in systems of grand canonical
ensemble

For an open system, there are both energy and particle exchange with
reservoir. We call such system as the system of grand canonical ensemble.
There is fluctuation of particle number in an open system in addition to
the fluctuation of energy. The fluctuation of particle number is given by

AN = (N2 - N5, (10.201)

N is calculated using Eq. (10.117). N2 can be evaluated as follows:

N s
== ZZN26~QN~EES
N s
_ =1 %z
da?
& In= Oln=\?
= 57 + ( 5a ) . (10.202)
Thus we have
AN = (N2 - N?)

BA= pope

(52)
RGN
{kBT (%g) TJ ’ : (10.203)

Eq. (10.203) shows that (Q§>TV is positive. The relative fluctuation is

ol

Il

given by

W:{@ (8—N> } : (10.204)
2 \0u /)y
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Next we consider the fluctuation of energy.

AE = (B2 -E°)?

_ /#82In=Z\?
- (5

-[(%).)

— 1
OF 2
- 2 (0¥
fur(Z) | 02w
The relative fluctuation of energy is given by
- 1
— kgT? (OE :
§E = { ke (—) ] . (10.206)
E or aV
10.12 Classic statistical mechanics and quantum

corrections

10.12.1 Classic limit of statistical distribution functions

Now we consider the classical limit of the statistical distribution functions.
The classical limit corresponds to the case of high temperature and low
densities.

First we consider the simplest case, i.e. one particle systems, which we
do not need deal with quantum correlation. Then we consider realistic
many-particle systems. The Hamiltonian operator for one particle systems
is given by

.2
: g % L V(@) = K(®) + V(@) (10.207)
where p and § are the momentum and position operators respectively. They
obey the commutation relation Eq. (6.103)

(4. ] = ih. (10.208)
Their eigenstates are defined by the following equations:
dilgi) = qilai), (10.209a)
Pilpi) = pilpi)- (10.209b)
The normalization conditions for the eigenstates are given by
(gilas) = 8(qi — 1), (10.210a)

(pilpi) = 6(p; ~ pi)- (10.210b)
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We can derive following relation directly from the commutation relation
Eq. (10.208).

(a:]ps) = eHPiti (10.211)

Varh
From commutation relation, we have
[gi, "] = ihmp," Y, (10.212a)
[Bi, 4" = —ihng" . (10.212b)

Using the Taylor expansion, we have

q; €Xp <—ﬁqz‘pi>|0>ql

= {ineXp (-E%I)i>} 10)g;

= @, exp (—%qﬂiz) 10)g;- (10.213)
Thus the eigenstates of ¢; are given by
lg;} = exp (—%qi;ﬁl) [0}, - (10.214)
Similarly, we can show that the eigenstates of p; are given by
|p;) = exp <%pz(jz) 10, - (10.215)

Then we can calculate {g;|p;)
i
(alp = Gl exp (10 ) 0},

7
= exp (f—ipz'qz) (pi|0) p;

i 1
= €xXp (ﬁpi‘b’) 40/ exp <—E%'Pi) 0)p.
i
= exp (ﬁpi%) {010} p, - (10.216)

4: (0|0, is just a constant for normalization, which we will take as 1/v/27h.
Thus we get Eq. (10.211). The normalization condition is consistent with
the following completeness relations of |g;) and |p;)

/ dailg:) (i) =1, (10.217a)

/dpz-lp»(pi\ =1. (10.217b)
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We associate with the operator A(f) a function A.(p,q)
(P

:]’;>v

Aclp,q) = <1')!<|1)>' (10.218)

A.(p, q) is the classical quantity corresponding to the the operator fl(f), q).
Then the classical Hamiltonian function is given by

~ 2
H(p.q) = (pl |5~ +V (@)

1
@m

p* 1
{% + V(Q)} (P@m
p2

=5~ tVig
m
= H(p,q). (10.219)
Now we calculate the partition function
Z=Tre %8

= /d3p<ple‘ﬁﬁ’('5"i)lp>

- / ip / d3q(ple="#®D|q) (q|p)

= [ [Eple k@@, o<n>1|q>§—§%<q|p>
= /dap/qu[e—ﬂH(p,q) + O(h)] (27r1h)3

- [ G s o (10220

O(h) comes from the commutators between K (p) and V(él), which can be
evaluated using the Campbell-Baker-Hausdorff formula

eAeB = ATB+3A B+ {[[A.Bl.BI+([B.A| Al }+-- (10.221)

Thus we have the classical partition function

d*pd’q e BH(P.Q)
/ P (10.222)

We can also define the Wigner function by

o(prq) = ( {alplp) (10.223)

2nh)3(qlp)’
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The Wigner function satisfies the normalization condition and has the

same average value with the density matrix p. We have the normalization
condition

fe#a ] wote= [ @4 [ rms iy

_ / / 1 (@pp){pla)
Plarh)s {ap)(pla)
=Trp (10.224)

and the average values

3 3 3 3 1 <Q|/3|P)<P|A|Q>
/d /‘“’"pq (p.q /d /d @)?  (alp)(pla)

= Tr(pA). (10.225)

For the canonical distribution, we have
1 Z-1le—B8H
p(p,q) = 3 d L
(2mh) (alp)
_ 1 (dle”Fe Y + O(n)ip)
(2rh)*Z (ap)

1

Thus we have the classical limit of the distribution function

1
p(p,q) = A FH(pa), (10.227)

The average value of an observable Ais given by
- ” d3qd3pA(p, q)e—BH(p,q)
- ff d3qd3peH(P»Q)

We can easily generalize the above formalism to the N-particle system
in three-dimensions with the Hamiltonian operator

(10.228)

N 2
H= [L +V(qy,: - ,QN)jl . (10.229)

We introduce the following eigenstates of the position operators ¢, and
momentum operators p, for many-particle states.

la) = la;) - lan) (10.230a)
Ip) =[py) - Pw) (10.230b)



Statistical Mechanics 205

They are orthonormal

(qild’;) = 8%(a; — d') (10.231a)
(pilp"s) = (P, — p') (10.231b)
and satisfy the completeness condition
/d3pi\pi><pi| =1 (10.232)
We have also
ip;) = erPi:, 10.233
(@ip) = s (10.233)

The many-body states are either symmetric (bosons) or antisymmetric
(fermions). According to Eq. (6.65), we have

1
P)s = Z;&SPPIp)- (10.234)

The subscript S is used to denote that the state has been symmetrized
according to the features of identical particles. The symmetrical states

(£ = 1) are for bosons and antisymmetrical states (§ = —1) are for fermions.
The sum runs over all the permutations P of {p;,ps--- ,pyx}. According
to Eq. (6.68), the normalized state is given by

1
IP)sn = W'P)s,

where n; is the number of particles with momentum p,. The trace of an
operator A is then given by

Trd= Z/ sn(plAlp)sn

(10.235)

P Pn
nilng!--- -
= Z —%,—SNQ)IA‘I))SN
P1 PN )
1 -
= Z ms(PlAlws. (10.236)
P1Py

The prime in Eq. (10.236) indicates that the sum is limited to different
states. Similar to Eq. (10.220), we can deduce the classical form of the
partition function for N-particle systems.

Z=Tre P

1 N
=W /dSNPS(Pfe_ﬂHlms

1 .
= m/d‘”"q/dSNps<ple‘ﬂHQ><<1Ip>s

1
=M /dsNP/dSNq e PHPD(qlp)s? + O(R).  (10.237)
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The factor [{q|p)s|? can be expressed as

(27h)*|(alp)s| = 1 + f(p,q), (10.238)
where f(p, q) comes from the symmetrization contribution of identical par-
ticles, which is the quantum correlation effect. The leading term 1 corre-

sponds to the pure classical limit. Then we have the classical partition
function

1 .
Z = IO / d*Np / d*N ge=PH(Pa), (10.239)

10.12.2 Quantum corrections

We discuss the quantum effect correction to the classical partition function.
There are two sources for the corrections: (i) The symmetrization of wave
function; (ii) the non-commutativity of K and V. Since the first contribu-
tion is more important when the interaction is weak, we consider the first
contribution. The first contribution comes from the factor |(q|p)s|*. Using
Eq. (10.234), we have

alp)sl? = 37 30 S (#1)°7 (21)°% (a Plp) a|Plp)®

' p P

= o 2 D ) (Pap) Palp)®
P P

= T\lﬁ 3 (1) (£1)5# (qlp) (PP qlp)*

P P
=Y (+1)%*(alp)(Pqlp)*
P

1
(27rh)3N

In the derivation of Eq. (10.240), we have used the fact that the permutation
of the particles in the configuration space is equivalent to the permutation
of the space coordinates. We can rewrite Eq. (10.237) using the following
formula

Z (£1)SPekPr@i=Pa)+t-+py-(ax—Pan))  (10,240)

e (10.241)

where
A = —— (10.242)
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Mr is called the thermal de Broglie wave length of particles. It represents
the de Broglie wave length of a particle with an energy of mkgT, which can
be seen easily if we evaluate the energy of a particle with the wave length
of )\T.

2 2 2

P (hk) 1 A

= = = = nkpT. 10.243
2m AT )2 mhe ( )

[
3
B
3

We define

fx)=e >r. (10.244)

Then the partition function Z with the quantum corrections due to the
symmetrization of wave function becomes

7 = we—lﬂi(p,q)
N2aR)2N
x S (£1)% f(a, — Pay) - flay — Pay). (10.245)
P

Arranging the terms in the summation according to the number of permu-
tation exchanges, we have

Z(il)spf((h - Pqy)-- flay — Pay)
P
=12 (fla; —q)))?
i<j
+3 fla, - q;)f(a; — Pay)f(a, — Pa;) -+, (10.246)
ijk
where the upper sign corresponds to bosons and the lower sign to fermions.
The first term of the expansion in Eq. (10.246) corresponds to the unit ele-
ment of P. The second term corresponds to the P with one transposition in
which only one pair of particles is exchanged, and so on. With the increase
2

of temperature, Ar decreases and f(x) = e *% decreases rapidly. When
(%)% >> Ar, f(q;—q;) becomes exponentially small in most configuration
space. f(q; — qj) is significant nonzero only for a very small configuration
space with |q; — q;] < Ar. We consider only the leading quantum correc-
tions in the expansion Eq. (10.246). When we consider up to the second
terms, we have

EDSFACTETDES | (EFACIETH)
1<j i<j

— e*[j Ei(j f’l(qi—qj) (10247)
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with

_ 2rjqi—qyl

ti(q; —q;) = —kTlog(l£e *F ). (10.248)

(g, — qj) is the effective potential. For bosons, the potential ¥;(q; —
q;) is negative and equivalently attractive. For fermions, #;(q; — q;) is
positive and equivalently repulsive. Using the effective potential ;(q; —q;),
Eq. (10.245) is approximated as

7 = %3!](\72‘?;1_%e—ﬁl‘f(p,q)e—ﬁZI,<J i(a;—ay)
%e*"”'(pm (10.249)
with
H'(p,q) = H(p,q) + #:(q; — q;)- (10.250)

H'(p,q) is the effective Hamiltonian with the potential added with
51‘((11‘"‘:1]')'

10.12.3 Equipartition theorem

For a classical system, the average energy of the system can be calcu-
lated using a very simple method based on the theorem of equipartition
of energy. We will prove this theorem in the following. The energy for
a classical system E(p,q,y) is a function of momentums p and positions
q. If E(p,q,y) — oc when p; and ¢; — oo, we can prove the following
relations

Di oF = kBT, (10.251&)
Opi
oOF
i = kpT. 10.251b
'y s B ( )

First we prove Eq. (10.2514a)
/ /dfpdfq OB _sg
pz 8p - NIZ Crh) P ap; B

de~
=1pg! 10.252
NWZ( )/ /dpd pd’ qpi o ( )
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where dp;d’~'pdfq = d/pd’q. Integrating by parts, we have

g [ [t

Pigy = BN Z
—/-"/eAﬁEdfpdfq}

1 .
- ﬁ'N"hfZ—/”'/e B pal g
= kpT. (10.253)

o<

Pi=-0C

Similarly we can prove Eq. (10.251b).
Suppose that the energy has the following form

N f2
E=Y cupl + ) a7 (10.254)
i=1 j=1

Then
OE
Opi
OF
da;

= licupt ", (10.255a)

= lycaig? ™1 (10.255b)

We have

~ f1 f2
= Z cupit + Zcsz?
i=1 =1
fa
1 OF
T Z E; " o,

f1

kT+

:(fl fz)kBT (10.256)
T

Eq. (10.256) is the generalized theorem of equipartition of energy.
For an independent particle system, the particle energy e o p? in the
non-relativistic case. Then the average energy of the system is given by
_ 3N
E = ———kBT (10.257)
where N is the particle number. Eq. (10.257) is the Boltzmann theorem of
equipartition of energy. It shows that each degree of freedom contributes
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an energy of %kBT. In the extreme relativistic case, the particle energy is

given by

1
2

e=cp=c(p; +pj+p)%.
The energy of the system reads

E=Y c(pi +pi, + L)%
=1

‘We have

OF 2 2 2
Bpen = Pia(Piy + Piy + Piz)

1
2

Thus we have

z

E=> cp? +p3+03)?

i=1
N 3E
;;pza o
AT

= Z 3kgT
i=1

= JNkgT.

(@ =m,y,2).

(10.258)

(10.259)

(10.260)

(10.261)

In the relativistic case, each degree of freedom contributes an energy of

kgT, instead of %kBT in the non-relativistic case.



Chapter 11

Applications of Statistical Mechanics

11.1 Ideal gas

In the high temperature and low density, the state of matter is usually a
gas due to the entropy effect which prefers a disordered state. For a gas
state, the distance between molecules are much larger than the molecular
size in average and thus the interaction of molecules are small. Now we
consider the properties of the ideal gas. An ideal gas is a gas in which the
interaction of molecules can be neglected and the condition

e* > 1 (11.1)
holds. e* > 1 is the non-degenerate condition. If Eq. (11.1) is not satis-
fied, we call the gas quantum gas. When e® > 1, the system obeys the
semi-classical distribution Eq. (10.177). The partition function z of single
particle for the ideal gas is given by

r=Y gae e, (11.2)
Eq

where €, is the energy eigenvalues determined from the Schrédinger equa-
tion of single particle. For a gas, the independent particles are molecules
which consist of atoms. We can divide the energy of the molecules into the
part of mass center and the part of internal degrees of freedom, which is
similar to what we have done when we treat the Schrédinger equation of
the hydrogen atom in quantum mechanics. When the Hamiltonian H. of
mass center and the Hamiltonian H; of internal degrees of freedom com-
mute, they share the same eigenstates described by the same set of quantum
numbers. We denote the energy of mass center as ¢. with the degeneracy
gc and the energy of internal degrees of freedom as ¢; with the degeneracy
g;- We have

€a=¢c+¢& and g, =g.+g. (11.3)

301
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Inserting Eq. (11.3) into Eq. (11.2), we have
2(8,V) = Zgae-ﬁsa
Ea

= che—ﬂsc Zgie—ﬂsi
€ €

<]

= 2.(8,V)z:(B) (11.4)

with
2(B.V) = gee e, (11.5a)
z(8) =Y gie™ P, (11.5b)

Eq. (11.4) shows that the partition function z(8,V) for a semi-classical
system can be divided into two parts, z.(3,V) and z;(3), which can be
evaluated independently.
The particle number N is related to the partition function z through
the following relation
N=>"n,
€q

= Zgae—a~ﬁsa
€a

=e *2(3, V). (11.6)
When N is known, Eq. (11.6) can be used to determine a.
z
=In—. 11.7
a=ln—+ (11.7)
The average energy E (also called the internal energy) is given by
dlnZ dlnz
E 28 N a8 + (11.8)
with
Oln z,
E,=— < 11.9
NI (11.92)
01n z;
L NI 11.9b
Bi= N (11.9b)

The total average energy is the sum of the energy of mass center and the
energy of internal degrees of freedom.
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The equation of state is determined by

_laan_Nalnz N dlnz.

P=5v =3 v ~ 5 v

(11.10)

Eq. (11.10) shows that the equation of state of an ideal gas is independent
of internal degrees of freedom. Thus all the equations of state of ideal gases
are same, independent of the structures of molecules.

The entropy of the ideal gas is given by

InZ
S:kB<InZ—68n )

0B
Olnz
=kBN(Inz—6 82 )—kBlnN!
=S, +85; (11.11)
with
d1n z,
S.=kgN lnzc—ﬁ—a—ﬁ—— ~ Nkg(1 —InN), (11.12a)
In 2;
S; = kgN (Inzi - 6?—5;%) . (11.12b)

We have included the term In V! into the entropy of mass center because
the factor N! comes from the identical properties of molecules. When the
molecules do not have the internal degrees of freedom, we still have the
factor NV!.

11.1.1  Partition function for mass center motion

The Hamiltonian for the mass center motion has the form

1 2 2 2
e = U .

with
o0 outside container

U= . (11.14)
0 inside container
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Using Eq. (10.189), we have
Ze = che_ﬁ‘_“
Ec

= Tre‘ﬂﬁc

_/dquspe—BHc
= | Gniy?

= h_3/dxdydze_ﬁU / dpgdpydp. exp (——ﬁ—(pg +p§ +p§)>

2m
= h_3V/4wp2dpexp (—ﬁp2>
2m

= h™3V (2rmkpT)?. (11.15)

11.1.2 Ideal gas of single-atom molecules

The simplest molecule is the single-atom molecule in which there is only
one atom. Since the excitation energy of electrons is in order of eV or
10* K, We can neglect the excitation of electrons and consider the atom
as one single particle. Thus there is no internal degree of freedom for the
single-atom molecules. The partition function z of single particle for the
ideal gas of single-atom molecules is equal to the partition function for mass
center. We have

2=z, = K3V (2rmkpT)?%. (11.16)
Then
3
o_ 2 _V [2mmkpT\?
=5 = N< 2 ) , (11.17)

We can estimate e using Eq. (11.17). In the condition of room temperature
and one atmospheric pressure, e® ~ 10° > 1. Therefore, the ordinary gas
can be approximated as an ideal gas.

Inserting Eq. (11.16) into Eq. (11.8), we have

olnz 3
FE=-N ¢ = Nk 11.18
85 2N BT7 ( )

which is the same as that given by the equipartition theorem. Then the
heat capacity is given by

oF 3
= | — = —Nkg. 11.19
Cy (8T>V 5 ks ( )
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The equation of state of the ideal gas has the form

NOlnz. NkgT
=— = . 11.2
B8 oV |4 ( 0)
It should be noted that Eq. (11.20) is also applicable for the ideal gases of
multi-atom molecules.

