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Introduction

This book grew out of a two-semester course given to sophomore
and junior engineering majors at the U.S. Naval Academy. These stu-
dents had just completed three semesters of traditional calculus and a
fourth semester of ordinary differential equations. Consequently, it was
assumed that they understood single and multivariable calculus, the
calculus of single-variable, vector-valued functions, and how to solve a
constant coefficient, ordinary differential equation.

The first five chapters were taught to system and electrical engi-
neers because they needed transform methods to solve ordinary differ-
ential and difference equations. The last six chapters served mechanical,
aeronautical, and other engineering majors. These students focused on
the general topics of boundary-value problems, linear algebra, and vec-
tor calculus.

The book has been designed so that the instructor may inject his
own personality into the course. For example, the instructor who enjoys
the more theoretical aspects may dwell on them during his lecture with
the confidence that the mechanics of how to solve the problems are
completely treated in the text. Those who enjoy working problems may
choose from a wealth of problems and topics. References are given to
original sources and classic expositions so that the theoretically inclined
may deepen their understanding of a given subject.

Overall this book consists of two parts. The first half involves ad-
vanced topics in single variable calculus, either with real or complex
variables, while the second portion involves advanced topics in multi-



variable calculus. Unlike most engineering mathematics books, we begin
with complex variables because they provide powerful techniques in un-
derstanding and computing Fourier, Laplace, and z-transforms.

Chapter 1 starts by reviewing complex numbers; in particular, we
find all of the roots of a complex number, z1/™, where n is an integer
and z is a complex number. This naturally leads to complex algebra
and complex functions. Finally, we define the derivative of a complex
function.

The remaining portion of Chapter 1 is devoted to contour inte-
gration on the complex plane. First, we compute contour integrals by
straightforward line integration. Focusing on closed contours, we in-
troduce the Cauchy-Goursat theorem, Cauchy’s integral theorem, and
Cauchy’s residue theorem to greatly facilitate the evaluation of these
integrals. This analysis includes the classification of singularities. Al-
though Chapter 1 is not necessary for most of this book, some sections
or portions of some sections (2.5, 2.6, 3.1-3.6, 4.5, 4.10, 5.1, 5.3-5.5,
6.1, 6.5, 7.5-7.6, 8.4, 8.7, 9.4, 9.6, 11.6) require this material and must
therefore be excluded when encountered. If the students have had ele-
mentary complex arithmetic (Section 1.1), the affected sections drop to
3.4,3.6,4.10, 5.3, 5.5, 7.5, 8.4, and 9.6.

Chapter 2 lays the foundation for transform methods and the so-
lution of partial differential equations. We begin by deriving the classic
Fourier series and working out some interesting problems. Next we in-
vestigate the properties of Fourier series, including Gibbs phenomena,
and whether we can differentiate or integrate a Fourier series. Then we
reexpress the classic Fourier series in alternative forms. Finally we use
Fourier series to solve ordinary differential equations with periodic forc-
ing. As a postscript we apply Fourier series to situations where there is
a finite number of data values.

In Chapter 3 we introduce the Fourier transform. We compute
some Fourier transforms and find their inverse by partial fractions and
contour integration. Furthermore, we explore various properties of this
transform, including convolution. Finally, we find the particular solution
of an ordinary differential equation using Fourier transforms.

Chapter 4 presents Laplace transforms. This chapter includes find-
ing a Laplace transform from its definition and using various theorems.
We find the inverse by partial fractions, convolution, and contour in-
tegration. With these tools, the student can then solve an ordinary
differential equation with initial conditions and a piece-wise continu-
ous forcing. We also include systems of ordinary differential equations.
Finally, we examine the importance of the transfer function, impulse
response, and step response.

With the rise of digital technology and its associated difference
equations, a version of the Laplace transform, the z-transform, was de-



veloped. In Chapter 5 we find a z-transform from its definition or by
using various theorems. We also illustrate how to compute the inverse
by long division, partial fractions, and contour integration. Finally, we
use z-transforms to solve difference equations, especially with respect to
the stability of the system.

Chapter 6 is a transitional chapter. We expand the concept of
Fourier series so that it includes solutions to the Sturm-Liouville prob-
lem and show how any piece-wise continuous function can be reexpressed
in terms of an expansion of these solutions. In particular, we focus on
expansions that involve Bessel functions and Legendre polynomials.