The entropy is given by

In z.
S = Nkg (lnzc —533“; ) + Nkg(1—1nN)
3
V [ 2rmkgT \?* 5

Eq. (11.21) is called the Sackur-Tetrode equation. Eq. (11.21) shows that S
is an externsive quantity. It should be noted that the term — In N! is crucial
for the entropy S to be an extensive quantity. The factor N! results from
the indistinguishability of the particles. Before quantum mechanics was
established, the particles were not considered as indistinguishable, which
gives an entropy formula without the term —InN!. Without the term
—In N!, the entropy is not an extensive quantity. This is so-called Gibbs’s
paradox.
The free energy can be calculated by

1% ( 27rkaT>%

F=E-TS=-NksTln| % | =5 — NkgT, (11.22)

which gives the chemical potential

oF

V [/ 2rmkpT) ?
N\ R

11.1.3 Internal degrees of freedom

Now we consider the contribution from the internal degrees of freedom.
The partition function for the internal degrees of freedom is given by

zi(B) =) gie™Pe, (11.24)

We can image a macroscopic system as a huge molecule and then con-
sider that there are M (M > 1) huge molecules to form an ideal gas. The
thermodynamic properties of the system is determined by 2; in Eq. ( 11.24).
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Physically, this is equivalent to the ensemble method. The ideal gas con-
sisted of the macroscopic systems can be considered as an canonical ensem-
ble. For these systems, z; is then the canonical partition function of the
system.

z; can only be evaluated analytically in a few simple cases. In the fol-
lowing, we will deal with the two-atom molecules as an example. If we
consider atoms as particles without internal degrees of freedom, each two-
atom molecule has 3 4+ 3 = 6 degrees of freedom with three for mass center
motion, two for rotations and one for vibration. Since the Hamiltonian op-
erator for rotation commutes with the Hamiltonian operator for vibration,
we have

g =&rt &y, (11.25)
where &, is the eigenvalue of energy for rotation and £, is the eigenvalue

of energy for vibration. The total degeneracy g; for the internal degrees of
freedom is given by

9i = grGu, (11.26)
where g, is the degeneracy for ¢, and g, is the degeneracy for £,. Then
Eq. (11.24) becomes

z=y giePe
€i

=D gre Y g
Er =Y

= Zr(ﬁ)zv(ﬁ) (11.27)

with
z(B) = Zgre_ﬁ“, (11.28a)
2(B) =) ge P, (11.28b)

11.1.3.1 Vibration

The Hamiltonian operator for the vibration of the molecules is given by
Eq. (9.7)

S P
H= —2—V + g, (11.29)
m
where m = 7472 is the reduced mass with m; (7 = 1,2) the mass of the

atoms. w is the vibration frequency. The eigenvalues of the Hamiltonian
operator for vibration are given by Eq. (9.16)

Ev(n)zhw(n+%), n=0,1,2,--- (11.30)
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with
gn = 1. (11.31)

The partition function for vibration reads

n

o0
- e—%Bhw z :e—,@hwn
n=0

Fuw 1
—exp<—2k3T> o (11.32)
PP\ kT

Using the partition function given by Eq. (11.32), the average energy of
vibration can be evaluated as follows

Oln z,
v = —-N
E o8
exp <_L‘” )
1 T
N |1+ ks (11.33)

hw
1-— €exXp (—'kB—T)

In Eq. (11.33), the first term is the zero point energy and the second term
is the excitation energy. Using Eq. (11.33), we obtain the heat capacity

ok, hw
= =N — ], .
Cv ( a7 )v kge (kBT) : (11.34)

where £(z) is the Finstein function defined by

£(z) = [T%' (11.35)

In the low temperature limit % > 1, Eq. (11.34) becomes

hw \* hw

Eq. (11.36) shows that the heat capacity of vibration approaches to zero
when T — 0. This results from the quantum effect. We introduce a char-
acteristic temperature 8, defined by

}w —
kb,

1, (11.37)
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which gives

0, = e (11.38)
When T « 8, which is the low temperature region, the vibration degree
of freedom is frozen and the heat capacity is small. When T > §,, which
is the high temperature region, the energy becomes

1

Bhw
This result agrees with the equipartition theorem. The heat capacity Cy
is then equal to Nkp.

1
E, ~Nﬁw< ) = NkgT. (11.39)

11.1.3.2 Rotation

For a two-atom molecule, the bonding length of the two atoms is approxi-
mated to be constant. The small variation of the distance between the two
atoms is described by vibration. The Hamiltonian of the two atoms is given
by
2 2
H——Q% ——Q%QVZ+U(r), (11.40)
where m; (i = 1,2) are the masses of the two atoms. U(r) is the inter-
action potential of the two atoms, which depends on the distance between
the atoms. We introduce the mass center coordinates X and relative coor-
dinates x
=X A maXe e - (11.41)
mi + Ma

In terms of X and x, the Hamiltonian operator Eq. (11.41) is expressed as

B2 9 h? 9
H————V ———V + U(r), (11.42)
where m = T—n—l;—z— is the reduced mass and M = m; +ms is the total mass.
Expressing the solution in the separable product
U(x, X) = (x)®(X). (11.43)
We have
h?
___v2¢ +U(r)y = By (11.44)
and
52

~53f Vx® = (B - B)2. (11.45)
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Thus H, = —;—;,vg{ is the Hamiltonian operator of mass center, while
ﬁ2
i =——V24U 11.4
H 5 Vx T U) (11.46)

is the Hamiltonian operator of internal degrees of freedom. In the spherical
coordinates, H; has the form

RT1d[,d
Ho=--—li_2(2%
‘ 2m {7‘2 dr (r dr)

1 9 %] 1 0
= (sinf— | + ——r
* r25in § H6 (bm 80) * r2sin? ¢ 8902} +Um

2 n_,
_L_» 11.
5] var-f-U(r) (11.47)
with
1 9 0 1 9
2 _ — | sinf— - .
L S50 (blIl 5‘9) + 20052 (11.48)
and
I =mr?, (11.49)

where T is the rotation inertial. The first term in H; is the Hamiltonian
operator for rotation and the last two terms form the Hamiltonian operator
for vibration. From Eq. (9.80), the eigenvalue of energy of rotation is given
by
ﬁ2
gr=—I(l+1), 1=0,1,2,-- (11.53)
21
'In the following, we give a note to show I = mr?. We introduce the position vectors
relative to the mass center r; and rg.

mi1X] + maX mo{X1 — X mar
I LS| 2X2 _ 2(x1 2):_ 2 (11.50)
my1 +m2 m1 +m2 m1 + ma
and
mi1X1 + Mm2X mi(Xz2 — X mir
l‘2:X2———1 : 2:——_1( 2 1):_—1 . (11.51)
mi1 + m2 mi1 + m2 mi1 -+ mag

The rotation inertial 7 is defined by I =}, mirf. Using the above relations, we have

2
I = E ™m;rT}
k3

2
mimsy 7'2 m%mg 1‘2
(m1 +ma)? (m1 4 m2)?
mimsz
m1 +m2

=mr?. (11.52)
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with the degeneracy
gr =20+ 1. (11.54)

When the two atoms in the molecules are the same kind, we need to
consider the effect of identical particles, which leads to the limitation on
the values of I. We will consider the simple case that the two atoms in the
molecules are different. The partition function for rotation has the form

2, = f:@l + 1) exp [—%—Q-Z(l + 1)} . (11.55)

1=0
We define a characteristic temperature for rotation by

h2
6, = %1;%' (11.56)

In terms of 6,, Eq. (11.55) becomes

ol 2
Zp = Z(2l + 1) exp {—ii[l(l + 1)}
1=0

=S @+ 1exp {_e_z(z“)} (11.57)
=0

At the high temperature T > 8,., we can use the Euler-Maclaurin summa-
tion formula

/ dif(l) + f +Z BQ’“ FEDO).  (11.58)

to evaluate the summation in Eq. (11.57). For the case of f(o0) = f'(00) =
-+ =0, B, is the first Bernoulli numbers. Thus we have

e 2
2 = / di(20 + 1) exp [—i_i.ifl(l + 1)} + —;- +0 (%)
/dwem(———m>+%+o(%§) c=11+1)
1 0,
+§+O<E—'—>

(11.59)

~
~

\ﬂ S R

Using z, = +-, the energy contributed by the rotational degrees of freedom
can be evaluated We have
Eo= N2 T (11.60)

9
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Eq. (11.60) can also be obtained by the equipartition theorem. According
to the energy equipartition theorem, there are two rotational degrees of
freedom for one molecule and each contributes %kBT to the internal energy.
The total energy is then NkgT. The heat capacity at constant volume reads

OE,
= = Nkp. 1.61
o= (), - e

At the low temperature T' < 6., only the smallest values of [ contribute in
Eq. (11.57). Then we have

20, 6,
zr =1+ 3exp -7 + O | exp -7/ (11.62)

The energy and the heat capacity are given by

0, 26,
E. = 6NkBTT exp <_T> + e (11.63a)
6. \* 26,
Cy = 12Nkp (7) exp (—T) +ee (11.63b)

Eq. (11.63) shows that the rotational degrees of freedom are not thermally
excited in the low temperature region and the rotational contribution to
the internal energy is exponentially small.

11.2 Weakly degenerate quantum gas

The ideal gases satisfy the non-degenerate condition
3
vV 27ka'BT z
= — | —— 1. .
e v ( % ) > (11.64)

If the condition Eq. (11.64) is not satisfied, the gas is called the degener-
ate gas or quantum gas. We use the thermal de Broglie wavelength (see

Eq. (10.242))
h
= — 11.6
g (2mmkpT)z (11.65)

to characterize the degenerate level of a gas. Using Ar, Eq. (11.64) can be

rewritten as
1\3 h
- >SApr=—— 11.66
(n) 7 CrmksT)? (11.66)
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Eq. (11.66) shows that when the average distance of particles is larger
than the thermal de Broglie wave length of particles, the particles can
be considered as the classical particles. Otherwise, the waves of particles
interweaves and the quantum correlation plays role. When e~ = nA3. < 1,
the quantum correlation is weak. We call this case the weakly degenerate
quantum gas. When e~® = nA3. > 1, it is the strong degenerate case. In
the weakly degenerate case, e ® = nA3. < 1 is a small parameter, we can
use the expansion method to calculate the thermodynamic quantities.

We consider the gas without internal degrees of freedom. The grand
partition function is given by

In={a,5,V) ==+ Zgi In(1 4 e~ A%)
i
= j:/ deg.g(e) In(1 £ e~>7¢)
0 o0
=+CV / dey/ZIn(1 + e~27F°) (11.67)
0
with C' = 9327r(2m)%h“3, where g; = 25 + 1 is the spin degeneracy factor
for particles with spin s. The upper sign ‘+’ corresponds to the Fermi gas

and the lower sign ‘—’ is for the Bose gas. Since e~® < 1, we use the Taylor
expansion formula

In(l+z)==+ ”—”—n. 11.68
n(l4a) =3 (7Y (11.68)

Then we have

/ deﬁln(lie”“_ﬁf :i:z ) 11/ ds\/Ee_”(‘“Lﬁf)

0
R 2
== ¥ ”_l—e_”“/ dr2x?eP"
;( e |

= n-—- ! —no T 1
= T s
w1
—i\/—wf( o) (11.69)

=Y (@ tnmEe e (11.70)
n=1

with
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Thus Eq. (11.67) becomes

Nz

InE(a, 8, V) = OV Y%=671f(a) = VAT ./ (a). (11.71)
« can be determined by solving the following equation.
N:—aln: :—V/\}sgsf’(a). (11.72)
Ja

Eq. (11.72) can be rewritten as

oG

ln)\3 = 5_:(:;)"‘171_%(2‘"CY =e *(17F 2 e 4. ), (11.73)

s n=1

where n = % Eq. (11.73) can be solved by the iteration method, which
gives

1 . 1
e = (1277 —nAd +--0) (11.74)
s gs
or
A3 1
a:_lnnT¢2—%—nA%+-~. (11.75)
s s

Inserting Eq. (11.74) into Eq. (11.70), we have
fl@)=e (1 F27 5 +.1)
1
_ gln)\%(lif%—n)\%—l—---). (11.76)

8

Now we can evaluate the thermodynamic quantities using the grand
partition function given by Eq. (11.71). The average energy has the form

B 8lnE__ln:81nlnE_§lnE
Y T 08 28
s 1
= gnkBT(l +272—nX\3 4.0, (11.77)

)

The first term corresponds to the semi-classical approximation, which gives
the energy of the ideal gas. The second term is contributed by the quan-
tum effect. The quantum effect contributes a positive value to the internal
energy for the Fermi gas due to the Pauli exclusion principle, while the con-
tribution of quantum effect is negative for the Bose gas. Using Eq. (11.77),
the heat capacity can be obtained.

OoF 3 z 1
Cv = =2 1 7 03 ) .
v (fT)V 2nk3( F2 2gsnAT+ ) (11.78)
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Other thermodynamic quantities can be evaluated similarly. The equa-
tion of state has the form

P_l@lnE_lnE_gE
T B OV T BV 3V

= nkpT <1i —%lm%+--.>. (11.79)

5

The effect of the Pauli exclusion principle for the Fermi gas is equivalent
to an repulsive force and contributes a positive pressure modification. The
effect of quantum correlation for the Bose gas is equivalent to an attractive

force and contributes a negative pressure modification. The entropy is given
by

S = kg (mE_aaln: 5111:)

dar -8 o8

= kg (gﬁE + Noz)

=nkBTKng/\s% +g> i2_%in/\g’~+-~-]. (11.80)

The lower temperature T, the larger mass m and the higher density
n give larger nA\} and thus stronger quantum effect. For the Bose gas,
Eq. (11.78) shows that the heat capacity Cy increases with the decrease of
temperature 7. Since Cy should become zero as temperature approaches
zero, we would expect that there are other mechanism making Cy decrease.
Thus there should be a peak in the curve of Cy as a function of T. We
will show that there is a phase transition for the Bose gas in the follow-
ing section. The peak of Cy corresponds to the transition point. The
heat capacity will decrease with the decrease of temperature in the strong
degenerate region below the transition temperature.

11.3 Bose gas

11.3.1 Bose-FEinstein condensation

Now we consider the strongly degenerate case nA3 > 1 for the Bose
gas. In this case, the quantum correlation effect is strong. According to
Eq. (10.166), we have

NZZ’I_'M:Z@—Q:%Z—_—:[ (1181)

1
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Using Eq. (10.118), Eq. (11.81) becomes
_ gi
N—Z—eﬁ(fl‘l‘) — (11.82)

We can set g9 = 0, which means that ¢ is the reference energy. Since
n; = 0, we have

g —pu >0, (11.83)
which gives
w<0. (11.84)

With the decrease of temperature 7', the chemical potential u has to in-
crease in order to maintain a constant N. Thus
Ou
T
According to Eq. (11.84), u has an upper limit go < 0. For simplicity, we
consider the Bose gas composed of single-atom molecules. Then

gs/O deeﬂ(L (11.86)

<0, (11.85)

=
l
/’\
[\]
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(&1

e—p) _1°

Using Eq. (11.86), we have

o [ Ve
a_ﬂ 8T Jy eBle—p) —1
oT } a °Cd Ve

5/; 0 Eeﬁ(e_#) —_ 1

_/oodge L ) Ve
0

K (eBe—m —1)2

o
/ de 1 eﬂ(e—p)_\/g_
0 kBT (eﬁ(s_l‘) — 1)2

<0. (11.87)

The grand partition function is given by

= — Zgz ln(l — 6;5(51‘—“))

I3

m

In

Il

—C’V/ dey/EIn(1 — e~ BlE—m)y, (11.88)
0

where C = 9527r(2m)%h‘3. We introduce the fugacity

g =Pt (11.89)
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When p =0, g = 1. Then Eq. (11.88) becomes

In
=
=

I

o 1
—CV/ dez? In(1 — qe‘ﬂ’s)

2
§CVﬂ/ = BE —

2
= g(ngg s (q)F (2) (11.90)
with
1 [ zrld
Qn(q)sr(n)/o q”flez _””1, (11.91)

where I'(n) is the Gamma function. Expanding the integrand in Eq. (11.91)
gives

T'(n 1—ge =
1 — oo
_ k n—1_—kz
= — q dzz™ e
I'(n) ; 0
1 - qk > n—1
- 1 -1,-y
T(n) Z Ln /0 dyy™ e
k=1
© K
q
= . (11.92)
k=1 k

When g = 1, G, (q) becomes the Riemann Zeta function ((n),
— 1
Gn(1) =) =) (n>1). (11.93)
k=1
According to Eq. (11.92), G,(q) increases with the increase of ¢, which
has an upper limit at ¢,, = 1 or correspondingly p = 0. Thus the right
hand of Eq. (11.86) is smaller than Np,q, given by

3
2rmksT\ ¢
Noaz = Vg <ﬂ;.2’23_) C@) Vgsc( )chT%. (11.94)

With the decrease of temperature T, N,,. becomes smaller than N below a
certain temperature 7,.. This situation is caused by the using of Eq. (10.190)
when we replace the summation with integration. The contribution from
the ground state e = 0 does not appear in the integration since g(0) = 0.
For bosons, there is no limitation on the number of particles in a quantum
state. The lowest state £ = 0 can be occupied by O(N) particles. In this
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case, the contribution from the ground state can not be neglected. We
should express explicitly the term that accounts for the contribution from
the state € = 0(k = 0). Thus Eq. (11.86) should be replaced by

90 271’V(Zm gs/ de—*\/g ]

T e Bu_1 hB (e=p) — 1
_q90 | Vgs
=i ;"% 93(4)
= Ny + Neso (11.95)
with v
Nosg = /\—gsg%(q) (11.96)
T
and .
go
Nog = ——. 11.
=1, (11.97)

N¢wg is the number of particle in the excited states and Ny is the number
of particles in the ground state. When g — 0, the first term turns to be
important. The number of particles in the ground state becomes O(N).
Therefore, with the decrease of temperature 7', u becomes zero at a certain
temperature T,. This temperature T, is determined by

27V -1
N = N (2m)? / deve [exp (kBT > - 1}
2rv / dJ? N
0

njes

= 13 (Qm) gs(kBT) T _ ]

- 2}7:V(2m) gu(kpTe)iT (3) ‘ <g>

27TV 3
= Tl m) g ksT) ! Y

IS

x 2.612, (11.98)

which gives

2
h? N 3
o= 2rmkp (2.61293V> (11.99)
As T — T, g = 0. The particle number on the ground state ¢y = 0

increases significantly. At T,, u reaches its upper limit of zero and remains
zero for the temperature below T,.. Therefore, when T < T,, we have
21V

2 (om)? / dsﬁ{exp(k T>_1r

27T'V 3
3 (2m) gskBTZ/ dm _1

=N<%)7 (11.100)

NE>0 =
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and

(11.101)

3

T 2
N0=N—N5>0=N[1—<——>
T:

T. is called the critical temperature. Above T,, u > 0. Below T, the
chemical potential p = 0 and all orders of its derivatives are zero. Thus
T = T, is a point with singularity, which means that there is a phase
transition at T = T,. This phase transition is called the Bose-FEinstein
condensation (BEC). It can be seen that the phase transition is caused
by the condensation on the ground state or k = 0 state. This transition is
important for the properties of macroscopic systems at the low temperature.
It transforms a classical phase of a macroscopic system into a quantum
phase which we call the macroscopic quantum state. This phase transition
mechanism is also responsible for the superfluidity of liquid *He and 3He,
and superconductivity in solids.

11.3.2 Thermodynamic properties of BEC

After the Bose-Einstein condensation, u = 0, which gives

G=puN=E+PV-5T=0. (11.102)
First we consider the contribution of the ground state ¢ = 0. E = 0 and
S =0 for the ground state. According to Eq. (11.102), we have

ST-E
\4

Thus we can neglect the contributions of the ground state in the calculations
of E, P and S§. The ¢ = 0 state only plays the role as a particle source.
Next we consider the contribution of the excited states.

InZ|.s0 = —CV/ de/eln(1 — e=%9)

0

P= =0. (11.103)

3

2 > £2
=Zov de——
3 5/0 CePe 1
20vet [T a ik
=z x
3 0 e % —1
= %CV&%%—? x 1.341. (11.104)

Thus we have
3 In E‘5>()

B=-—p

= 0V5—%§%E- % 1.341 x m3g,VT%  (11.105)
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(5).

_ gcvkga-%?’f x 1.341

and

Cy

TN}
= 1.926Nkg (T) : (11.106)

Eq. (11.106) shows that Cy — 0 as T — 0.
Other physical quantities can be calculated similarly. We find
161n5|5>0 _ 205‘% 3;/?

Pzﬁ oV

x1.341 ccm?g, T2 (11.107)

and

S =k(lnZ|.50 + aN + BE)

3T
4

- gcch/a—% % 1.341

xm?g,VT?. (11.108)

It can be seen that P is independent of V due to the existence of the ¢ = 0
state as a particle source.

11.4 Photon gas

Now we study the photon gas. An equilibrium photon gas is also called
the black body. The radiation emitted from a small opening on a cavity
can be approximately considered as a black body radiation. Photons are
massless spin-1 vector bosons. There are almost no interaction between
photons. Thus we can use the Bose distribution for independent particles
to calculate the properties of the photon gas. Since photons do not have
mass, the particle number of the photon gas is not a constant. According
to Egs. (10.93) and (10.98), the equilibrium condition for a photon gas with
constant temperature T and volume V is

S N

Thus the chemical potential of an equilibrium photon gas is zero, which
gives ¢ = —fp = 0. The Bose distribution for photon gas becomes

_ &
Coefe -1’

0. (11.109)

ni (11.110)
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where g; = 2 because photons have two spin components as shown by
Eq. (2.529). The energy-momentum relation for photons is given by

€=cp (11.111)
with
h

p="hk=1. (11.112)

Since A = £, we have
e = hv. (11.113)

The photon number in the momentum interval p — p + dp is
gsV 1 2

dp = ->—7 ——= 11.114
n(p)dp (onh)f efer —1 7P P (11.114)

where g; = 2 is the spin degeneracy of photons. We can express Eq. (11.114)
in terms of frequency v. The photon number in the interval v — v + dv is
given by

n{v)dv

dmgsV 5, 1
=—5 v eﬁhv_1dl/‘ (11.115)

Thus the energy in the interval v — v 4 dv is given by

1
Uv)dv = n(v)hvdy = 87thVSC_3MdV' (11.116)

Eq. (11.116) is called Planck’s law for black body radiation.
When % < 1, Eq. (11.116) becomes

U(v)dv = 87V 12kgTe 3dv. (11.117)

Eq. (11.117) is called the Rayleigh-Jeans law, which is the classical version

of the Planck law. When k};"T > 1, Eq. (11.116) becomes

U(v)dv = 87V hrdc 3= du. (11.118)

Eq. (11.118) is called Wien’s law, which is the quantum version of the
Planck law.

The total energy of the radiation field of the photon gas is calculated
by the integration over frequency v

o 0 i 1
U= / U(v)dv = / 8V hie™? i —dv = bWT*  (11.119)
0 0 ePw — 1

with

b (11.120)

_ 87kp [ . x®  8r%kg
EE: et —1  15h3¢3°
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Then the energy density u has the form

U
u=g; = bT*, (11.121)
which gives the specific heat capacity per unit volume
C, = 32ks 1 (11.122)
Y 1533 '

The specific heat does not approaches to a constant as T — oo because the
photon number increases with the increase of temperature.

Using Eq. (11.116), we can also calculate the radiation escaped through
an opening of an unit area on a black body cavity per unit time. For an
opening with a unit area oriented in n direction, the radiation flux density
of the photons with frequency v through the opening is given by

j:/U(u) k _dQ

vV k| Mar
Q
:/U‘(fy)ccosﬁi—ﬂ-
_ /2 U(u)ccosg%rsmedﬁ
0 4
1 Uv)
= o (11.123)

In Eq. (11.123), the angular integration in the first line extends only over a
hemisphere. Integrating over the frequency gives the total radiation flux J.

1
J= /jdu = qou= oT* (11.124)
with -
2m°ky
o=t (11.125)

Eq. (11.124) is called the Stefan-Boltzmann law and o is the Stefan’s
constant.

In order to evaluate other thermodynamic quantities, we calculate the
grand partition function

In=Z = —% /d3pgs In(1 — e=7%)
87V
= _/ __7r3 2dpIn(1 — e~ #¢)
0 h

v [ .
:_W/o dzzIn{l — e™%)

&V /°° z3
= dz
33333 J, e? —1
B 8oV
 45h3c3B3°

(11.126)
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The equation of state is given by

18ln= 8md b4
P= 55 = s = 57 (11.127)

and the entropy has the form

Oln= 4
= E-f—=)= Z=-bVT3. 11.12
S =kp(ln B o8 )=4kpln 3bV ( 8)
Then we obtain the Helmholtz free energy
1 875V 1
F=U-TS8=-U=—-——"— = -2bVT%, 11.129
3 45h3c3 84 3 ( )
which gives
G=F+ PV =0. (11.130)

Since G = uN, we have y = 0. This is consistent with Eq. (11.109).

11.5 Fermi gas

Now we discuss the degenerate Fermi gas such as the electron gas in met-
als. We neglect the interaction between fermions and treat the gas as an
independent particle system. The grand partition function for the Fermi
gas is given by

InZ= / deg(e) In(1 + e~27%%) (11.131)
0
with
g(e) = CVgeet. (11.132)
Integrating by parts, Eq. (11.131) becomes

2 oo
InE = gCVgs / de? In(1 + e~ F%)
0

3

2 o €2
=20V, A 11.133
5CVs0 /0 R ( )
o in Eq. (11.133) can be determined by
o 1
N = —
/0 dsQ(E) eat+pBe +1

oo E%
= Cng/O dsm. (11134)
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The integrals in Eqgs. (11.133) and (11.134) have the similar form. We write
them as

= ocd Lf(). 11.13
Q /0 val f(z) (11.135)
with
1
f(.T) = m. (11136)

We use ¢ = e~ to replace e~ ® in Eq. (11.136). ¢ is the fugacity. In the
case of the weakly degenerate quantum gas, we have used the following

expansion
oC { —Bz
z'qe
= d —_—
Qu(q) /(; I1+q€_ﬁz

1 oC ! —x
- L / a2
6+1 0 1+qe—z

oG
_ { k 1 k —kz
= [3” dzzx E
‘ k=1

1 k 1 q ]
= 51+1 JAESY dm €
k:l

> k
k 1 4
=51+1 (I+1) E P (11.137)

In the derivation of the last line of Eq. (11.137), the definition of the I'-
function is used. The expansion Eq. (11.137) can only be used when g = e*
is small. In the low temperature, Sy is large, we consider another kind of
expansion. We first integrate by parts

8

_ 1 l+1 - > l+1£
Q= e )[0 S A
1 df
- d +1%
I+1), ©° 4
=/ dev(e) f'(e) (11.138)
0
with
1
v(e) = ~—ettt, (11.139)
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We expand the function v(e) at e = p

© ) (y .
v(e) = Z*‘“TLT(_)(E_“) . (11.140)
n=0
Inserting the expansion Eq. (11.140) into Eq. (11.138), we have
o) [ n
Ql:;T/O def'(e)(e — p)". (11.141)
We introduce n = (e — p). Then
1
= 11.142
£e) = = (11142)
and
f(e) = ——2 (11.143)
o T en+ )2 '
Thus Eq. (11.141) becomes
oo n)
= 11.144
Qi 2 0 p ,3 / Uy " ( )

At low temperature, Su > 1. We neglect the exponentially small terms
and obtain

> (n)( o0 n
IR A (7). € n
a=-3 = /_ﬁ#dn(en+l)2n

N -i U(n)(“)ﬁ«n /oo i el n"
n! _ (en +1)?

n=0 o0
@) knT\*
v () oo B
= —u(p) — =58 (T ) (11.145)
The expansion in Eq. (11.145) is called the Sommerfeld expansion.
The chemical potential p in Eq. (11.145) is determined by
N = CVngl
kpT kgT\*
= —CVgS 1+ (L> 10 <—B-—> . (11.146)
8 \ pu jZ

w(T) can be evaluated using the iteration method. The zero order term is
©(0) which is the chemical potential at 7' = 0. Let T’ = 0 in Eq. (11.146),
we have

= -CVgsu( 0)2. (11.147)
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Solving 1£(0) in Eq. (11.147) gives

3N \F
u(0) = (QCVgS) =cp. (11.148)

We have introduced £r to denote u(0) because the chemical potential at
zero temperature is also called the Fermi energy. At zero temperature,
the energy levels are filled with one fermion occupying one state until all
particles are exhausted. According to Eq. (10.171), the boundary between
the occupied energy and unoccupied energy at zero temperature is the
Fermi energy. In terms of u(0), Eq. (11.146) is expressed as

2 a 7 (kT z kpT !
FH { ) " L
Solving p gives
71'2 ’CBT 2 ’CBT 4
= - ol =
g EF{I 12<ap)+ (u)

Using the Sommerfeld expansion, we can evaluate the thermodynamic
quantities of the Fermi gas. The energy U of the Fermi gas is given by

}. (11.149)

}. (11.150)

_8lnE
B

= CVgs/ds

3

=—In=

26

P : 572 [ kgT\°
:gCVgsuE{H—W—(—’Z—) +0

U=
3

£2

eotfe ]

8

(%)ﬂ } (11.151)
()}

Inserting Eq. (11.150) into Eq. (11.151), we have

2 5 2 (kpT\*
U= 3CVgssfi{l+51L2 (EB_> +0

Ep
572 [ kpT\* ksT\*
=UO{1+i(L> +0O (—B—) } (11.152)
12 EF EF

with Uy = %N er. Up is the ground state energy of the Fermi gas. The
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equation of state for the Fermi gas is given by
18ln=
P=-
8 ov

4 5 572 (kgT\>
= —Cgeuz {1+ | 2=
15Cg u2{ +3 ( P > +0

2N 572 (kgT\>
= 14—
5V€F{ + D <5F> +0

2U
== (11.153)
Eq. (11.153) shows that at zero temperature, there is a nonzero pressure
20Uy
Py=—. 11.
b= 3y (11.154)
The entropy is given by
S =kg(In=+aN +40)
4 : 5% (ksT\’ ksT\"
= —kpOVgBut 0+ 2 (B2 vo|( -
15 4 n 7
2 1 kpT\?
=T ovgerkiT{1+0 {222 1 L. (11.155)
3 EF
Eq. (11.155) shows that S — 0 as T — 0. The specific heat capacity is
given by
ou
Cy =|—
Y (6T)V
51 k ksT\’
—Ud T 2By (B2
6 e EF
2 kgT kpT\”
=NkB7T——B—{1+(9 (J’L) } (11.156)
2 ep EF

Eq. (11.156) shows that the specific heat capacity of the Fermi gas at low
temperature is a linear function of temperature T'. We introduce a charac-
teristic temperature Tr defined by

Tr= £, (11.157)

Tr is called the Fermi temperature. When T > T, the Fermi gas becomes
the ideal gas. Otherwise, it is a quantum gas. In terms of Tr, Eq. (11.156)

can be expressed as
T\ 2
Tr

w2 T
= —Nkp—<1+0
Cy 5 BTF{ +

}. (11.158)
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For the electrons in metals, er ~ 10%V. Thus C,, of electron gas in metals
is small as compared with that contributed from the vibration of atoms in
the room temperature.






Chapter 12

General Relativity

12.1 Classical energy-momentum tensor

In the Einstein field equations Eq. (3.26), the metric tensor g, is deter-
mined by the energy-momentum tensor 7#. Now we consider the energy-
momentum tensor T/ of a classical system. The conservation of energy-
momentum in the local flat metric gives

ory

= 0. .
o (12.1)
The energy-momentum vector is defined by
1
Pr=C /T’“’dsy. (12.2)
c
Eq. (12.1) leads
oTk
Hie — v —
fTU ds, = / e dv = 0. (12.3)

We consider the integration over hyper plane f ds,, as an integration over
the hyper plane 2° = const. § T#ds, is the difference between the integrals
lef‘ds# taken over two such hyper planes. We have P* = %fT‘“’dsl, =
const. and thus P* is conserved.

T% is the energy density and we denote it as W = T%. We can separate
the conservation equations into the space and time parts.

Lor o _,, 12.4
c ot " Bat (12.42)
197 8T
S+ — =0 .
- + P (12.4b)
Integrating the first equation over a volume V in space, we have
10 T
== [ 1%V / ~dV = 0. .
P / + 5 0 (12.5)

329



330 Principles of Physics

Using Gauss’s theorem, we obtain

a 00 _ 0¢
5 /T av = ——c?{T ds;, (12.6)

where the integral on the right is taken over the surface surrounding the
volume V. Since the expression on the left is the change rate of the energy
contained in the volume V, the expression on the right is the amount of
energy transferred across the boundary of the volume V. We define a vector

S,
S = {cT", 192, T3}, (12.7)

From Eq. (12.6), we can see that S is the amount of energy passing though
unit surface in unit time. Thus S is called the fluz density of energy.

Eq. (12.2) shows that ;Sg is the momentum density. Thus the flux density
of energy is equal to the momentum density multiplied by ¢?. Now we
consider the second equation in Eq. (12.4). We have

d 1, 4 aTY
8—t/zT AV = — [ ——=dV
= — ?{Tijdsi. (12.8)

The term on the left is the change of the momentum of the system in V' per
unit time. Therefore, § 7%/ds; is the momentum leaving the system in V' per
unit time. The components T% of the energy-momentum tensor constitute
the three-dimensional tensor of momentum flux density, which we denote
as —0,j. 0y; is also called the stress tensor, which has the meaning that
the component oy; is the amount of -component of the momentum passing
though unit surface perpendicular to the 27 axis per unit time (the direction
entering the system is taken as positive) according to Eq. (12.8). Thus T#¥
can be expressed as the following matrix

w S 5 S
Sw C & C
—C— —Oze —Ozy —Ogz
TH = S, . (12.9)
e vz Ty "0z
S,

— —O0zg —Ozy —0zz
&

The flux of momentum through the surface element ds is the force acting
on the surface element according to Newton’s law (Eq. (8.57)). Thus o;;ds;
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is the i-component of the force acting on the surface element. Now we use
the reference system in which the elements of volume of the system are
at rest. For an equilibrium hydrodynamic system, the pressure P is equal
everywhere. The pressure P has the meaning of being the force acting on
unit surface element. We have

O'Z'dej = —Pde. (1210)
Thus,
T = —P()ij. (1211)

We denote T at local rest frame by ¢. p = % is defined as the mass

density of the system, i.e. the mass per unit volume. It should be noted
that the volume element here is the one in the reference frame in which the
corresponding portion of body is at rest. We call such volume as proper
volume. Thus in the reference frame that the system is at rest, the energy-
momentum tensor has the form
e000
y 0PO0O
T = ooprol (12.12)
000P

We can use tensor transformation to obtain the expression for the
energy-momentum tensor in an arbitrary reference frame. We introduce
the four-velocity defined by Eq. (A.34) in the Appendix A to describe the
macroscopic motion of a body element. In the rest frame, u* = (c,0).
Generally,

dz#
T
u o (12.13)
Since dz,dz* = ds? = —c?(dr)?, we have
utu, = —c?. (12.14)
When the velocity is v, we have
dz? + dy? + dz*?
2 _
o = -3 . (12.15)
In a local rest frame, dz’ = dy’ = dz’ = 0. We have
ds? = —c?dt? + da® + dy® + d2® = ~c*dt’”. (12.16)

Then

2
dt' = dr = dty 1~ Z— (12.17)
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Thus the four-velocity has the form

C v

2’ 2
v v
\/1‘:2 \/1‘(?2

Using the four-velocity, we can write the right-hand side of Eq. (12.12)
in a tensor form.

ut =

(12.18)

1
T™ = (P +¢) Gutu’ + P, (12.19)

Since a tensor equation is hold in any frame, Eq. (12.19) is also valid for a
general reference frame.

Thus the energy density W, energy flow vector S and stress tensor oy,
are given by

U2
£+ P—2
W= (12.20a)
v
-2
P
P G U);’ , (12.20b)
o[1- =)
Py,
(e+ Puov; P6y;. (12.20¢)

12,2 Equation of motion in the Riemann spacetime

The curvature of metric has the similar effect as an interaction. This effect
is called the gravity. Now we derive the equation of motion for a classic
particle in the curved metric.

The energy-momentum tensor is given by Eq. (12.19). For a classic
particle, there is no pressure term, The energy-momentum tensor becomes

T = fgu“u“ = putu’. (12.21)
The conservation of energy-momentum reads
T, ., =D,T" =0. (12.22)

Using Eq. (A.76a) in the Appendix A, we have
T+, =T" , +Th T + T, TH. (12.23)
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The connection obeys the following relation
1 1 dg 0

1
N N7 4 - Y ;u/ _ — 1 ). )
I ot 29 Gur,a 29# g 2g —81'6‘ —al'a( n+/ g) (12 24)
Inserting Eq. (12.24) into Eq. (12.23), we have
1 90
™, (TH'y/—g) +TL, TV = 0. (12.25)

T

We can reform this equation into the following form

0 (\/—gTO“)+iZ.(\/ gT™*) + /—gT- T* =0, i=1,2,3. (12.26)

029 ox
Integrating Eq. (12.26) over the volume of the particle, we have
o .
[ amvmares+ [ L wmarnds [ vegrreds
=0. (12.27)

Using Gauss’s theorem, the second term can be transformed into the surface
integration and be dropped away because p = 0 at surface

0 , _
/awi(\/—gT”‘)dSz = / V—gpu'utds; = 0. (12.28)

Inserting the expression of the energy-momentum tensor given by
Eq. (12.21), we have

/\/ gpu u“d3x+/\/ gL gpu” WPdir = 0. (12.29)

dz®

We have changed W to m in Eq. (12.29) because spatial variables have
been integrated over.