Chapter 7, 8, and 9 deal with solutions to the wave, heat, and
Laplace’s equations, respectively. They serve as prototypes of much
wider classes of partial differential equations. Of course, considerable
attention is given to the technique of separation of variables. However,
additional methods such as Laplace and Fourier transforms and integral
representations are also included. Finally, we include a section on the
numerical solution of each of these equations.

Chapter 10 is devoted to vector calculus. In this book we focus on
the use of the del operator. This includes such topics as line integrals,
surface integrals, the divergence theorem, and Stokes’ theorem.

Finally, in Chapter 11 we present some topics from linear algebra.
From this vast field of mathematics we study the solution of systems of
linear equations because this subject is of greatest interest to engineers.
Consequently, we shall cover such topics as matrices, determinants, and
Cramer’s rule. For the solution of systems of ordinary differential equa-
tions we discuss the classic eigenvalue problem.

This book contains a wealth of examples. Furthermore, in addition
to the standard rote problems, I have sought to include many problems
from the scientific and engineering literature. I have formulated many of
the more complicated problems or computations as multistep projects.
These problems may be given outside of class to deepen the students’
understanding of a particular topic.

The answers to the odd problems are given in the back of the book
while the worked solutions to all of the problems are available from
the publisher. It is hoped that by including problems from the open
literature some of the academic staleness that often pervades college
texts will be removed.
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Chapter 1

Complex Variables

The theory of complex variables was originally developed by math-
ematicians as an aid in understanding functions. Functions of a complex
variable enjoy many powerful properties that their real counterparts do
not. That is not why we will study them. For us they provide the
keys for the complete mastery of transform methods and differential
equations.

In this chapter all of our work points to one objective: integration
on the complex plane by the method of residues. For this reason we
will minimize discussions of limits and continuity which play such an
important role in conventional complex variables in favor of the com-
putational aspects. We begin by introducing some simple facts about
complex variables. Then we progress to differential and integral calculus
on the complex plane.

1.1 COMPLEX NUMBERS

A complex number is any number of the form a + bi, where a and
b are real and i = \/=1. We denote any member of a set of complex
numbers by the complez variable z = z + iy. The real part of z, usually
denoted by Re(z), is ¢ while the imaginary part of z, Im(z), is y. The
complez conjugate, 7 or z*, of the complex number a + bi is a — b:.
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Complex numbers obey the fundamental rules of algebra. Thus,
two complex numbers a + bi and ¢ + di are equal if and only if a = ¢
and b = d. Just as real numbers have the fundamental operations of
addition, subtraction, multiplication, and division, so too do complex
numbers. These operations are defined:

Addition

(a+bi)+ (c+di)=(a+c)+ (b+d) (1.1.1)
Subtraction

(a+b)—(c+di)=(a—c)+(b—d)i (1.1.2)
Multiplication

(a+ bi)(c + di) = ac+ bei + adi + i°bd = (ac — bd) + (ad + be)i (1.1.3)
Division

a+bi _a+bic—di ac —adi + bei — bdi? _ ac+ bd + (bc — ad)i
c+di c+dic—di 2 +d? - ¢? + d?

(1.1.4)
The absolute value or modulus of a complex number a + b, written
|a + bi|, equals va? + b2. Additional properties include:

|2122Z3--‘zn| = |21||22||Z3|‘-'|2n| (115)

|21/22] = |21]/|22] if 22 #0 (1.1.6)
|21 + 22 4+ 23+ -+ -+ 2n| < |z1| + |22 + |23] + - + [ 2n] (1.1.7)

and
|Z1 + Zzl > |21| - |22| (118)

The use of inequalities with complex variables has meaning only when
they involve absolute values.

It is often useful to plot the complex number z + iy as a point (z, y)
in the zy plane, now called the complex plane. Figure 1.1.1 illustrates
this representation.

This geometrical interpretation of a complex number suggests an
alternative method of expressing a complex number: the polar form.
From the polar representation of « and y,

z =rcos(f) and y=rsin(f), (1.1.9)

where 7 = /22 + y? is the modulus, amplitude, or absolute value of z
and @ is the argument or phase, we have that

z = & + iy = r[cos(f) + isin(F)]. (1.1.10)
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Figure 1.1.1: The complex plane.

However, from the Taylor expansion of the exponential in the real case,

0 = (00)F

e’ =y ( k!) . (1.1.11)
k=0
Expanding (1.1.11),
; 62 6% ¢ 6 6 6
10 Pned — — —— — . y — — — — — ...