For a point-like particle, we can take u* and F‘;B out of the integral.
Then Eq. (12.29) becomes

de( /\/—pu >+F“5u u —/\/—pu 0. (12.30)

We define the mass m of the particle in gravity as
1
m= - / V=gpu’dz. (12.31)

In the local flat rest frame, u° = ¢, /=g = 1. Then

m=/pd3x. (12.32)
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m is just the rest mass of particle. In the local flat rest frame, p is a constant
due to the conservation of energy. We have

(pu”),, = 0. (12.33)

Eq. (12.33) is a tensor equation, which should be valid in any reference
frame. Eq. (12.33) is also called the continuity equation of mass conserva-
tion. In the arbitrary reference frame, we have

1
o) = —(v—gpu*),, =0. 12.34
() = <= (Vg01") (12.34)
Multiplying Eq. (12.34) with \/=g and integrating, we obtain
_ d _ _ k3 3 — . .
70 /\/ gpu x+/ axl(\/ gput)d’r =0 (12.35)

Using Gauss’s theorem, the second term turns to be the surface integration
and vanishes. We ha.ve

d
720 /\/ gpuldie = i 0. (12.36)
Thus, m is not dependent on z°. Using Eq. (12.36), Eq. (12.30) becomes
dzo dut
Mg+ mlguu” = 0. (12.37)
Thus we obtain the geodesic equation for the motion of a classic particle
du#
- + T putu? =0 (12.38)

or
d?zt . dz® dz?
iz e dr dr
Eq. (12.39) is called the geodesic equation because it is also the equation
describing the shortest route connecting the two points in the Riemann
spacetime. The detailed derivation is shown in the Appendix H. Thus the
particles move along the shortest route in the Riemann spacetime.

=0. (12.39)

12.3 Weak field limit

12.3.1 Static weak field limit-Newtonian gravitation

The metric tensor is determined by the Einstein field equations Eq. (3.26),

which have the form

1
Ruw = 59w R = 6T (12.40)
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where £k = 8Z4G. Using the Ricci scalar defined as
R=g" Ry = 9" 9°° Rappu, (12.41)
we have
R=-xT. (12.42)

with T'=T}'. Then Einstein field equations can be rewritten as

1
R, =k (T,“, — §gﬂyT> . (12.43)

In the normal temperature and weak field, the thermal velocity of par-
ticles is much smaller than the speed of light. Thus the pressure P is much
smaller than the density p. Using Eq. (12.19), we have

T = putu”. (12.44)
The four-velocity »* in the proper (local rest) frame has the form
dx* 1
r= — —(0,0,0,0), (12.45)

dr v —4oo
where d7 = idTS = %\/—gwd;r“d:r” = %\/—goodmo = /—goodt.

In the local rest frame, the energy-momentum tensor has only one
nonzero component 70

oo _ P (12.46)
v —goo

The trace of the energy-momentum tensor 7" is given by

T = g, T" = putu, = —pc. (12.47)
The energy of a point-like particle is defined by
E = —mu*u, = mc*, (12.48)

which is equal to 7% in the local flat rest frame. Since F is a scalar and
conserved in the local flat rest frame, F is conserved in any frame.

When the curvature effect is weak, we can write the metric tensor as
follows

Guv = Nuv + My, (12.49)

where h,,, is the term describing the deviation of the curved metric from
the Minkowski metric. We have

|hu| < 1. (12.50)
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Its derivative is also small.
Guv,i) = |hui| €1 i=1,2,3. (12.51)
We consider the static case, in which p is not time dependent and cor-
respondingly

9u0l = Pyl = 0. (1252)
The Ricci tensor is defined as
Ry =Ry, =Ths — o, + 10,05, — T4, 05, (12.53)
where Ff;,, is the Levi-Civita connection of the Riemann metric given by
[N
fo\,u = 59 p(gpu,u + o, — Qp,u,p)- (12.54)

We keep only the linear terms of h,, and Ay, in the expansion of I'},.
We have

1
o = 57 (o + hows = By ). (12.55)

We can neglect the quadratic terms of F:}V in the Ricci tensor and obtain

Ry =T}, —Th, (12.56)
Inserting Eq. (12.55) into Eq. (12.56), we have
1
Ry = _§h00,i,i7 (12.57a)
1
Ry; = E(hko,i,k — hoik,k ) (12.57b)
1
Ry = _‘2‘(_h00,i,j + hikyij — Prijk — higik + hijek)- (12.57c)

The most important term is the (00) component, which obeys the fol-
lowing equation

1
Roo = I‘L(To() - §g00T). (1258)
In the weak field limit, Eq. (12.58) becomes
hOO,i,i = —cznp. (1259)
We define
2
o =—Shoo, (12.60)
which is called the gravitational potential function. Then Eq. (12.59) reads
4
Ay = —6—2—f$p = 47Gp. (12.61)
Eq. (12.61) is the Poisson equation for Newtonian gravitation, which has
the solution ()
p(xYd’x
=-G | —/———. 12.62
o =—c [ L (12:62)
For point-like particles with mass of M, Eq. (12.62) becomes
GM
p(r) =—-——. (12.63)

r
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12.3.2 Equation of motion in Newtonian approzrimation

Now we discuss the equation of motion in the static weak field limit and
nonrelativistic case, which is called the Newtonian gravitational equation.
We approximate the connection by keeping up to one order terms

1
Ty = 51 (o + hou = i) (12.64)
In the nonrelativistic limit, we have
do'| o |42 (12.65)
dr dr '
The geodesic equation Eq. (12.39) becomes

d?z0

E_? = U, (12.66&)

et (d®\’

— — ) =0. 12.

5 + Lo ( dT) 0 (12.66b)

Solving Eq. (12.66a), we have
2° =ar +b, (12.67)

where a and b are constants. Inserting Eq. (12.67) into Eq. (12.66b), we
obtain

d?zt , 1
EO—Q = _F(Z]O = §h007i. (1268)
Using z° = ¢t and Eq. (12.60), we have
d*zt Dy
= (12.69)

Multiplying the equation by mass m, we obtain the Newton’s equation
of motion for a particle in a gravitational potential
d?zt 0
aE T o
The mass on the left hand side of Eq. (12.70) is usually called the inertial
mass and the mass on the right hand side is called the gravitational mass.
Eq. (12.70) shows that the inertial mass is the same with the gravitational
mass. We define the gravitational force F, as

(m). (12.70)

F,

9i

If

0
Then Eq. (12.70) becomes
d?x?

me— = Fyy. (12.72)
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Thus
V(x) = myp(x) (12.73)
can be considered as the potential energy.
When the curvature source is a particle, from Eq. (12.63), the potential
energy reads

M
V(r) = _Q_T_m. (12.74)
Eq. (12.74) is the Newtonian gravitational law. Using Eq. (12.60), we have
2GM
goo = — <1 - ) . (12.75)
The weak field limit demands
GM «1 (12.76
c2r -76)
7 26M
T > 7'9 = —52— (1277)

T4 is called the gravitational radius of star. It is also called the radius
of black hole. Although Newtonian gravitational potential could lead to
gravitational collapse to black hole, Eq. (12.77) shows that it is invalid to
use the Newtonian theory to treat the collapse to black hole.

12.3.3 Harmonic coordinate

In the calculations of the particle motion, we have the freedom to select a
coordinate frame. The most convenient selection is the frame determined
by the Harmonic coordinate condition. With this condition, when the cur-
vature source disappears, we recover the inertial frame in the flat spacetime.
The harmonic gauge is defined by

I = g1, =0. (12.78)
Using the relation
8, = (9"Gpu) 0 = 9 Gouw + 9pug™ v =0, (12.79)
we have
= _gwg)‘p(gpu,v + Gpvp = Guv,p)

2

Lo 1 1
= 59; (—gp#g)‘p,,,) + 59”y(—gpvg)‘p,u) - 59“”9)‘pguv7p

1 9

= —=¢"(9oug™ o )— 59" (9ug™ w) = 95 - (InV/=g)
9

- _ — g*P — (/=

= 6pg »V g H 856"( g)

! (12.50)
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In the derivation of Eq. (12.80), we have used Eq. (A.92) in the
Appendix A
Using Eq. (A.94) in the Appendix A, we have

py _ L p YL
) = 0 (V0 i)
\/}_axp (vV=99"*), (12.81)

where the symbol O is the four-dimensional Laplacian operator
. 1 6°
Df:f’/‘;#:gltuf;/hu:f’u;u: ( —2@ +V )f (12.82)
where f is a scalar. The symbol [ is also called the d’Alembert or wave
operator. Eq. (12.80) becomes
' =-dz* =0. (12.83)
Eq. (12.83) is the harmonic gauge for the coordinates. Since it was consid-
ered to be similar to the gauge in the electromagnetic field, it is also called
the Lorentz gauge in gravity.
For the Minkowski metric,

Guv = Tuv - (1284)

Since I'};, = 0, the harmonic gauge Eq. (12.78) is satisfied for the Minkowski
metric. Thus the harmonic gauge is a generalization of the inertial frame
in the flat spacetime to the Riemann spacetime.

12.3.4 Weak field approzimation in the harmonic gauge
12.3.4.1 Radiation of gravitational waves

When we use the harmonic gauge, the weak field formulas become much
more simpler. In the weak field limit, the metric can be written as

Guv = v + Py (12.85)
with
| < 1. (12.86)
The Christoffel symbol becomes

1
Fgﬁ = §U”V(hua,ﬁ +huga— hagy)

1
= _i(h#a7ﬂ + h’#ﬁ,a - h(!ﬂ’“)' (12.87)
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The Ricci tensor has the form
1 (o4
Ru=T),\—Th, = _§(h,w» at Py =R e —h% ua), (12.88)
where h is defined as
h=h® =0has = —hoo + h11 + haa + has. (12.89)

We introduce a tensor l_lm, defined by
- 1
hul/ = h'uu - ianhN (1290)

Then the Einstein equation Eq. (12.40) becomes
- - - - G
B o+ Nuwhap ™ — Bua® ) = hyo® o= =168 5T, (12.91)
c

The harmonic gauge Eq. (12.78) in the weak field has the form

1 17
= 59” gAp(gpu,u + Gov,u — guu,p)

=0. (12.92)

The harmonic gauge Eq. (12.92) makes the last three terms in Eq. (12.91)
vanish. Then the Einstein equations become
- G
hu® o= —167rc—4TW. (12.93)
Eq. (12.93) is a wave equation with a source. The source could emit the
gravitational wave.
The solution of Eq. (12.93) is given by

_ T, /’ t—=

R (x,t) = —E—/ —”ﬁ—c)d?’m’. (12.94)
2 Jy  |Ix—¥|

T,. is the source and h,, can be considered as the potential induced by

the source 71},,.
In the region outside the source, Eq. (12.93) becomes

<v2 — lzéz—> R (x,t) = 0. (12.95)
2 Ot?
The solutions of Eq. (12.95) are the superpositions of plane waves
P (X,1) = hyoeitx et (12.96)
with
k= % (12.97)

Thus the gravitational waves propagate at the speed of light.
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12.3.4.2 Newtonian gravitalion

In the nonrelativistic case, we have
- G
Ohge = —167rc—2p, (12.98)

where we have used the fact Tpg =~ pc?. Since the time variation is caused
by the source moving with the velocity v, % is of the same order as v- V,
we have

O=V?+0((v-V)?). (12.99)
To the lowest order,
- G
Vhoo = ~167p. (12.100)

Since all other components of h,g (o, 8 # 0) are negligible at this order,
we have

h=h% =—h% = —hgg. (12.101)
Using the relation
has = hag + %%B’L (12.102)
we have
hoo = %7100, (12.103a)
Ry = hyy = h;, = —%BOO. (12.103b)

Using Eq. (12.60) for the definition of ¢, we have
- 4
hoo = = . (12.104)

Inserting Eq. (12.104) into Eq. (12.100), we obtain the Poisson equation
for Newtonian gravitation

V24 = AnGp. (12.105)
The metric in the weak field limit is given by
24 2
ds? = —¢? <1 + c—f) dt* + <1 - C-f) (dz? +dy* +d2?).  (12.106)
We define the four-momentum p as

P = meo—- (12.107)
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Then

p p — —mzcz = gaﬁp(’%p[3 (12108)
Using Eq. (12.106), we have

—m?c? = (1 + —-) (p°)? + ( - i—f) p’. (12.109)

We can solve p° in Eq. (12.109),
1 2
(P")? = YT {mzcz + (1 - Ei’;) p2j| : (12.110)
(1 + —0_2—>

Since % < 1 and p < me, Eq. (12.110) can be rewritten as

2 2
(p%)? e m2c? (1 - —c§ + nf)w) (12.111)
or
2
p° = me (1 - -c"% + 2—75@> . (12.112)

Lowering the index gives
2
Po = goaP™ = goop’ = (1 + 2_‘#) P’ = = (m02 +mp + p_) :
c 2m
(12.113)
Now we consider the geodesic equation Eq. (H.3) in the Appendix II,
which can be expressed as an equation for the lowered components of p as
follows

papfl;a =0. (12.114)
Using
Pia = Pga — [ joDy (12.115)
and
d
m;ipT—ﬁ =P Pg. (12.116)
we have
dpg
e F’Y
™ oP"Py
1
= ngyy(gu,@,a + 9va,p — gaﬂ,u)papv
1 (03
= 5(91’['7,01 + 9va,p — gaﬂ,u)g’wp'yp
1
= 5(9vp.a+ gvap ~ Gap )P P
= lgm,ap”p"- (12.117)

2
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Thus the geodesic equation becomes

m% = %g,,a,gp”pa. (12.118)

In the case of stationary (time-independent) field, g,o,0 = 0. Thus po

is time-independent and thus conserved. We can call —pypc as the energy
of the particles in the gravitational field and denote it by Ey = —pge. As
we can see from Eq. (12.113) that Ej consists of three terms. mc? is the
rest energy. my is the gravitational potential energy. % is the kinetic
energy. It should be noted that this conserved law is only applicable to the

stationary case.

12.4 Spherical solutions for stars

12.4.1 Spherically symmetric spacetime

Spherically symmetric systems are the most important gravitational sys-
tems because point-like particles and spherical stars are described by such
systems.

12.4.1.1 Minkowski spacetime in the spherical coordinates

Minkowski spacetime is a flat spacetime with the spherical symmetry. In
the spherical coordinates, the line element of the Minkowski spacetime is
given by
ds? = —dt? + dr® + r*(d6? + sin® 6d?). (12.119)
The surface of constant ¢ and r is a two dimensional spherical surface,
which is often called two-sphere in a simple notation. Distances dl along
curves on the two-sphere are given by Eq. (12.119) with the constraint
di = dr = 0.
di? = r%(d6* + sin® 8d¢?) = r2dQZ, (12.120)
where the symbol df}? defines the element of solid angle. A two-sphere has
circumference 27r and area 47r?.

12.4.1.2  Spherically symmetric metric

For a Riemann spacetime with spherical symmetry, every point of spacetime
should be on a two-sphere, whose line element is given by

di? = f(r',t)(d6? + sin? 6dp?). (12.121)
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where f(r’,t) is a function of two other coordinates r’ and t. The area
of each two-sphere is 47 f(r’,t). We can make a coordinate transformation
from (r',t) to (r,t) in such a way f(r’,t) = r%. Then in the new coordinates
r and t, the area of a two-sphere is 47r? and circumference 2zr. This
coordinate r is called the curvature coordinate or area coordinate. It should
be noted that generally, r is not the distance from the center of the sphere
to its surface in the Riemann spacetime.

Now we consider the spheres at r and r + dr. Each sphere has a coor-
dinate system (f,¢). We demand that a line with 8§ =const and ¢ =const
is orthogonal to the two-spheres, which requires e, - €9 = e, -e4 = 0. Thus
we have gr¢g = gry = 0. Then the metric with spherical symmetry has the
form

ds? = goodt? + 2gordtdr + 2gosdtdd
+ 2gogdtdd + grrdr® + r2dQ2. (12.122)
Similarly, we consider the spheres at t and t+dt. The line with r =const,
# =const and ¢ =const should also be orthogonal to the two-spheres, which
requires €; - €9 = €; - €4 = 0 0or g¢p = g = 0. Then Eq. (12.122) becomes
ds? = gao(r, t)dt? + 2go,(r, t)dtdr + grr(r, t)dr? + r2dQ%. (12.123)

This is the general form of a spherically symmetric metric.

12.4.1.3  Spherically symmetric metric for static systems

Now we consider the static systems. For a static system, the energy-
momentum tensor is independent of time ¢. Thus the metric can be chosen
to be static, i.e. a metric components are independent of time t. Since the
energy-momentum tensor has the time reversal symmetry, the geometry is
not changed by time reversal, t — —t. The metric should be unchanged by
the coordinate transformation (¢,7,8,¢) — (—t,r,6,¢). We have g5, = 0.
The causality principle demands that gog < 0 and g > 0. Then the metric
of a static spacetime with the spherical symmetry is given by
ds? = —e2®dt® + e dr? + 1r2dQ2 (12.124)
with
goo = —€*® and g, = €M (12.125)
For a star, which is a bound system, the spacetime far from the star is
flat. We have the boundary conditions on the Einstein field equations.

lim ®(r) = lim A(r) =0. (12.126)
r—00 =00

This condition is called the asymptotic flat condition of spacetime.
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12.4.1.4 Einstein tensor in the spherically symmetric metric for
static systems

Using the metric Eq. (12.124), we can calculate the Einstein tensor

1
Guv = Ryuw = 59 R. (12.127)
The components of the Einstein tensor are given by
1 29 d —2A
GOO = 7-_262 Err—- [7’(1 — € ):| s (12128&)
2
Grr = -lze“(l —e )1+ 29, (12.128b)
7 T
o’ A
Gog =712 20 |0+ (®')2 + — —®'A — — (12.128¢)
r r
Ggep = sin? G- (12.128d)

All other components are zero.

12.4.1.5 Gravitational redshift

We have shown that any particle moving along a geodesic has a constant
energy I/ = —poc. However, a local inertia observer at rest measures a
different energy. When one is at rest, u' = % = 0. From the condition
wtu, = —c?, we have u® = ce”®. According to Eq. (12.48), the energy

measured by the local observer at rest is
E = —utp, = ?E. (12.129)

Considering the asymptotic flat condition Eq. (12.126), e? = 1 as
r — 0o. It can be seen that E is the energy that a distant observer would
measure when the particle gets there. For a star, in the weak field limit,
e?® = 1+ 2¢ according to Eq. (12.106). Thus & ~ % < 0. We have
e~® > 1. Then Eq. (12.129) shows that the particle has larger energy from
the view point of local inertial observer. This extra energy is the kinetic
energy gained by falling in a gravitational field.

When this is applied to photons, we get an important physical phe-
nomenon called gravitational redshift. We consider a photon emitted at
radius r; and received at ro. We denote v, the frequency of the photon at
r1 in the local inertial frame, then its local energy is hi, and its conserved
constant E is hvy, exp (®(r1)). When the photon reaches the radius ro, it
is measured to have energy

hvr, = Eexp (—®(r2)) = hiy, exp (8(ry) — ®(rz)).  (12.130)
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The redshift of the photon is defined by
)\r — Ar T

=l _tn_ g (12.131)
Ary Vr,

Inserting Eq. (12.130), we have

Z =exp (®(rz) — ®(ry)) — 1. (12.132)
When Ar = ry — ry = h is small, we have
hvy, gh
—2i=1-Z, 12.1
" 1 2 (12.133)

where g is gravitational acceleration. The effect of Eq. (12.133) is significant
in the precision measurement.

12.4.2 Einstein equations for static fluid
12.4.2.1 Energy-momentum tensor

We consider the static stars, in which the fluid is at rest. u has only one

nonzero component u°. Using the formula u#u, = —c?, we have
w =ce”®, wy=—ce?. (12.134)

Inserting Eq. (12.134) into Eq. (12.19), we have

Too = pce?®, (12.135a)
T,, = Pe?!, (12.135b)
Too = r2P, (12.135¢)
Tyg = sin® 0Tp,. (12.135d)

All other components are zero.

12.4.2.2 Equation of state

In the energy-momentum tensor, which is often called the stress-energy
tensor for a fluid, there are two thermodynamic variables P and p. From
statistical mechanics, we can obtain a relation between them

P=P(p,T). (12.136)

Eq. (12.136) is the equation of state. When the temperature T is low, we
have

P = P(p). (12.137)

The form of this relation depends on the constituents of stars.
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12.4.2.3 Equation of motion

The conservation of energy-momentum gives

T, =0. (12.138)
Using Eq. (12.135), we have
dd aP
2
P)— = —-—. 1
(pc” + )dr = (12.139)

Due to the symmetries, the tensor equation Eq. (12.138) becomes a scalar
equation.

12.4.2.4 FEinstein equations

Using Eqgs. (12.128) and (12.135), we obtain the Einstein equations for a
fluid.
For the (0,0) component, we have
du(r)

- = 4nrip (12.140)
with
(1) = 2E 01 - 2y (12.141)
U = 2 G . .

Eq. (12.140) shows that u(r) has the meaning of the mass apart from a
constant.

u(r)z/ 4nr?p + up. (12.142)
0

1g can be nonzero and is determined by Eq. (12.141) using the boundary
condition. ug has only geometric meaning. In the Newtonian approxima-
tion, it can be shown ug = 0. Then u(r) is the mass. In the case of the
strong field, we will show that g can be nonzero.
For the (r,r) component, we have
do(r)  GcPu(r) +4nGriP(r)
dr c2r[c?r — 2Gu(r))
Due to the symmetry, (6,6) and (¢, ¢) components can be derived from
Egs. (12.140) and (12.143) by the Bianchi identity. We have now four equa-
tions (Egs. (12.137), (12.139), (12.140) and (12.143)) with four functions
(P(r),p(r),®(r) and u(r)). We can solve the equations to obtain the four
functions P(r),p(r),®(r) and u(r).
Generally, we use the boundary conditions at the boundary of the star,
which reads

(12.143)

Plr=r, =0 plr=r, =0, (12.144)
where 7}, is the radius at the boundary of the star.
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12.4.3 The metric outside a star

Outside the star (r > R = ) is the vacuum. We have p = 0 and P =
0. The four equations reduce to the two effective equations with the two
functions u and ®.

dq;ir) _o (12.145a)
do(r) Gu(r) (12.145b)

dr  rle?r — 2Gu(r)]’
The solution of Eq. (12.145) has the form

u(r) = M = const, (12.146a)
et =1- QGQM. (12.146b)
cer

We have used the asymptotic flat boundary condition ® — 0 as r — oc for
the solution.
For the vacuum region outside the star, we have the following metric

-1
ds? = — (1 - QGM) dt? + (1 - 2GM> dr? +r2dQ%. (12.147)

c?r 2r
This metric is called the Schwarzschild metric. At large r, Eq. (12.147)
becomes

2GM 2GM
d52=—<1— : >dt2+<1+G2
c°r cr

) dr? +7r2dQ%  (12.148)

We can see that this far field metric of a star is equivalent to the metric of
point-like particles with mass M given by Eq. (12.1086).

The Schwarzschild metric is the vacuum solution outside stars. The
Minkowski metric is also the vacuum metric. When the whole space is
vacuum, the only physical solution is the Minkowski metric. When the
space contains a star with the spherical symmetry, the physical solution is
the Schwarzschild metric. Therefore, Schwarzschild metric should be used
for » > R outside the star with the radius of R = 7. It can not be used for

r < R. Until now, all solutions for the fluid stars have R > ry = 2—(521\—’[

12.4.4 Interior structure of a star

Inside the star, since p # 0 and P # 0, we can divide Eq. (12.139) by
(pc® + P), and eliminate 42 using Eq. (12.143). Then we have
dpP (c*p + P)(Gc*u + 4xGr3 P)

ar c2ric?r — 2Gu(r)] ' (12.149)
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This equation is called the Tolman-Oppenheimer-Volkov (TOV) equotion.
Combined with Eq. (12.140) and the equation of state, we have three equa-
tions for u, p and P. Egs. (12.140) and (12.149) are two first order dif-
ferential equations. We have two constants of integration. There are two
ways to determine the constants of integration: One is to use the boundary
conditions for the integration from the center of the star; The other is to
use the boundary conditions for the integration from the boundary of the
star. In the first case, we use u(r = 0) and P(r = 0) as the initial values
of integration. Solving e~24 from the equation u(r) = %gr(l —e M) we
have 2Cu(r)
u(r
M=1- = (12.150)
Since g, = €* is positive, we have u(0) < 0. If u(0) # 0, e~ 24 will
approach infinite at the origin r = 0. From Eq. (12.149), around the origin

€

r = 0, we have

P _cp+ P _ CaPt+ L (12.151)

dr 2r 2r
where we have expressed the equation of state as p = aP®. When s < 1,
the solution of Eq. (12.151) is P!~* ~ £c?a(1 — s)InT + ¢, which will result
in a negative p when 7 — 0. Thus u(0) can only be zero for a star without
a void. When s > 1, we have P ~ cr. Then P|._¢ = 0. It is possible that
u(0) can be nonzero in this case. Since for most kinds of cold stars, s < 1.
We will mainly focus on the case of § < 1, which is applicable for most star
matters. We can rewrite the solution of Eq. (12.151) as follows,

ps = %c2a(1 —5)ln (;) . (12.152)

T

We find that P =0 at » = ;. If we consider » = r; as an inner boundary,

P will remain zero when r < r; and we could avoid a negative p. Thus,
we have another type of solutions with P, = 0 at » = r;. Since p = 0 for
r < r;, there is a void around r = 0 for this type of solutions. The solutions
satisfy the Einstein equations. Fromr =0tor =7, p=0and P = 0.
There are no particles and thus pressure is zero in this void region. The
initial condition for this type of solutions should take the values at the inner
radius r = r; instead of r = 0. The differential equations can be solved
by integrating from the initial values. The outer radius r, is reached when
P=0.

Outside the star, the metric is the Schwarzschild metric. The metric
functions must be continuous at r» = r,. Inside the star, the metric is

grr = (1 - QGU('«))‘I. (12.153)

c3r
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Qutside the star, we have

-1
Grr = (1 - 2GM> . (12.154)

cr

The continuity of the metric demands
M = u(r,). (12.155)

Thus the gravitational mass of the star is determined by
M =/ drdmr?p 4+ u(r;). (12.156)

In the weak field limit, r; = 0 and u(r;) = 0. The gravitational mass
in Eq. (12.156) is just the mass of the star. It should be noted that we
always have %g—u(r) < r for stars. If it ever happened that r — 2Zu(r) = ¢
is small near some radius r; and decrease with the change of r, from the
TOV equation Eq. (12.149), the pressure gradient ‘3—1: could be of order 1
and negative. This would leads to the rapid decrease of the pressure P and
drop to zero before € reaches zero. At P = 0, we reach the surface of the
star. Outside the star, u is constant and r increases. Thus u(r) of a star
can not reach %r.

We can also solve the differential equation using the boundary conditions
at the outer surface of the star. We have the initial values of u(r,) and
P =0 at r = r,. Integrating from the surface of the star to the inner
center, we can solve the TOV equations. We could obtain two types of
solutions: solutions without void and those with void, without assuming
that there is a void inside a priors. The solutions with void can only occur
in strong field. In the weak field limit , there are only the solutions without
void.

12.4.5 Structure of a Newtonian star

In the weak field and nonrelativistic limit, P <« pc?. We have 4773 P < uc?
and 2§% < 1. Thus the TOV equation becomes
aP Gpu
dr 2
This equation is equivalent to the Newtonian gravitational equation.
This equation does not have the solutions with void. Thus wp = 0, which
gives

(12.157)

u= / dranr?p = m(r). (12.158)
0
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We consider a volume element as shown in Fig. 12.1. The inward grav-
itational force by Newton theory is given by Eq. (12.71).

F= AVpg—:@. (12.159)
The outward force is given by
P
—P(r + Ar)AA + P(r)AA = —Z—TAV. (12.160)

The balance of the force is Eq. (12.157). Thus the Newtonian gravitational
equation is equivalent to Eq. (12.157)

P(r+ArjAA

P(r)AA

r r+Ar

Fig. 12.1 The pressure force on a small volume element AV = AAAr of a spherical
star.

12.4.6 Simple model for the interior structure of stars

The TOV equation is hard to solve analytically for a given equation of
state. We will show a simplified solution for the spherical stars.
To simplify the problem, we consider the approximation

p = const (12.161)

inside the star with a radius of R. This approximation is proposed by

Schwarzschild. It should be noted that the speed of sound v, which is

proportional to (%)% ! is infinite. Thus it has the problem of causality.

! According to Eq. (12.160) and Newton’s law, we have

d
pd—‘; = -V,.P. (12.162)

In order to derive the relation of the time derivative of velocity with that of pressure, we



352 Principles of Physics

We consider the case of up = 0. From Eq. (12.142), we have

4
u(r) = %rpr3 r <R. (12.169)
Outside the star, p = 0. u(r) is constant and is denoted by M
dr o
M = u(r)|, = —3—pR r > R. (12.170)

M is often called the Schwarzschild mass. The TOV equation now has the
form

dP _ 4nGr(pc® + P)(pc* +3P)
dr — 3ch ( 8rG )
11— ——1r?p

3c?

(12.171)

We denote the pressure P at r = 0 as Py. Eq. (12.171) can be integrated
from P = Py at r = 0, which gives

1
2 2 2
c* + 3P c“ + 31 2GM\?
a =L 0 (1- ‘ (12.172)
pc? + P pc?+ By cr
use the equation of continuity
Op
— 4+V.-j=0. 12.163
5 T Vrd ( )
Neglecting the high order term of velocity, Eq. (12.163) can be rewritten as
Op
— 4+ pVr - v=0. (12.164)
ot
For a gas, we can approximately use the expansion relation
dp
= == P. 12.165
o=(55). (12.165)

We have neglected the damping effect in Eq. (12.165). Combining Eq. (12.164) with
Eq. (12.162), we have
7] OVr-v

18p
0 (10p _ — V.. V.P. 12.166
P ot (p 6t> Y ( )

Inserting Eq. (12.165) into Eq. (12.166) and neglecting the high order term, we have

2
(ﬂ) 9P _Ap (12.167)
5P ) s o2

which gives

vy o (5/;)5 (12.168)
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At r = R, P = 0. We can obtain the relation between Fy and R

1
2GM\ 1

Po=pc? |1-(1- G 1 (12.173)

R 2GM \ ?

1222
s(1- %7 ) 1
Inserting Eq. (12.173) into Eq. (12.172), we find
( . 2GMr2)% ( . 2GM)%
TTe2Rs ) T \" T 2R

= pc? R ¢ (12.174)

2GM\ ? 2GMr2\?
3(1‘ c2R> “<1" 2R )

Eq. (12.174) is called the Schwarzschild constant-density interior solution.

From Eq. (12.174), we can see that Py = P|,—9 — oo as %% — . Thus
the radii of an uniform-density star can not be smaller than <3 For a

star with R = 9S4 the pressure at the center of the star is infinite.

12.4.7 Pressure of relativistic Fermi gas
12.4.7.1 Thermal properties

Now we give a discussion on the pressure that supports the compact stars
such as white dwarfs and neutron stars. We start from the Hamiltonian for
N non-interacting fermions given by Eq. (2.363)

H= Z/fpwpa;ap, (12.175)

where wp = 1/p?c? + m?c*. The Hamiltonian operator is diagonal in the
momentum space |p). We can rewrite the Hamiltonian Eq. (12.175) as

=3 [ Epglpol. (12176)
H is the one body operator. The N-particle basis is given by
1 s
[P1P2 *PN)sSN = —‘Z(—l) FPpy) - PN)- (12.177)
VNI Z

The sum runs over all the permutation P of {1,2,--- ,N}.
Since the total number of the occupied states equals the number of

N=Y"% np (12.178)
s p

particles, we have
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|p1p2 - - - Py )sn is the eigenstate of H. Thus the energy eigenvalue of N-
particle state is given by

E({np}) = Zznpwp (12.179)

We can calculate the grand partition function

== Z Z e~ BE{np}h)—pN)
{np}

Z Z np=N

= Z e_’B Es Ep(wp-/'l’)np
{np}

“TIII S e P Solensoms

8 P 7np

~TI1I [1 +e-ﬁ<wp-ﬂ>], (12.180)
5 P
where p is the chemical potential. The grand potential has the form

2=-pmz=-4Y Y ln(1+ e—*g(“p-f‘)). (12.181)
s P

Then we can evaluate the average particle number using Eq. (10.117),
which has the form

dln= o® 1
- —_[ZZ) = - . 12.
N da <8/L)g zs:zp:eﬁ(wp—m +1 (12.182)

The internal energy is given by

dln=
ap

W
- Z zp: eﬁ(wp—l;) +1

1 8, “p
© (2mh)3 /d pe,@(wp—#)+17 (12.183)

E=-

where g, is the spin degeneracy factor given by
gs =25+ 1. (12.184)

§= % for electrons or neutrons. V is the volume of the system.



General Relativity 355

12.4.7.2  Ground State (T=0)

Now we deal with the ground state of noninteracting Fermi gas. In the
ground state, the N lowest single-particle states |p) are occupied. All the
momenta within an energy surface (called Fermi surface) are thus occupied.
The radius of the Fermi surface is called the Fermi momentum pgz. The
particle number is related to the Fermi momentum pg.

N:gSZI

P<PF
= 5 2nn)® /dap@(pF_p)
vV PF 9
:gs—(%_h)?’/0 4mpdp
8xVpd
ghfF (12.185)
We can solve pr as a function of the particle density n = % from
Eq. (12.185)
33\ ¢

Each fermion has an energy wp = \/m?c* + p?c2. Therefore the energy
density of the relativistic Fermi gas is

E
2 _ —_—
p’ =5
PF {7 2 N
[ i
0
__¢ 2 22 9 9 4.+ 1-1(PF
= Seors {pF(QpF +m*c?)\/pe + m2c? — (mc)® sinh (%)}
(12.187)
The pressure is given by
OFE
p=_2=
v
¢ 2
+ (me)*sinh™? (fn—i) } (12.188)

We introduce a parameter

¢ = 4sinh™! (%‘1) (12.189)
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Then the formulas can be rewritten in the following parameter form.

_mend 1 5
n = ( h ) 3.2 sinh T (12.190a)
mic® (1 . 8 .. ¢
= W <§ Sll’lh§ -— §b1nh 5 + 6) s (12190b)
mic® | .
pc? = 39,273 (sinh& —£). (12.190c)
We can also use another parameter defined by
zp = 2L (12.191)
me
Then
¢ = 4sinh ™ (zp). (12.192)

12.5 White dwarfs

When a star with about a mass of the sun runs out of the reaction energy,
the pressure in the star resulted from the thermal effect becomes small.
Then the pressure resulted from the quantum effect of fermions due to
the Pauli exclusion principle dominates. White dwarfs are stars that the
outwards pressure is delivered by the cold electron gas. Since the mass of
electrons is much smaller than the mass of nuclei (mass of four protons for
helium), the pressure of electrons is larger than that of nuclei. This can be
seen from the following derivations.

The pressure increases with the mass of star. We consider the limit case
that the pressure of electron gas can resist the gravitational potential. We
denote the total mass of the star by M and the radius of the star by R. We
have

M = (m. +2m,)N = 2m,N, (12.193a)

1
3
R= (i‘i) , (12.193b)
4

where me is the mass of an electron and m, the mass of a proton. The
mass density is given by

1 3 M

—t_>_ M 12.194

P v 81 mpR3 ( )
: _V
with v = -

pr h 1 [97M\F
= — = — . 12.19
TF meC  Mmec R ( 8my, ) ( 5)
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We introduce two parameters M and R

_ mecp
R= 3 R.
In terms of M and R, we have
M3
TP =
In the nonrelativistic limit where g < 1, we have
4.5 Va3
& %;%z% = K%,
where
mich
= {52

In the extreme relativistic limit where zF 3> 1, we have

~ mgcs 4 2y b K M_g
R4

= oo OF T TF) =

357

(12.196a)

(12.196b)

(12.197)

(12.198)

(12.199)

(12.200)

According to Eq. (12.157), The Newtonian equations for the star are

given by
) _ g2y,
dr
arP m(r)
@ = T

(12.201a)

(12.201b)

In the following, we make the evaluations in order of magnitude. We
introduce the typical density p and the typical pressure P. 5 and P can
be considered approximately as the average density and average pressure,

respectively. Egs. (12.201) are equivalent to

M = R%p,

P _ GM

R™"RT
Eliminating p, we have

_ GM?

P= T

In the following, we discuss two approximate cases:

zr > 1.

(12.202a)

(12.202b)

(12.203)

< 1 and
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(i) When the mass of the star is not very large, the nonrelativistic limit
(zp < 1) can be used. Then we can use the relation Eq. (12.198) to
eliminate P in Eq. (12.203)

Kﬂgf = K’%;, (12.204)
where
K =G (%)2 (m};(:){ (12.205)
Eq. (12.204) can be rewritten as
MiR= % (12.206)

Thus the radius of the star decreases with the increase of the mass of the
star. Eq. (12.196b) shows that the radius of the star would be smaller if we
replace electron mass with proton mass. The effect of pressure of electrons
is stronger than that of nuclei and thus it is reasonable that we consider
only the pressure of electrons.

(i) When the mass of the star is large enough, the extreme relativistic
limit (zF > 1) should be used. The equilibrium condition is given by

5 (Ms M3 M?
7K (ﬁ - ﬁ) =K' (12:207)
or
M\
R=Ms3 1‘<ﬁ> , (12.208)
0
where
3 3 3
_ S5K\? [/2Tn\2/ he \?2
Moz(m> :(556> (@_?) . (12.209)

Eq. (12.208) shows that no white dwarf can have a mass larger than My
which is given by
8

My = g—m,,MO ~ 1039 ~ Mg, (12.210)
m

where © is the mass of the sun. According to Eq. (12.208), we can see
that B — 0 as M — Mjg. Thus Newtonian gravitational theory can have
gravitational collapse. In contrast, if one uses the TOV equation, as mass
increases, R would not approach zero. Instead, R approaches a finite value.
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Therefore, the general relativity does not have the similar gravitational col-
lapse as predicted by the Newtonian gravitational theory. The underlying
physics is that the general relativity allows only positive energy while the
energy in the Newtonian gravitational theory can be negative and without
a lowest limit.