=l +z<0 T tE -t ) (1.1.12)
= cos(#) + isin(F). (1.1.13)

Equation (1.1.13) is Euler’s formula. Consequently, we may express
(1.1.10) as
z = re'?, (1.1.14)

which is the polar form of a complex number. Furthermore, because
2" = et (1.1.15)
by the law of exponents,
2" = r*[cos(nf) + isin(nb)]. (1.1.16)

Equation (1.1.16) is De Moivre’s theorem.



4 Advanced Engineering Mathematics

e Example 1.1.1

Let us simplify the following complex number:

3—21 _ 3-2t -—-1-1 —3-3i+2i+2% —5-—1 5 i

A+ A4 T1=i T 1+1 =73 2 7%

o Example 1.1.2

Let us reexpress the complex number —/6 — #v/2 in polar form.
From (1.1.9) r = /6 + 2 and 6 = tan~'(b/a) = tan~*(1/V/3) = 7/6 or
77/6. Because —/6 — i1/2 lies in the third quadrant of the complex
plane, § = 77 /6 and

—V6 — iV/2 = 2/2e7/8, (1.1.18)

Note that (1.1.18) is not a unique representation because +2n7 may be
added to 77/6 and we still have the same complex number since

e'PE20™) — cos( + 2n7) + isin(d £ 2n7) = cos(f) + isin(f) = '’
(1.1.19)
For uniqueness we will often choose n = 0 and define this choice as the
principal branch. Other branches correspond to different values of n.

e Example 1.1.3

Find the curve described by the equation |z — zg| = a.
From the definition of the absolute value,

V(Ee=-20)? +(y—w)*=a (1.1.20)

or
(z —20)* + (¥ — w0)* = a®. (1.1.21)

Equation (1.1.21), and hence |z — zy| = a, describes a circle of radius a
with its center located at (zq, yo). Later on, we shall use equations such
as this to describe curves in the complex plane.

e Example 1.1.4
As an example in manipulating complex numbers, let us show that

a -+ bi
b+ a2

=1 (1.1.22)
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We begin by simplifying

a+bi a+bi b—ai 2ab b2 — a2
biai bta b—w 2xp Teret (1.1.23)

Therefore,
a+ bi 4a2h? —2a%b% +a*  [a® 420202 + %
b+ ai (a? + b2)2 (a2 + b2)2 (a? + b2)?
(1.1.24)
Problems

Simplify the following complex numbers. Represent the solution in the
Cartesian form a + bi:

5i 5+5 20
1. 9.

2+: s—4 Ta+ 3

142 2—i o
e 4 (L—i)

5. i(1—iv3)(V3+1)

Represent the following complex numbers in polar form:

6. —i 7. —4
8. 24231 9. —5+5¢
10. 2-2 11. —1++3i

12. By the law of exponents, e(®+8) = ¢ioeif Use Euler’s formula to
obtain expressions for cos(a + ) and sin(a + §) in terms of sines and
cosines of « and 3.

13. Using the property.that E,ILO " = (1 — ¢V*t1)/(1 - ¢) and the
geometric series Zﬁ:o '™ obtain the following sums of trigonometric

functions:
cos(nt) = cos Nt\ sin{(N + 1)t/2]
Z (nt) = ( 2 ) sin(t/2)

and

. sin[(N + 1)t/2]
Zsm(nt) s1n< 5 ) en@2)

These results are often called Lagrange’s trigonometric identities.
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14. (a) Using the property that S o q" =1/(1—9q),if |g| < 1, and the
geometric series Y~ o "', |¢| < 1, show that

o]
1 — € cos(t)
n —
r;)e cos(nt) = 1+ €2 — 2¢ cos(t)

and

i €" sin(nt) ¢ sin(t)
nt) = :
ot 1+ €2 — 2¢ cos(t)

(b) Let ¢ = =%, where a > 0. Show that
. e sin()
2 Z e sin(nt) = cosh(a) — cos(t)”

n=1

1.2 FINDING ROOTS

The concept of finding roots of a number, which is rather straight-
forward in the case of real numbers, becomes more difficult in the case
of complex numbers. By finding the roots of a complex number, we wish
to find all the solutions w of the equation w™ = 2, where n is a positive
integer for a given z.