More refined calculations give the result My = 1.4Mg. This value of
mass is called the Chandrasekhar limit. When the mass of the star is
larger than the Chandrasekhar limit, it will collapse until other repulsive
mechanism is effective or the Newtonian gravitational theory is no more
applicable.

12.6 Neutron Stars

When a white dwarf is further compressed, the electrons could combine
with the protons to release the energy. The final equilibrium stars are the
neutron stars. For the neutron stars, the gravitation effect is so large that
the Newtonian gravitational theory is no more applicable. We will use the
TOYV equation to calculate the interior structure of neutron stars.

For the neutron stars, there are two types of solutions. The solutions
without void and the ones with void. First we consider the solutions without
void, which we call the normal solutions.

12.6.1 Normal solutions

Eqs. (12.140) and (12.149) are the two first-order differential equations for
solving u(r) and P(r). They are

du(r) _ 2

e 4mrep, (12.211a)
dP 2p + P)(Gc? 4nGr3p
db _ _(cp+ P)(Geu + 4nGr7P) (12.211b)
dr cric?r — 2Gu(r)]

We denote the radius of the neutron star as R. One can integrate the two
equations simultaneously from some initial values u = ug and P = F, at
r = () to the values at r = R where P> = 0. The value of u at the boundary
r = R is connected with the value of the Schwarzschild metric outside the
star. We have

2R °R 2GM
ur) = CTG (1—e2) = CQ—G [1 - (1 - )} =M. (12212)
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Thus u(R) is the gravitational mass of the neutron star as measured by a
distant observer.

For a neutron star consists of the particles with the rest mass of m,,
obeying the Fermi-Dirac statistics, it is more convenient to use the paramet-
ric form of p and P with the parameter £ related to the Fermi momentum

pr by Eq. (12.189)
21 %
14 ( Pr ) } : (12.213)
myC

Then the energy density and pressure are given by

PFr

k3

+

E=4In

p = K(sinh¢ — ¢), (12.214)

2
P= %—K(sinh{ - SSinhg +36), (12.215)
where K = mmlc?/(4h®). The Fermi momentum pr is related to the
density of the particle number n = N/V by n = 8mp2./(3h3).

There are some restrictions on the choice of Fy and ug. First only
positive pressure is meaningful, which gives P > 0. Since g, = €2 is
positive, we have ug < 0. Eq. (12.141) shows that uy = 0 if e %M takes
finite value. If ug # 0, we express the equation of state by p = aP?® at
ra~0.If Pp#0,s=0.If P, =0, s = 2(Expanding Eq. (12.190) at £ =0
gives P ~ p?). According to Eq. (12.151), p'=* ~ 1/2c%a(1 — s)Inr + ¢,
which will result in a negative p when r — 0. Thus «(0) can only be zero.

We can use £ as the parameter in solving the differential equations.
Then Eq. (12.211) becomes

du

2t
= = 4rKr*(sinh & — £), (12.216)

g 4(sinh¢ - 2sinh § )
dr c2r(c?r — 2Gu) (cosh§ —4cosh§ + 3)
[t

3 (sinh{ — 8sinh g- + 35) + Gc"’u} . (12.217)

For a neutron star, the equations can only be solved numerically. Numerical
results show that there is a maximum limit of mass which is about 0.70.
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12.6.2 Solutions with void

Now we consider the solution with void. We have shown that the initial
value up < 0. When ug < 0, near r = 0, the TOV equation becomes
Eq. (12.151). The solution of Eq. (12.151) can be rewritten as
2 1 2 T

Ps = 5¢ aln <T_z) . (12.218)
We can see that P = 0 ar r = r;. If we consider = r; as an inner boundary,
P will remain zero when r < r; and we would avoid a negative P. Thus,
we have another type of solutions with P = 0 at r = ;. Since p = 0 for
r < r;, there is a void around r = 0 in this type of solutions. In the void
region from r =0 tor = r;, p =0 and P = 0. There are no particles and
thus pressure is zero in this void region.

In the void region, we have the Minkowski-type metric

ds® = —Adt? + Bdr? + r2d#? + r? sin® 6d¢?, (12.219)

where A = €?®¢ and B = (1 — 2Gu;/c*r;)™" are constants. The parameter
®; can be obtained by integrating the equation Eq. (12.143). From r = r;
tor=7,=R, p>0and P > 0. P and p increase first from zero at r = ;.
After reaching a maximum, P and p then decrease. At r = r,, P and p
decrease to zero, where we have the outer boundary. At the outer radius
To = R, 1, = c?r,[1 — e 2M70)]/(2G) = M. M is the apparent mass of the
star ag measured by a distant observer.

Similar to the case of the normal solutions, we can use the parameter
form of the TOV equation Eq. (12.216) and (12.217) to obtain the numerical
solutions. We can also calculate the particle number in the star by

o 1
N = / dnr?g2ndr

CA(mae)?® [T, 2Gu\ "t . 4 (€
_Thg/” refl =z, sinh 4 dr. (12.220)

Now we discuss the case of the solutions with initial value uw; < 0 at
r; # 0. Numerical calculations show that u increases from the negative
value to a positive value at the outer radius r,. u = u, at r = r, corresponds
to the mass of the star as measured by a distant observer. The structure
parameter £ increases from zero at the inner radius r; to a maximum and
then decreases to zero at the outer radius r,. p and P, as functions of
&, show the similar change tendency. P increases from 0 according to
Eq. (12.211b). After reaching a maximum, P decreases to zero at the outer
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radius r,. Figure 12.2 show the particle number N, mass M and outer
radius 7, as functions of u; at r; = a. From Fig. 12.2, we can see that the
particle number NN increases with the increase of |u;], exhibiting a power law
dependence. The mass M also increases with the increase of |u;| according
to the power law with a crossover. The crossover value corresponds to the
minimum in the curve of r,. The outer radius r, decreases first with the
increase of |u;| to a minimum at |1y, | and then increases with the increase
of |u;|. When |u;| < |uim|, although 7, decreases with the increase of |u;],
the peak values of p and P are increased. The increase of N and M is
mainly due to the increase of the peak value of p. When |u;| > |um],
the increase of N and M is mainly due to the increase of r,. When |u;]
increases, g, = (1 — 2Gu,/c?r,) decreases and approaches to zero.

One can also solve the differential equations of Egs. (12.216) and
(12.217) by integrating from the outer radius r,. Then the solutions with
the void inside the center emerge naturally. When we keep the outer radius
7o in constant and make the parameter g, = 1 —2Gu,/(c?r,) decrease and
approach to zero, the particle number approaches to infinite and the void
radius r; approaches to zero.

The solutions without maximum mass limit do not depend on a special
property of the equation of state for the star matter. Similar solutions
can also be obtained for other equations of state P = P(p). It shall be
noted that the Newtonian gravitational theory does not give this type of
solutions. From Eq. (12.157), dP/dr = —pGm(r)/r? < 0. Thus P always
decreases monotonously. The pressure in the solution with a void is zero at
both inner radius r; and outer radius r, of the two boundaries, which is not
compatible with the above Newtonian gravitational equation for pressure P.
The solutions with void show that the Einstein general relativistic theory
has significant difference with the Newtonian gravitational theory on the
equilibrium mass distribution.
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Fig. 12.2 (a) The particle number N inside the neutron star, (b) the mass, and (c) the
outer radius r, as functions of u; at the inner radius »; = 1. The unit of the length is
taken to be a = h3/2/(xm2c1/2G1/2) = 1.36 x 10%cm and the unit of the mass is mg =
ac®/G = 1.83 x 10%g. The unit of the particle number is Ny = 3212 (mnca)?/(3R%) =

1.174 x 1059,






Appendix A

Tensors

A.1 Vectors

A position in the space can be described by a three dimensional vector
x. In four-dimensional spacetime, it is a four-dimensional vector x. A
vector in a certain coordinate system can be expressed by the component
2t (i = 1,2,3) in a three-dimensional space or z® (o = 0,1,2,3) in a
four-dimensional spacetime. « = 0 is usually used to denote the time
component. It is custom to use the Greek alphabet («, 8,7, ) to denote
the components in spacetime and Latin alphabet (¢, j, k, -+ ) to denote the
components in space only.

We have used superscripts for the components z? of an ordinary vector,
which is often called a contravariant vector. A vector x can be expressed
in any coordinate system. We use 2'* to denote the components of the
position vector in another coordinate system. Then the relation between
2" and 2% can be written as ‘

1%

. ZZJ xl, (A.1)

where we have used the Einstein summation convention that a summation

is carried over doubly repeated indices. Eq. (A.1) is the definition of a

vector. A vector is an object whose components transform according to

Eq. (A.1). 2'" is often written as 2 with the prime attached to the super-

script rather than the main symbol, which can be used more conveniently.
Thus Eq. (A.1) is often written as

-/

y oxt .
i j
| =577 (A.2)
An infinitesimal dx* can be expressed by a differential formula
.
i J
dx* = 5 da? . (A.3)

365
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Thus dz’ forms an ordinary or contravariant vector.

Let us now consider a?ai' For a function f(x), we have from calculus
af of 0x7
ox? Oz OxV (A-4)
Thus the derivative transforms as
0 dxi 9
ox¥  Oz¥ Oxi’ (A-5)
which shows that =2, is also a vector. It is called a covariant vector. Thus

Azt
we can define two types of vectors. A contravariant vector A* is defined as

an object whose components transform as
o 6,@“,

~ Oxv
A covariant vector A, (also called a one-form or covector) is defined by the
transformation

AH

A (A.6)

ox”

Ay =——A,.
" Az Y

(A7)

A.2 Higher rank tensors

A vector has one index for its components. A scalar has zero indices.
We can generalize them to the tensors with two or more indices. A con-
travariant tensor of rank two is of form B*” which obeys the following
transformation relation

B'U'IUI _ 8:0“ 817” Baﬁ
Oz Oxf

A mixed tensor B*, is partly covariant and partly contravariant with the

transformation

(A.8)

/ ozt OxP
BY = ——B%. A9
ox® Ozv A (A.9)
A covariant tensor is defined by
0z 0xP
B = o 97 Bos (A.10)
More generally,
1 ax”/ 8$Ul ox”
BrV = ...BY A1l
P 9 OB Oxr’ R ( )
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We introduce Aj, = 927 Fq. (A.11) becomes

dxh’’
BrY s =ASAGAY, B (A12)
Since
ox® o
9P = 93, (A.13)
where §# is the Kronecker delta, the chain rule gives
dx® 9z Ozt /
- = — A AH __ SQ
028~ aur 07~ Duwls =% (A.14)

The tensor product of two tensors produces a higher rank tensor. For
example,

c*.Ps = A~ BPs. (A.15)
The tensor product (also called outer product) is often written as
C=A®B. (A.16)

When we set a covariant and contravariant index equal and sum over
the index, we make a high rank tensor to a lower rank tensor. For example,

T*,Ps =T°,. (A.17)

This process is called the contraction. The contraction over a pair of indices
reduces the rank of a tensor by two.

We define an inner product of two tensors by forming the outer product
and then contracting over a pair of indices. For example,

C = A“,B73. (A.18)
The inner product of two vectors A and B produces a scalar C'
C=A"B,=A" B. (A.19)
A scalar is a tensor of rank zero. It is invariant under transformation
C' = A B,
= A AMAY, B,
=06,,A"B,
= A'B,
=C. (A.20)
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A.3 Metric tensor

We define metric tensor as a tensor that realizes the mapping between
contravariant and covariant tensors. We use the relation A -B = A, B* =
guAF BY for the definition of the metric tensor g,,,. Thus we have

Ay = gAY (A.21)
In this equation, the metric tensor plays the role of lowering the indices.
The mapping should be invertible. We have the definition of gH":

Al =gt A,. (A.22)
Thus g"” raises the indices. From the definition of metric tensor, we can see

that g, should be symmetric if we want A-B = A,B* =B - A = B,A".
Thus

v = G- (A.23)
Using the relation
Al = g'* Aq = 9" gar A", (A.24)
we have
Guag™t =4l (A.25)

When we use the metric tensor g, to lower the metric g*”, we have
9y = Guag™ =0y, (A.26)

Thus ¢ is also a Kronecker delta.

A.4 Flat spacetime

The simplest metric is the metric of flat space. The three-dimensional
Euclidean space is characterized by the metric g;; = d;;. The Minkowski
metric of four-dimensional spacetime is given by gu, = nu or gu =1 uw
with

100 0 1.0 0 0
0-1 0 0 010 0
M=o o_1 of 4 "w 00 1 0 (A.27)
00 0-1 00 0 1

The Minkowski metric is the only flat spacetime metric guaranteeing the
causality principle. 1), is said to have the signature [1,—1,—1,—1] and
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7', has the signature [—1,1, 1, 1]. It is just a custom to use 7,,, or 7, to

3 ) 3

describe the Minkowski spacetime. We use 7, in the quantum field theory
and 7', in other parts of the book. Since 7., = —7’,,, one can easily
make transformation. To simplify the notation, we often omit the prime in
" v

When the signature [—1, 1,1, 1] is used, for a contravariant vector spec-
ified by

At = (A% AY) = (A% A), (A.28)
the covariant vector A, = 7n,,A" has the form
A, = (Ag, Ay) = (=A°, A" = (=A°, A). (A.29)
The distance of the spacetime is defined by
(ds)? = da'dz,, = g, dz"dz". (A.30)
In the Minkowski metric
(ds)* = —(dt)? + (dz)? + (dy)* + (dz)? (A.31)
when the signature [—1,1,1, 1] is used. The proper time dr is defined by
(d7)? = —(ds)? = (dt)* — (dz)? — (dy)* — (dz)*. (A.32)

Thus the signature [1,—1,—1, —1] describes the proper time. In the unit
¢ # 1, we have

(cdr)? = —(ds)? = c2(dt)? — (dx)? — (dy)* — (dz)>. (A.33)

The proper time is the time measured in the local rest frame of observer.
In terms of proper time, we can introduce an useful vector, the four-velocity

u#, which is defined by
dxt

P=_—. A.34
ut = = (A.34)

A.5 Lorentz transformation

A.5.1 Infinitesimal Lorentz transformation

The coordinate transformation Eq. (A.1) in the Minkowski spacetime is
called the Lorentz transformation. For an infinitesimal proper Lorentz
transformation

(') = A", 2, (A.35)
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A*, can be expressed as
AP, =0, + Awty, (A.36)
where Aw*,, are infinitesimal parameters. Using Eq. (A.14), we have
A ALY = (8, + Aw? ) (627 4 Awy”)
= 820\ 4 0 L Awy” + 8\ Aw?,
=0, +Aw,” + AwY,
=4y, (A.37)

We have omitted the second order terms of the infinitesimal Aw*,. Thus
we have

Aw!, + Aw, P = (A.38)
or
Awh” = —Aw"H, (A.39)

which shows that Aw*” is antisymmetric.

There are six non-vanishing parameters in the antisymmetric Aw*”.
There are two typical examples of Aw*".

(1) Lorentz boost

We consider the case that Aw'® = —Aw® = —AB # 0 and all other
Aw* = 0. The components in mixed indices are Aw®; = —Aw? =
A = —nAw!® = —Aw!® = —AB. Other components are zero.
Thus we have the transformation

o' = (0] + Aw' 0878y, + Aw®1 658, )z
= (8}, — ABSY S, — ABSYSL ). (A.40)

The explicit form is given by

2/ =20 — ABa?, (A.41a)
o= —AB2 + 2! (A.41D)
2% = a2, (A.41c)
o =P, (A.41d)

This Lorentz transformation is a transformation relating the x frame to an
inertial frame moving along z!' with an infinitesimal velocity AS relative to
the z frame. The Lorentz transformation Eq. (A.41) is called the Lorentz
boost.



Tensors 371

(2) Spatial rotation
When Aw'? = —Aw?! = —Ap # 0 and all other Aw"” = 0. The

transformation relation is given by

o' = (6], + ApdY oY — Apdy b))t (A.42)
The explicit form of Eq. (A.42) reads
2% =20, (A.43a)
=2 + Apa?, (A.43b)
% = —Apz' + 27, (A.43c)
2% =2 (A.43d)

Eq. (A.43) is the transformation generated by an infinitesimal rotation
about the z axis with the rotation angle of A¢p.

A.5.2 Finite Lorentz transformation

The finite Lorentz transformation can be generated by successive applica-
tions of the infinitesimal Lorentz transformations. We write

Aw*, = Aw(In)*,, (A.44)
where (In)", is the 4 x 4 matrix for an unit rotation around the axis in
the n direction. Aw is the infinitesimal rotation angle around the n axis.
Under a transformation of Lorentz boost described by Eq. (A.40), the n
axis is perpendicular to the z° and z! axes. We use n(01) to denote the n
axis. According to Eq. (A.40),

(In(o1y) = (676, + 06,,)
0-1 0 0
-1 0 0 O
= 00 0 0 (A.45)
0 0 0 0
Straightforward calculations can give the following relations
0-1 0 0 0-1 0 0
(I )2 = -1 0 0 O -1 0 0 O
nODT 0 0 000 00 0 0
0 0 0 0 0 00 O
1 0 0 O
01 00
=lo 0 0 o (A.46)
0 0 0 0
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and
1 0 0 O 0-1 0 O
(I )3_ 0 1 0 O -1 0 0 0
20077 1o 0 0 0 00 0 0
0 0 0 O 0 0 0 O
0-1 0 0
-1 0 0 0
N 0 0 0 0
0 0 0O
= (In(on))- (A.47)
For the spatial rotation around the z axis, according to Eq. (A.42), we
have
0 0 0 0
0 01 0
=lo-1 0 o (A.48)
0 0 0 O
Straightforward calculations give the following relations
0 0 0 O 0 0 0 0
0 01 0 0 01 0
2 _
)" =101 0 o |o-1 0 0
0 0 0 O 0 0 0 O
0 0 0 O
0-1 0 O
=10 0-1 o (A.49)
0 0 0 O
and
0 0 0 O 0 0 0 0
0-1 0 0 0 01 0
3 _
o))" =10 0-1 offo=1 0 o
0 0 0 O 0 0 0 O
0 0 0 O
o 0o-1 0
o 1 0 0
0 0 0 O
= ~(Iu(2) (A.50)
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A finite rotation of w can be divided into N successive infinitesimal
rotations of Aw = % with N — oo. Thus the finite Lorentz transformation
can be written as

1% . v H
27 — lim (1+%1n) . (1+%1n) S

N—o0 H2

. w  \M\"
~ N ((” ) ) VY
= (e‘”l")yﬂ k. (A.51)
(1) Lorentz boost

Under a finite pure Lorentz transformation(Lorentz boost), using
Egs. (A 45), (A 46) and (A.47), we have

= ()’
-

cosh (wI ) + sinh (Wln(Ol))) w !

1
[ In(o1))” +4—(an(01))4+"'}

w?
[14—2'([( ))2+4'(I( ))2+ :|

(e

+_I(01)+;( o)’ +- })
-(

+

i 3
_w + y + - ] n(Ol)) Mx“

= (1= (In(o1))? + cosh(w)(In(o1))? —I—sinh(w)[n(Ol))uu . (A.52)
The explicit matrix form of Eq. (A.52) is
/0

x cosh(w) —sinh(w) 0 0\ [a°
z' | —sinh(w) cosh(w) 00| [z
i 0 0 10 |22 (A.53)
' 0 0 01/ \a*
We introduce
B = tanh(w). (A.54)
Then we have
cosh(w)= cosh(w) = ! = ! = (A.55a)
\/cosh2 (w) — sinh?(w) V1—tanh(w) /1-5
sinh(w) = sinh(w) ! -5 (A.55b)

\/coshQ( ) — sinh?( \/52—1_\/1—[32'
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Thus Eq. (A.53) becomes

8
x/O T 50 _\/ﬁ 00 70
at ——L L_ 00| |
2| = 182 \/1-p2 9 (A.56)
v 0 0 10fl|%
r 0 0 01) \*
or
0_ .1
0 _ %, (A.57a)
1_ 3.0
" %, (A.57b)
2% =22, (A.57c)
7% =28, (A.57d)

Eq. (A.57) is called the Lorentz transformation in the special relativity.

(2) Spatial rotation
Under a finite spatial rotation in the z direction, we have

- ()

= (cosh (wln(, ) + sinh (wln(z)))uu M

1 4
= <[1 + E(WIn(z))2 + ﬂ(wjn(z)) + - ]

1 1%
+ |:WIn(z) + g(w‘ln(z))g + - :|> xt
: I
+

({1+ (In())? _%(In(z))2 }

+ {w—g—l— }In(z)) Mx“
= (14 (In(2))? = co8(w)(In(z))* + sin(w)In()) ", . (A.58)

The explicit matrix form of Eq. (A.58) is

a' 1 0 0 0\ /2°
2 0 cos(w) sin(w) 0| [ 2*
' 0 —sin(w) cos(w) 0 | [ 22 ]~ (A.59)
' 0 0 0 1/ \a*
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A.6 Christoffel symbols

Now we consider a contravariant vector field A*(z#) as a function of con-

travariant coordinates. The direct derivative %‘;‘f is often denoted as
OAH
Ar, = R (A.60)

However, there is a problem here that the derivative A* , is not a tensor.
This can be seen from the transformation of A* ,

, OAW
H ;] = —
AP, D

o [0z
G (8:1:0‘ 4 )

ozt A> 92k
= A%, A .61
Oz ox”’ + oxV Oz~ (A-61)
JA”
ozv’

Since A® is a function of z*, we need express in terms of %‘iu . Inserting
dA* _ HA™ a7
oxv’ — Oz 9gv’?

we have

o0zt 0xY A 9

[T o
AT oz Oxv' OxV + oz Oz«
oxH Oz 92xH
= —— A“ — A~ A .62
Az ozv' 7 dxv Dxo (A.62)

Thus A* , does not follow the tensor transformation due to the existence
of the second term in Eq. (A.62). This problem is caused by the definition

of the derivative
AH AH (¥ VY _ AH(gV
an, =04y, AT o) - AMEY) (A.63)

Y 9z szv 0 ox?

A vector has a direction. The direction also changes with the location in

a curved spacetime. Therefore, the difference between two vectors is not a
simple difference of components if they are located at different positions.
In order to compare the direction of a vector, we need first put them at the
same point in spacetime. This procedure is called the parallel transport.

We denote § A* as the change produced in the vector A#(a”) at =¥ by
an infinitesimal parallel transport of distance dx”

0A* o dx”. (A.64)

0A* should also be directly proportional to A* because larger A* would
produces larger change. Thus

SAM = —TH A%dg (A.65)
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m
where I'%

is the constant of proportionality and is called the Christoffel
symbol or Levi-Civita connection. It defines the parallel transport of a vec-
tor. The vector A*(z¥) at ¥ parallel transported an infinitesimal distance
dzx" to the position at ¥ 4+ dz” has the components

CH = A" 4 §A". (A.66)

The vector A*(z") at ¥ + dz¥ has the components A*(a” + dx¥). The
difference between them gives

dA* = A*(z¥ + dz¥) — [AF(z¥) + §AH]. (A.67)

This is the difference between two vector located at the same point, which

should be also a vector. Thus we have a definition of derivative for a vector
_dar lim AP (z” + dzv) — [AF(z¥) + 6 A¥]

AP, = = A.68
’ dxv dxv—0 oxv ( )
The derivative A*,, is called the covariant derivative. Since dA* is a con-
travariant vector and d;iu is a covariant vector, A*,, should be a two rank
tensor. Using Eq. (A.65), we have
AK
dA! = 0 dz¥ — §AH
Oxv
= A" ,da” +Th A%dz". (A.69)
Inserting Eq. (A.69), Eq. (A.68) becomes
AF., = AP, + T A“. (A.70)

Now we consider the derivative of a covariant vector B,,. For any con-
travariant vector A",

¢ = B A" (A.71)
is a scalar. V, ¢ is thus a vector, which has the form
0B, A%
Vop=¢, = A%+ By——. A.72
¢=9, oxv + oxv ( )
Expressing A, in terms of A%,,, we have
vy(b _ aBOzAa + BaAa-V _ BaAul'\ay
ox? ' ®
0B,
— ( i Bﬁrfw> A% 4 B,A“,,. (A.73)
i ’

This equation shows that % — BgI'2,, should be a tensor because A* is
an arbitrary vector. We define the covariant derivative of B, as

B = By — BaT® (A.74)

pvo
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which is a two rank covariant tensor. Then Eq. (A.73) becomes
Vu(BaA%) = By, AY + Bo A%,. (A.75)

Thus covariant differentiation obeys the product rule similar to the ordinary
differentiation. Similarly we can obtain

AW = AW+ APYTY + AMPTY,, (A.76a)
B"yo = B o + BP, Tl — BT}, (A.76D)
C;,w;oz = C;,w,a - Cﬂyrﬁa - CM:@FEQ (A76C)

Generally, T'! 5 is not symmetric. We can divide re 5 into the symmetric
part I"(‘aﬁ) and the asymmetric part l"f‘a 8]

BT w
s = I‘(aﬂ) + I‘[a,@] (A.77)
with
1
I"(‘aﬁ) = §(I‘gﬁ + Fga), (A.78a)
1
Fﬁx,@] = 5(1"g5 — I‘ga). (A.78b)

A physical curved spacetime should have a local Minkowski metric to
guarantee the local causality. In this local Minkowski metric, FZB is zero
and thus Ff‘aﬁ] is zero. We can prove that Ff‘aﬁ] is a tensor. If the tensor
Ff‘a 8] vanishes in one coordinate system, it must vanish in any coordinate
system. Now let us prove that I‘ﬁl 4] is a tensor.

The transformation relation for I', is given by

- p Ox“ oxP 9z 9%l Oz

7 r 7 7 + 7 7 .

" aBogn dxv' dxr ' Ozt dxV xP
The second term is symmetric in g’ and v/. Thus it cancels out in the

transformation for I‘E'W]. Therefore I‘[TH

(A.79)

V] transforms as a tensor
e dx dzP dox™
(] = " B gn’” dav’ 9aB

F[TW] is often called the torsion tensor.

(A.80)

A.7 Riemann spacetime

Mathematically, at any position P, we can find a local flat space ‘tangent’
to any curved space if we do not restrict the transformation. Physically the
local metric should be a local Minkowski metric to fulfill the causality. We
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call the spacetime with this property as the Riemann spacetime or strictly
pseudo-Riemann spacetime (The metric of the Riemann space is positive-
definite by definition). In this local flat spacetime at P, straight line is
meaningful locally. Thus I‘ﬁw] is zero at P locally at this local Minkowski
metric. In these coordinates at this point P, the covariant derivative of a
vector A% is given by the ordinary derivative of the vector.

A% g =A% atP in local flat spacetime. (A.81)
In this local flat metric, the metric is constant locally. We have
Juvx = Juvx = 0 atP. (A82)

guv is a tensor. If the equation g,,.» = 0 is true in one frame, it will be
valid in any frame. Therefore, we have

Guvix = 0. (A.83)
Since I‘[TW] = 0 for a Riemann spacetime, we have
I, =TI, (A.84)
The connection should be symmetric.
Egs. (A.83) and (A.84) can lead to an important formula in which the

Christoffel symbol is expressed in terms of the metric tensor and its deriva-
tives. From Eq. (A.83), we have

Guvix = Guvx — Upingav — I'oagua = 0. (A.85)
This gives
g,LLV,)\ = Fz)\gav + FS}\g,uoc- (A86)
Permuting the prA indices cyclically, we have
D = Gan + T dras (A.87a)
Guan =Tugax + TR, 9va- (A.87h)

Adding the above two equations and subtracting Eq. (A.86), we obtain

9 p,v + Gui,u — Guvx = 2qug)\0c; (A88)

where we have used the symmetries I'y;, = I'}, and g, = gy, Multiplying
Eq. (A.88) by ¢*" and using Eq. (A.25), Eq. (A.88) becomes
T 1 T
F,uu = §g>\ (g)\u,u + o, — guu,k)' (A89)
Eq. (A.89) is the relation between the metric tensor with the Christoffel
symbol (or Levi-Civita connection) of the Riemann metric.
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Using
97980 = 9" 9sr.a = 9 “9pa,r = 9% gpa,r (A.90)
and contracting over 7v of I'],, Eq. (A.89) becomes

1
Fga = 590”-(97#3,04 + 9ra,p — 9a,r)

= %gmgmtﬁ. (A.91)

We use g to denote the determinant |g.g| and calculate the differential

dg of the determinant g. dg can be evaluated by taking the differential of
each component of the tensor g,g and multiplying it by its coefficient in
the determinant which is the corresponding minor. Since the tensor g®?
is reciprocal to g.g, the components of g*? are equal to the minors of the

determinant of g,g divided by the determinant. Thus, we have

dg = 99°dgap = —99a5dg™". (A.92)
Using Eq. (A.92), Eq. (A.91) becomes
o _ 1 99 O9ra
B 99 0gra 028
_ 199
29 0zP
~10In(—g) 1
= D (g s
dln\/—g
= W = (ln V _g)”@ (A93)
Using Eq. (A.93), the divergence A, of a vector A% can be expressed
as
1
Aa‘a = Aa,a + —A" —Y9)«a
; Ve (V—=9).al
1
= \/—__g(\/—ng‘)7Q. (A.94)
A.8 Volume

Now we discuss the calculation of volumes for integrations in spacetime.
In the local Minkowski metric, we have the volume element dV = d*z =
dz®datdaz?da?. In any other coordinate system {2}, we have

0,1 .2 .3
Oz, xt, z*, x?) 42 det da? da®

— 7,.07.17.27 3 _
dV =dz"dx dx*dz’ = 0.2, 27, a7) ,

(A.95)
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where the factor 9( )/0( ) is the Jacobian determinant defined by

020 920
e
(20, 2t 22 23) %ﬁl Oz
7 7 7 N det _—
Az, zV % 23" 920"
= det(A%). (A.96)
Meanwhile, we have
ga’ﬁ’ = Ag,Ag/T]#V. (AQ?)

To simplify the notation, we denote the matrix of co3 as (¢). Then
Eq. (A.97) can be expressed in a matrix form

(9) = M)A, (A.98)

where T' denotes transpose. Evaluating the determinant of Eq. (A.98), we
have

g = det(g) = det(A)det(n)det(AT) = —[det(A)]%. (A.99)
Thus, Eq. (A.96) becomes
dV = /—gd*z. (A.100)

The factor /—gd*x is also called the proper volume element.
It should be noted that Gauss’s theorem also applies on the Riemann
spacetime. We integrate the divergence over a volume,

/ A% gt = / (V=GAY) ud'z. (A.101)

We have used Eq. (A.94) in the derivation of Eq. (A.101). Using Gauss’s
theorem, we have

/A:’a\/—gd‘lx = %Ao‘na\/—gds, (A.102)

where n,, is the unit direction vector of the surface element ds. This is the
version of Gauss’s theorem in the Riemann spacetime. nq/—gd>S is also
called the proper surface element.
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A.9 Riemann curvature tensor

The connection I'jj, is not a tensor. However, we can construct tensors
using I'f;,. One of them is the Riemann curvature tensor, which is the most
important tensor in describing the properties of the Riemann spacetime.
Let us consider a covariant vector field Ay(x). The second covariant
derivative of Ay reads
A/\;u;u = A/\;H,V - FiuAp;u - FZVAA;p
= A,\%,, - Fﬁu,uAp - Fiupr - F?\UAPJ'L
+ 08,19, Ay =T, Ay, (A.103)

If we exchange the order of the differentials, we have

_ p p p
A/\;V;u = AM«M - FAu,#Ap - F)\VAPxH - I‘)\,U,AP)V

+ F’/{HFZUAU — Fﬁ#AA;p. (A.104)
The difference of them has the form
Ay = Axuip = R/;\WAP - 2FFMV]A>\W (A.105)
with
Rf\)uu = Ff{lw - I‘f\wj + Fgﬂfiy - FgUFK#. (A.106)

We call R’)’\W the Riemann curvature tensor. RY v 18 @ tensor because all
other terms in Eq. (A.105) are tensors.
We have shown that the torsion tensor I'Y . is zero. Thus Eq. (A.105)

[nv]
becomes
A)\;,u;v - A)\;u;# = Rl)\)MUAp- (A107)
The Riemann curvature tensor can also be expressed as
Rp)\uu = gpo'RKMy' (AlOS)
For a flat spacetime with the Minkowski metric, Riuv = 0. If the

Riemann curvature tensor is not zero, we have a curved spacetime. The
Riemann curvature tensor has the following symmetry properties:

Riuu = _Ré\)uua RP)\,LLU = _Rp)\u#, (A109a)
Rp)\uu = _R)\pu;u (A109b)
Rp)\,uv = R,uvp)\- (A109c)

The symmetry relation Eq. (A.109a) can be obtained directly by exchang-
ing the subscripts g and v in Eq. (A.106). The symmetry relations
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Eqgs. (A.109b) and (A.109¢) can be easily proved in the local flat frame.
Since Eqgs. (A.109b) and (A.109c¢) are tensor relations, they will be valid in
any frame. In the local flat frame, I'};, = 0. We have

« 1 @
F,uu,g = 59 ﬂ(gﬁ,u,u,d + 98v,p,0 — g#Vﬁ-,O’)' (A.110)

Inserting Eq. (A.110) into Eq. (A.106), we have

1
R = 590‘0(905%# + Gov.B.u — 9Bv.on — YoB.pw

— Jou,Bv T IBuow)- (A.111)
Since
9aB,u,v = GapB,v,u> (A112)
we have
o 1 oo
RG = 59 Gov.pin = Goupw + ppaw = Ipvon) (A.113)
or

Ra,@uu = Jax Réuy

1
= 5 (gow,B,M — Yap,B,v T 9Bp,aw — gﬁu,ouu)' (A'114)
The symmetry relations Eq. (A.109) can be easily obtained using
Eq. (A.114).
There is another relation for the Riemann curvature tensor
R§#U+RZUA+R5M =0, (A.115)

which can be easily verified using Eq. (A.106). Eq. (A.115) is called the
Ricci identity.

A.10 Bianchi identities

In the following, we will prove an important derivative identity of the Rie-
mann curvature tensor.

RP

Apv;o

+RY, . +RY =0 (A.116)

Avosu Aoy

Eq. (A.116) is called the Bianchi identity. If a tensor equation is hold in
one frame, it would be valid in any frame. Thus we only need to prove
Bianchi identity in the local Minkowski metric. In the local Minkowski
metric, I'f), = 0. We have

_ pp
- Rkuu,a'

RP

Auv;o

(A.117)
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Using Eq. (A.106), Eq. (A.117) becomes

RS,e =8, T80 + TLIN — TR0
= (Piu,,u - F,;,u,u),a
=T 0 — Mo (A.118)
Similarly, we can obtain
R =T = Thvour (A.119a)
RS s = Mo = Do (A.119b)

Adding Eq. (A.119a), Eq. (A.119b) and Eq. (A.118), we obtain the
Bianchi identity

RP

Apv;o

+ RS,y + Ry =0 (A.120)

It is a tensor equation and should be valid in any frame.

A.11 Ricci tensor

When we make contraction of the Riemann curvature tensor ngﬁ on the
first and third indices, we obtain a two rank tensor

Rag = R 5 = Rga. (A.121)

R, is called the Ricci tensor. Contractions on other indices either give
zero or =R,3. Using R,g, we can define the Ricci scalar

R= gMVRHV = guugaﬁRau,@m (A122)

R is also called the Ricci scalar curvature.

A.12 Einstein tensor

We contract the indices po in the Bianchi identity Eq. (A.120) and obtain

K,uy;a - R)xl/;,u + R)\,u;u =0. (A123)
Multiplying ¢¥* and contracting, we have
R o — Ry + Ry = 0 (A.124)
or
y 1
R, — R, =0. (A.125)
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Eq. (A.125) can be rewritten as

v 1 v
(R n §6MR);V = 0

or
1 2
(Ruw — 59#1,}%)7 =0,
1
(R — 59" B),y =0.

We define Einstein tensor as

1
Guw =R — gguuR-

Egs. (A.126) and (A.127) become

G = G = G, = 0.

(A.126)

(A.127a)

(A.127D)

(A.128)

(A.129)

This property is used to show that the conservation of energy-momentum

is fulfilled in the Einstein field equations.
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Functional Formula

A function of multi-variables can be expressed as an expansion form
— 1
Flgoor o) = 3 4375
m=0 11 Tm

omF
X <78@11 690%1) Piy Pi,, - (Bl)
Eq. (B.1) can also be considered as the definition of a function of multi-
variables. Using the expansion form of Eq. (B.1), one can generalize the
function of multi-variables to functionals. Let ¢(z) be a function of . We
can generalize Eq. (B.1) and express the functional F[p] in the expansion
form

Flo] = Z % /dxl .. .dme(m)(;pl, e xm)e(T) o e(Tm), (B.2)
m=0 ’

where F(™) is a symmetric function of its arguments.
We define the functional derivative by

gf}f} = limy = {Fliy) + ed(w — )] — Flolw)]} (B.3)

The functional derivatives have the similar properties with the ordinary
derivatives

gigi; =z —y), (B.4a)
5oy il + Balel) = 55 Filiel + s Bl (B.4b)
5;21;) (FrlelRale]) = Filel s Fale] + Foli] 590(217) Filgl.  (B.do)

385
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According to Eq. (B.4), we have

5
dip(w)

1
Flo] = Z E/da:l...dme(erl)(I,xl,... T
m=0 ’

x (i) (i, ). (B.5)

We can also define the functional integration as a limit of multi-variable
integration

n—00

/D@M = lim [ doi - de,®(e1, -+, 0n)- (B.6)



Appendix C

Gaussian Integrals

C.1 Gaussian integrals

The integral

In(a) = /OOO e dr  (a > 0) (C.1)

is called the Gaussian integral. We can obtain the integral result in the
following way. We consider IZ(a),

Ig(a) = (%/ eazzdx) <%/ eadey>
= i// dxdye_“(””2+y2). (C.2)

In the planar polar coordinates, we have dxdy = rdrdf and z? + 3% = r2.