We begin by writing z in the polar form:

z=re'? (1.2.1)

while we write

w = Re'® (1.2.2)
for the unknown. Consequently,
w" = R"e'™® = re'? = 2. (1.2.3)
We satisfy (1.2.3) if
R*=r and n®=¢+2kw, k=0,%1,£2,..., (1.2.4)

because the addition of any multiple of 27 to the argument is also a
solution. Thus, R = r!/" where R is the uniquely determined real
positive root, and

k
<p,,=§+2i, k=0,+1,42,... (1.2.5)

n
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X
%
Figure 1.2.1: The zeros of 2° = —32.
Because wy = wg4n, 1t 1s sufficient to take £ = 0,1,2,...,n— 1. There-
fore, there are exactly n solutions:
. 2wk
wy = Re®* = pl/n exp [z (2 + L)] (1.2.6)
n n

with £ = 0,1,2,...,n — 1. They are the n roots of z. Geometrically
we can locate these wy’s on a circle, centered at the point (0,0), with
radius R and separated from each other by 27 /n radians. These roots
also form the vertices of a regular polygon of n sides inscribed inside of
a circle of radius R. (See Example 1.2.1.)

In summary, the method for finding the n roots of a complex num-
ber zg is as follows. First, write zo in its polar form: zy = re!?. Then
multiply the polar form by ¢?7*. Using the law of exponents, take the
1/n power of both sides of the equation. Finally, using Euler’s formula,
evaluate the roots for k =0,1,...,n - 1.

e Example 1.2.1

Let us find all of the values of z for which z° = —32 and locate
these values on the complex plane.
Because
—32 = 32™ = 2%™, (1.2.7)

wi  2wik
Zr = 2exp €+ 5

), k=0,1,2,3,4, (1.2.8)
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Figure 1.2.2: The zeros of z® = —1 + 1.

or
) T L. T
zg = 2exp <€) =2 [cos (g) + 2sin (g)] ,
z1 = 2ex @ =2 |cos 3—7T + isin 3—77
1 = p 5 - 5 5 )
z2 = 2exp(wi) = -2,
z3 = 2ex m =2 -7—7£ -+ isin 7_7r
L AN A AN 5
and

9me 97 .. {97
24 = 2exp (T) =2 [cos <?) + 2sin (?)] .

(1.2.9)

(1.2.10)

(1.2.11)

(1.2.12)

(1.2.13)

Figure 1.2.1 shows the location of these roots in the complex plane.

e Example 1.2.2

Let us find the cube roots of —1 + ¢ and locate them graphically.
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Because —1 + i = /2 exp(37i/4),

zk:21/6exp<?+22;k), k=0,1,2 (1.2.14)
or

=95 exp (™) = 21/5 [cos (T) +sin (T

z0 = 2 exp(4)_2 [cos(4)+zs1n(4)], (1.2.15)

117 19%:¢ 11m
— 91/6 =T —9l/8 fakulid isin [ ——
21 =2 exp( 1 )_2 [cos(12)+zs1n<12 )] (1.2.16)

and

1972 197 197
_9l/6 _ 91/6 s
22 =2 exp< 19 ) 2 [cos(12)+zsm(12 )] (1.2.17)

Figure 1.2.2 gives the location of these zeros on the complex plane.
Problems

Extract all of the possible roots of the following complex numbers:

1. 8i/s 2. (=1)/3

3. (=93 4. (=27i)V/¢

5. Find algebraic expressions for the square roots of a — b, where a > 0
and b > 0.

6. Find all of the roots for the algebraic equation 2% — 3iz%2 — 2 = 0.
7. Find all of the roots for the algebraic equation 2% + 6i22 + 16 = 0.

1.3 THE DERIVATIVE IN THE COMPLEX PLANE:
THE CAUCHY-RIEMANN EQUATIONS

In the previous two sections, we have done complex arithmetic.
We are now ready to introduce the concept of function as it applies to
complex variables.

We have already introduced the complex variable z = ¢ + iy, where
z and y are variable. We now define another complex variable w = u+iv
so that for each value of 2 there corresponds a value of w = f(2). From
all of the possible complex functions that we might invent, we will focus
on those functions where for each z there is one, and only one, value of
w. These functions are single-valued. They differ from functions such
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z-plane w-plane

Figure 1.3.1: The complex function w = z2.

as the square root, logarithm, and inverse sine and cosine, where there
are multiple answers for each z. These multivalued functions do arise in
various problems. However, they are beyond the scope of this book and
we shall always assume that we are dealing with single-valued functions.