Then Eq. (C.2) becomes
) 1 0 2 o
Ij(a) = = rdr dfe
4 Jo 0
™ > —ar?

:§A e rdr

T
= — C-3
z (€3)
which gives
1 /m
Generally, one can calculate the integrals

I, (a) :/ e g da (a>0). (C.5)

0
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When n = 1, we have

e 1 [ 1
Li(a) = / e~ pdy = % e“”zd(ax?) =20 (C.6)
0 0

When n > 1, we differentiate Eq. (C.5) with respect to a

) [ oy
da 0

> 2
_ _/ e—a% .’L'n+2d(E
0

— Luaa). 1)
Using Eq. (C.7), we have

C.2 T'(n) functions

The Gaussian integrals are related to the I'(n) functions. The I'(n) func-
tions are defined as

I'(n) :/ e 2" tdx  (n>0). (C.9)
0
Integrating by parts, we have
I(n) = —/ " td(e™")
0
= —x”fld(eﬂ”)‘z@—l—/ e dx"
0
=(n-— 1)/ e T 2dx
0

=(n-1)T(n-1). (C.10)

Now we consider some special cases.

(1)

NGBS /000 e %dr =1. (C.11)
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F<l> :/ e T3 dx
2 0

= / 67\/5261\/5
0

= /. (C.12)
(3)n=1,23,
I'(n) = /000 e " ldr = (n — 1)L (C.13)
Wn=pdo
F(n)—F<%>%g (n—1)
1 3
25.5...(71_1)\/}_ (C.14)

In terms of I'(n) functions, we can express the Gaussian integrals as

I,(a) = /0 —a2® pn

e
nl+1 /Oo 7u2undu
= n+1/ € yy%dy

n+11)

(C.15)

n+

C.3 Gaussian integrations with source
Let us consider the Gaussian integral with source term

& > 1 J\2, J2
e~ T I gy e~ale—3) "+ 5 gy
— 00

— 00

- <2—7T> o (C.16)

We can calculate the following integrals similarly

1
00 ) 2 2 2
/ 8_%a12+1deI — <_7T> 8_‘2]7“- (017)
— 00 a
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1
S ) 2mi\ 2 _..
/ e%laszszdx _ (ﬂ) e Y2a (018)

oo a

[N
-
N

/ / _ / dx1dxsy - - d:ENef%m'A'”J'z
—0o0 700(2 )J\;oo%
il 1At
= . C.19
] (19
For the functional Gaussian integrals, we have
[ Dt Fatheerael < I o)

where A is the normalized parameter related to the definition of functional
integration. For complex ¢ with hermitian K, we have

/ Dt Dpe= I dale! Koot T ol d] _ £rofd'aldK70I) - ((.99)
Using the Taylor expansion,

Fly] = Z % /d:pl o dzpy PO (21, ) p(x1) - - o(am),  (C.23)
m=0 ’

we have

[ porigleS telbesonr)
=P[5 [Dpel anlcio s



Appendix D

Grassmann Algebra

The fermion field operators obey the anti-commutation relations. Corres-
pondingly, the fermion field functions can not be simply described by the
ordinary number. The anti-commuting numbers have to be introduced.
Since the anti-commuting numbers were first introduced by Hermann Grass-
mann, we call these numbers Grassmann variables.

A Grassmann algebra (also called exterior algebra) is an algebra con-
structed from a set of generators 6; obeying the anti-commutiion relation

{6:,0,} = 0. (D.1)

The index 7 of 8; runs from 1 to n. n is called the dimension of the algebra.
Later we will generalize 6; to 6(z) for an infinite dimension.
From Eq. (D.1), we have

62 = 0. (D.2)

Thus the square and all higher powers of a generator vanish. When we
expand an element of the Grassmann algebra, we have only finite sum of
the following terms due to Eq. (D.2).

FO:) =19+ Z 8, + Z fi(i)iﬁn@iz o f0;,05, - 0;,, (D.3)

i1 <i2
where the coefficients f() are ordinary numbers. We define differentiation
with respect to the generators by

do;

&, 0ij (D.4)

and

d
0,0

g intia 01, = 05,0y -0, — 0idg 03, Oy - 0,

o (=)™ 164,05, 05, - 0s, (D.5)
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The minus sign comes from the anti-commutation relation when the factor

0;, is anti-commuted to the left so that the derivative operator can be
applied directly. From Eq. (D.4), we have
d
{%, HJ} = 517‘, (D6a)
d d
—,—— ¢ =0. D.6b
i | )

All the higher derivatives with respect to the same generator 6; are zero.
The integration of the generators of Grassmann algebra is defined by

/d@i =0, (D.7a)
/ d0;0; = 1. (D.7h)

The definition Eq. (D.7) is made to guarantee the translation invariance of
the integration, which is an important property of the ordinary integration.
For any function f(), its expanded form is

[ =1+ 0. (D.8)
Then

[ aos6+m = [ asipy+ 10+ )
- /de(f1 +f29)+/d9f277
_ /def(e). (D.9)

Comparing the definitions of the differentiation and integration
(Egs. (D.4) and (D.7)), we can see that the operators of differentiation and
integration for Grassmann variables are the same. Thus the differentials
df; obey the same anti-commutation relations as d%i'

{d@i, dGJ} = O, (DlOa)
{d6;,0,} = 6,;. (D.10b)

Now let us consider the variable transformations in the integral involving
Grassmann algebra. For a linear transformation in one-dimension such as

0 =n+ab, (D.11)
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where 7 is an anti-commuting number and a is an ordinary number, we

[ass6) = [ at'rco)

= /d@’f(ao +1)

— [ar500)

- /d@’ <%>1f(0). (D.12)

It should be noted that Eq. (D.12) is different with the transformation
formula for ordinary integration

/dxf(ac) = /dw’%f(:v) (D.13)

The Grassmann integral exhibits the opposite behavior as compared to
the ordinary integral. In general, under a linear transformation for an n-

have

dimensional Grassmann algebra
6‘/1' = Zaiﬂj + i, (D14)
J

we have

/den---elf(e) = /d@'n---e’l [det (3—;)]_1f(9). (D.15)

We have a factor of the inverse of the Jacobian determinant instead of the
Jacobian determinant.

Now let us evaluate the Gaussian integrals for Grassmann algebra. Since
the Dirac fermion field is complex, we introduce the complex Grassmann
variables. 6; and 6} obeying the anti-commutation relations

{6,,0,} = (6.6} = (6.6} = 0. (D.16)

The conjugate generators are defined as

(6:)" =07, (D.17a)
01" = 0, (D.17b)
(05,0, -+ 0,,)" = 607 --- 605067, (D.17¢)
(\0;)* = \*6;. (D.17d)
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For one dimensional case, we have

/ dode*e? 0 = / dOdo* (1 + ab*0)
a

—et lna.
In general, we have
/d91 - 0,d07 - .9;6(9*,49 — det(A)
and
/d91 e 0,dO7 - .9;6(0TA9+9TP+pr9)

= det(A) exp(—p' A~ 1p).

(D.18)

(D.19)

(D.20)

Generalization from the variable to the continuum limit 6; — 6(x)
for applications in anti-commuting fields is straightforward. The anti-

commutation relation of the variable 6(z) is given by

{0(x),0(y)} = 0.

(D.21)

The ordinary differentiations in Egs. (D.4) and (D.6) are replaced by the

functional derivative.

and

{50500} =9 =)
{0 7

An functional of #(x) can be expanded like

+/dw1---d:vnf(")(x1,--- yxp)0(z1) - 0(2).

The integration rules for continuous Grassmann variables are

/d@(az) 1=0,

/dﬁ(z)ﬁ(z) =1

(D.22)

(D.23a)

(D.23b)

(D.24)

(D.25a)

(D.25b)



Grassmann Algebra
The Gaussian integral over fermion fields is given by
/Di/} / Dy exp{/ d*o’ diap () A2, 2)Y(x)
+ [ i) + o)

= det(A) exp |:—/d4xld4$€p($l)A_l(:El,,’E)p(,’b)] :
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Appendix E

Euclidean Representation

The flat physical spacetime is the Minkowski spacetime. The Wick rotation
makes the calculations easier because we can transform the calculations
in the Minkowski spaceitme into those in the four-dimensional Euclidean
space. We denote a space point in the Euclidean space by xg = (x,x4). The
four-dimensional Euclidean space is obtained from the Minkowski spacetime
by the transformation.

T; = X;,  1To — T4. (El)

Under the transformation Eq. (E.1) and the Wick rotation ¢/ — —it, x4
becomes real. The calculations can then be performed in real Euclidean
space. The transformation of volume element is given by

d'zp = d*vdry = dBridt = id'z. (E.2)

The distance transforms as
3

(deg)? = (dui)? + (dos)? = —(dx)?. (E.3)

i=1
The kinetic term for a scalar field is given by
0upd"d = 990 ¢ + 0;¢0'd = —(909)* — (V)* = —(9r¢)*. (EA4)
The d’Alembert Operator is given by
02 02
O= —-Vi=—-—~ —VZ=— 2= _0Og. E.
5 \Y 022 \Y (Or) E (E.5)
The generating functional for a free scalar field in the Euclidean repre-
sentation has the form

WolJ] = / Dge S d'ee{3[O0)*+m?%] 1 I0} (E.6)
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We can also define the Euclidean momentum space by the following trans-
formation relating the momentum k in the Minkowski spacetime to the kg
in the Euclidean space.

kE = (k, k4) with k4 = —iko. (E7)
The volume element in the momentum space is given by
d*kp = dkdky = —d®kidky = —idk. (E.8)

and the distance in momentum space has the form

3
(dkp)* = _(dki)? + (dka)* = —(dk)*. (E.9)

i=1
For the factor k - z, we have
k-x=kya' =koa' —k-x=kyx' —k-x, (E.10)

which is not equal to kg - zg. However we always have Eq. (E.10) in
the integration over d®k. We can change k — —k and then replace k - x
by kg - zp. As an example, the Feynman propagator in the FEuclidean
representation has the form

d4kE e*ikE-:EE
Ap(z)=—i [ LEEC
r(z) Z/ (2m)% k% + m2

) d4k e*ikE-:EE
:ﬂ/2112 —. (E.11)
2K+ k3 +m

Since k4 is real, the integration in Eq. (E.11) contains no poles on its inte-
gration path and is thus well defined.



Appendix F

Some Useful Formulas

(1)

(0-A)(o-B)=A -B+ioc-(AxB). (F.1)
To prove Eq. (F.1), we use the commutation relations for o;
00 = i€k oy + dijs (F.2)
where €% is the antisymmetric Levi-Civita symbol.

1 even permutation of 1,2,3
€% = { —1 odd permutation of 1,2,3 (F.3)
0 otherwise.
From Eq. (F.2), we can easily obtain
0i0j — 00, = 2k gy, (F.4a)

0;0; +0;0; = 2513 (F4b)

Using the above relations, we have

3 3
(0-A)o-B)=(D_0id)(> 0o;B)
i=1 J=1

3 3 y
=D AiBj(ie7 oy + 6;)
i=1 j=1
3 3 y
=> > AiBj(ie"* o)) + A - B. (F.5)
i=1 j=1
Using the relation
> €7 A;Bjor, = (A xB)ox =0 - (A xB), (F.6)
ijk k
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we have
(0-A)(c-B)=A-B+io-(AxB). (F.7)
(2) The trace relations of the Gamma matrices v* (u =0, 1,2, 3).
Tr{y*} =0, (F.8a)
Tr{y*"} = 477, (F.8b)
Te{y*y 7y} = P — ™ P, (F.8¢)
Tr{+°} =0, (F.8d)
Tr{y°7*7"} = 0, (F.8e)
Te{yPy7 7y} = —die*, (F.8f)
where e*?1 is the totally antisymmetric symbol with €123 = 1.
(3) d-dimensional integral in polar coordinate form
/ddkF(k2) _ ot /OO dkkI= 1 F(K?), (F.9)
r'(5) Jo

where k% = k? + k3 + -+ + k2.
Eq. (F.9) can be derived in the following way. We first evaluate the
integral

Iy = /ddke*%’*. (F.10)

Eq. (F.11) is a Gaussian integral. Thus we have
Iy = (V2n)?. (F.11)

On the other hand, I; can be expressed as

I, = C(d)/ ik e 2k
0

:C(d)Q%_l/ dzz?le "
0

= C(d)227'T (g) . (F.12)
Comparing Eq. (F.12) with Eq. (F.11), we have
ot
C(d) = ——. (F.13)
r(s)

C(d) is the factor before the integral on the right hand side of Eq. (F.9),
which proves Eq. (F.9).
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(4) The volume and surface area of d-dimensional spheres.

Using Eq. (F.9), we can obtain the volume V; of a d-dimensional sphere

with the radius of R.

Vi =

The corresponding sphere surface area Sg(R) in d-dimension is

Sa(R)

dz
S 2?2<R?
ors [
F; / drrd—1
I'(g) Jo
. (F.14)
30 (3)
vy 2mt
< = R F.15
dR T (%) (F.15)






Appendix G

Jacobian

We consider functions of two variables: u(x,y) and v(z,y). The Jacobian
determinant is defined by

(5:), ()
I(u,v) _ |\ /), \0y/,
o(z,y) ~ (@) (@)
ox v ay /),
ou ov ou ov
(@), G)-@).G), e
There are several relations for Jacobian which are useful in the calcula-

tions of the thermodynamic derivatives. When f = f(u,v) and g = g(u,v)
are two functions of u and v, we can prove the following chain rule

af,g)  9(f,g)0(u,v)

= . G.2
9(r.y) ~ 9w, 0)2r,y) 2
Interchanging two columns of the determinant, we have
d(u,v) (v, u)
= — . G.3
9.y)  0y) 3
Setting v =y, Eq. (G.1) becomes
O(u,y)  (Ou
a9y \oz y. (G.4)
Setting f = z and g = y in Eq. (G.2), we have
D)) | )

A(u,v)0(z,y)
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Using Eq. (G.4) and the chain rule, we obtain

(@) _ O(wy)
ox /), Oz,y)
0w, )0(u,2)
A(u, x)0(x,y)

which can be rewritten as

(), (G), (5).

(G.7)



Appendix H

Geodesic Equation

In the FEuclidean space or Minkowski spacetime, a line without changing
its direction is a straight line. The shortest line in the Euclidean space or
Minkowski spacetime is a straight line. Thus we call them the flat space
or flat spacetime. In the curved spacetime such as the Riemann spacetime,
there is no more a straight line. However, one can extend the concept of
straight line to the curved space. A straight line in the Euclidean space is
a line without changing the direction characterized by the tangent of the
line. Similarly we define the ’straight line’ or precisely so-called geodesics
in the Riemann spacetime a line in which the tangents of nearby points are
parallel. We denote u* = % as the tangent of the curve x(\) with A as
the curve parameter. Then a geodesic is a line determined by the following
equation

Vuu =0. (H.1)
In the component notation, we have
u®uly, = utuly, + I‘Z,@uo‘uﬂ = 0. (H.2)
Inserting u* = % and uo‘a% = % into Eq. (H.2), we have
d?at u dz® da?

e H.
2 e TN an 0 (H.3)

Eq. (H.3) is called the geodesic equation. It describes a line drawn in such
a way that keeps its tangent as parallel as possible.

A geodesic is also a curve with minimal distance between any two
points. The shortest line in the Euclidean space or Minkowski spacetime
is a straight line. In the curved spacetime such as the Riemann spacetime,
we will prove that the shortest line is a geodesic line. We can use the varia-
tion principle to derive the equation that describes the shortest line in the
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Riemann spacetime. The distance S of a line connecting two points A and
B in the Riemann spacetime is defined as

S = /BA ds. (H.4)

The line has the minimum distance S is the shortest line. Therefore we
determine the minimum of S by variation.

A
08 = 5/ ds = 0. (H.5)
B
The line element ds is given by
dS = (gapdz®dz’)z. (H.6)
For a line described by a parameter A, i.e. a# = z#(\), Eq. (H.6) reads
dS = (gapi™i")? dA (H.7)
with
dz®
P = ——. H.8
T T (H.8)
Eq. (H.5) becomes
A 1
5/ (gapi®i®)2d\ = 0. (H.9)
B

Due to the mathematical similarity, one can define £ = (ga,gg'co‘:b'@)% as the
Lagrangian and consider S in Eq. (H.4) as the action for particle motion in
the Riemann spacetime.

The variation equation Eq. (H.9) leads to the Euler-Lagrange equation

9(gapi®i®)z  d O(gapi®i®)s

— =0. H.10
oxY dA ok ( )
We can take the parameter A as the distance of s, then
dz® dzP dz® dxP
%58 = gop—e——— = Jap———— = 1. H.11
gt = 90870 "ax 99 ds ds (H.11)
Eq. (H.10) can be rewritten as
0(gapd*i?)?  d D(gapi®i®)?
oxv dX loking
1 a o d av e v i”
_ 9ap ca-p 4 (Jard® + gpu2”) (H.12)

(gaﬁjaiﬁ)% d¥ dX (gaﬁiafbﬁ)%



Geodesic Equation 407

Using Eq. (H.11), we have

1 d
- ca.B 4 oy _
29(1,8,1/55 T dS (gaux ) 0 (Hl?))
or
d*z 1 dz® dxP
av™ 7 5 av,B — JYaBwv) 7 7 =0. H.14
Jow ™52 + (avp 9906, ) ds ds ( )

Using the relations

dx® dxP dxP dz® dx® dxP

av,~ 7 7. — viaT ;T — voaT T T, H.15
Jow ds ds 9bv, ds ds b, ds ds ( )
Eq. (H.14) becomes
d?zr 1 dz® dz’
=" (gav via — GaBy)—— —— = 0. H.16
77 T 59" (Gavs + gora = Gapw) = (H.16)
Using the relation between the connection I'j}, with the metric g,
(07 1 o
FMV = 59 A(g,uA,u + Guap — g,uu)\)v (H17)
we have
d?at v dz® daP —0 (H.18)
ds? B ds ds '

Eq. (H.18) is just the geodesic equation Eq. (H.3).
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spinor representation, 40

spinor transformation, 45, 46
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