A popular method for representing a complex function involves
drawing some closed domain in the z-plane and then showing the corre-
sponding domain in the w-plane. This procedure is called mapping and
the z-plane illustrates the domain of the function while the w-plane il-
lustrates its image or range. Figure 1.3.1 shows the z-plane and w-plane
for w = 2?; a pie-shaped wedge in the z-plane maps into a semicircle on
the w-plane.

e Example 1.3.1
Given the complex function w = 6_22, let us find the corresponding

u(z,y) and v(z,y).
From Euler’s formula,

w= et = em@HIV) — yP-a?=2izy ey2_”2[cos(2:vy) — tsin(2zy)].

(1.3.1)
Therefore, by inspection,
u(z,y) = v’ - cos(2zy) and v(z,y) = —ev’ %’ sin(2zy).
(1.3.2)

Note that there is no 7 in the expression for v(z,y). The function w =
f(2) is single-valued because for each distinct value of z, there is an
unique value of u(z,y) and v(z, y).

e Example 1.3.2

As counterpoint, let us show that w = /7 is a multivalued function.



Complex Variables 11

We begin by writing z = re!®+27% where r = /22 + ¢ and 0 =
tan~1(y/z). Then,

wy = /ret?/24TE L p =01, (1.3.3)
or
wo = /T [cos(8/2) + isin(f/2)] and  w; = —wp. (1.3.4)
Therefore,

up(z,y) = Vreos(8/2), = wo(z,y) = V/rsin(4/2) (1.3.5)

and
uy(z,y) = —/r cos(6/2), u(z,y) =’—\/Fsin(0/2). (1.3.6)

Each solution wy or wy is a branch of the multivalued function /z. We
can make /2 single-valued by restricting ourselves to a single branch,
say wo. In that case, the Re(w) > 0 if we restrict —7 < 6 < 7. Although
this is not the only choice that we could have made, it is a popular one.
For example, most digital computers use this definition in their complex
square root function. The point here is our ability to make a multivalued
function single-valued by defining a particular branch.

Although the requirement that a complex function be single-valued
is important, it is still too general and would cover all functions of two
real variables. To have a useful theory, we must introduce additional
constraints. Because an important property associated with most func-
tions is the ability to take their derivative, let us examine the derivative
in the complex plane.

Following the definition of a derivative for a single real variable, the
derivative of a complex function w = f(z) is defined as

dw lim Aw lim flz 4+ Az) - f(z)'

= = lim = =
dz Aaz—0 Az az—0 Az

(1.3.7)

A function of a complex variable that has a derivative at every point
within a region of the complex plane is said to be analytic (or regular
or holomorphic) over that region. If the function is analytic everywhere
in the complex plane, it is entire.

Because the derivative is defined as a limit and limits are well be-
haved with respect to elementary algebraic operations, the following
operations carry over from elementary calculus:

% [cf(z)] =cf'(2), ¢ a constant (1.3.8)
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d ! !
- [f(z) + Q(Z)] = fl(z2) £ ¢'(2) (1.3.9)

& [f (Z>y<z>] = /(2)9(2) + £(2)'(2) (1.3.10)

47 _ 6@ - g (@)
&z L(z)] ) (13.11)

diiz-{f[g(z)]} = f'[9(2)]d'(2), the chain rule. (1.3.12)

Another important property that carries over from real variables is
’Hospital rule: Let f(z) and g(z) be analytic at zg, where f(z) has a
zero! of order m and g(z) has a zero of order n. Then, if m > n,

f(z) _ .
Jim =55 =0; (1.3.13)
if m=n,
f(z) _ J(20)
zll»zo g(z) g(m)(ZQ) (1.3.14)
and if m < n,
1) _ o, (1.3.15)

2% 9(2)

o Example 1.3.3
Let us evaluate lim,_;(z!® + 1)/(z% + 1). From I’Héspital rule,

. 21041 lim 102° 5. a_5
zl—rle' 26+1 _zl—u 625 _321—IBZ 3

(1.3.16)

So far we have introduced the derivative and some of its properties.
But how do we actually know whether a function is analytic or how
do we compute its derivative? At this point we must develop some
relationships involving the known quantities u(z,y) and v(z,y).

We begin by returning to the definition of the derivative. Because
Az = Az+iAy, there is an infinite number of different ways of approach-
ing the limit Az — 0. Uniqueness of that limit requires that (1.3.7) must
be independent of the manner in which Az approaches zero. A simple

! An analytic function f(z) has a zero of order m at zo if and only if

F(z0) = f/(z0) = -+ - = f™=V(2z0) = 0 and f™)(z) # 0.
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Figure 1.3.2: Although educated as an engineer, Augustin-Louis
Cauchy (1789-1857) would become a mathematician’s mathematician,
publishing 789 papers and 7 books in the fields of pure and applied
mathematics. His greatest writings established the discipline of mathe-
matical analysis as he refined the notions of limit, continuity, function,
and convergence. It was this work on analysis that led him to develop
complex function theory via the concept of residues. (Portrait courtesy
of the Archives de I’Académie des sciences, Paris.)

examplé is to take Az in the z-direction so that Az = Agz; another is
to take Az in the y-direction so that Az = iAy. These examples yield

dw i _A_w_

Au+iAv  du  .Ov
o = dm &= lim =gt (131D

and

dw . Aw . Au+iAv  Ov Ou
_— = —_ —— e — . 1.3.18
dz AI:I-EO Az Al;r_r_}o iAy dy 16y ( )
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Figure 1.3.3: Despite his short life, (Georg Friedrich) Bernhard Rie-
mann’s (1826-1866) mathematical work contained many imaginative
and profound concepts. It was in his doctoral thesis on complex func-
tion theory (1851) that he introduced the Cauchy-Riemann differential
equations. Riemann’s later work dealt with the definition of the integral

and the foundations of geometry and non-Euclidean (elliptic) geometry.
(Portrait courtesy of Photo AKG, London.)

In both cases we are approaching zero from the positive side. For the
limit to be unique and independent of path, (1.3.17) must equal (1.3.18),
or

ou_o L o
ax - 6y n 6y - 61“ (1.3.19)
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These equations which v and v must both satisfy are the Cauchy-
Riemann equations. They are necessary but not sufficient to ensure that
a function is differentiable. The following example will illustrate this.

e Example 1.3.4

Consider the complex function

w = {z5/|z|4, z#0 (1.3.20)

0, z=0.
The derivative at z = 0 is given by

dw . (AP/|Az)t=0 . (Az)?
N — = Am A

(1.3.21)

provided that this limit exists. However, this limit does not exist be-
cause, in general, the numerator depends upon the path used to ap-
proach zero. For example, if Az = re™/% with r — 0, dw/dz = —1. On
the other hand, if Az = re™/? with r — 0, dw/dz = 1.

Are the Cauchy-Riemann equations satisfied in this case? To check
this, we first compute

Az \*

uz(0,0) = (le|) =1, (1.3.22)
iny\*

vy (0, 0)_A1;TO(IA;’I) =1, (1.3.23)
; 5

uy(0,0) = hm Re [A(yTAAyzjl‘*] =0 (1.3.24)

and

v,(0,0)= lim Im [(Iixl) l =0. (1.3.25)

Hence, the Cauchy-Riemann equations are satisfied at the origin. Thus,
even though the derivative is not uniquely defined, (1.3.21) happens to
have the same value for paths taken along the coordinate axes so that
the Cauchy-Riemann equations are satisfied.

In summary, if a function is differentiable at a point, the Cauchy-
Riemann equations hold. Similarly, if the Cauchy-Riemann equations
are not satisfied at a point, then the function is not differentiable at that
point. This is one of the important uses of the Cauchy-Riemann equa-
tions: the location of nonanalytic points. Isolated nonanalytic points
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of an otherwise analytic function are called isolated singularities. Func-
tions that contain isolated singularities are called meromorphic.

The Cauchy-Riemann condition can be modified so that it is a
sufficient condition for the derivative to exist. Let us require that ug,
uy, ¥z, and vy be continuous in some region surrounding a point zy and
satisfy the Cauchy-Riemann conditions there. Then

f(2) = f(z0) = [u(z) = u(20)] + i[v(2) — v(20))] (1.3.26)
= [uz(20)(z — x0) + uy(20)(¥ — %o)
+ €1(z — zo) + €2(y — wo)]
+ i{vz(20)(z — z0) + vy(20)(y — o)
+ €3(z — zo) + €4(y — yo)] (1.3.27)
= [uz(20) + vz (20)](2 — 20)
+ (€1 + te3)(x — =o) + (€2 + tea)(y — yo), (1.3.28)

where we have used the Cauchy-Riemann equations and €1, €2, €3, €4 — 0
as Az, Ay — 0. Hence,

f'(z0) = lim W = uz(20) + vz (20), (1.3.29)

because |Az| < |Az| and |Ay| < |Az|. Using (1.3.29) and the Cauchy-
Riemann equations, we can obtain the derivative from any of the fol-
lowing formulas:

dw Ou . Ov Hv Ou

E: 6—x+za—x-: -a—y—la (1.3.30)

and

dw v Ov _ Odu .0Ou

T =95 9= 55 5y (1.3.31)

Furthermore, f/(zg) is continuous because the partial derivatives are.
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o Example 1.3.5

Let us show that sin(z) is an entire function.

w = sin(z) (1.3.32)
u + iv = sin(¢ + iy) = sin(z) cos(7y) + cos(z) sin(zy) (1.3.33)
= sin(z) cosh(y) + ¢ cos(z) sinh(y), (1.3.34)

because
cos(iy) = L[e!¥) + eW)] = L]e¥ + e~Y] = cosh(y) (1.3.35)
and
sin(iy) = & [0V — ¢~i(@W)] = —3:[€¥ —e7Y] = isinh(y) (1.3.36)
so that
u(z,y) = sin(z) cosh(y) and v(z,y) = cos(z)sinh(y). (1.3.37)

Differentiating both u(z, y) and v(z, y) with respect to « and y, we have
that

5; = cos(x) cosh(y) a—z = sin(z) sinh(y) (1.3.38)
o _ —sin(z) sinh(y) o cos(z) cosh(y) (1.3.39)
i y ay—os:ccos Yy 3.

and u(z,y) and v(z,y) satisfy the Cauchy-Riemann equations for all
values of z and y. Furthermore, u., u,, vz, and v, are continuous for
all x and y. Therefore, the function w = sin(z) is an entire function.

e Example 1.3.6

Consider the function w = 1/z. Then

: z iy
= = — — . 1.3.40
w=u+1iv Pl S B ( )
Therefore,
(2,9) = = 4 o(z,) 2 (1.3.41)
u(e,y) = ———  an v(z,y) = ———ox. 3.
V=201 y FERY
Now P 2 2 2_ .2
2 -2 _
ou _Hy)—27 y - (1.3.42)

Oz

aitd /R B (1"2 + y2)2’
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6‘1)__(:L'2—+-3/2)—2y2 o yi—a? Ou

A = = 3.
By @+9)? @ tP)E o (1.3.43)
Ov 0 —2zy 2y
e (1.3.44)
and du  0-2 2 9
4 ki v _ (1.3.45)

N N CE D
The function is analytic at all points except the origin because the func-

tion itself ceases to exist when both z and y are zero and the modulus
of w becomes infinite.

o Example 1.3.7

Let us find the derivative of sin(z).
Using (1.3.30) and (1.3.34),

df. . du .Ov
o [sm(z)] =5 + i (1.3.46)
= cos(z) cosh(y) — ¢sin(z)sinh(y) (1.3.47)
= cos(z + iy) = cos(z). (1.3.48)
Similarly,
d {1\ y? —z? 2izy
g;('z') T (224 y2)? + (22 + 12)? (1.3.49)
1 1

= GIwE = # (1.3.50)

The results in the above examples are identical to those for z real.
As we showed earlier, the fundamental rules of elementary calculus apply
to complex differentiation. Consequently, it is usually simpler to apply
those rules to find the derivative rather than breaking f(z) down into
its real and imaginary parts, applying either (1.3.30) or (1.3.31), and
then putting everything back together.

An additional property of analytic functions follows by cross differ-
entiating the Cauchy-Riemann equations or

oPu v _ O 0%u  0%u
Ou _ _ O gu 07U _ 1.3.51
-~ _—3z8y 7 or o= + 5 0 (1.3.51)
and
2 2 2 2 2
v _ 0w _ v 0w O (1.3.52)

822~ dzdy - —W 0z? = Oy?
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Any function that has continuous partial derivatives of second order
and satisfies Laplace’s equation (1.3.51) or (1.3.52) is called a harmonic
function. Because both u(z,y) and v(z,y) satisfy Laplace’s equation
if f(2) = u + tv is analytic, u(z,y) and v(z,y) are called conjugate
harmonic functions.

e Example 1.3.8
Given that u(z,y) = e *[rsin(y) — ycos(y)], let us show that u

is harmonic and find a conjugate harmonic function v(z,y) such that
f(2) = u + iv is analytic.

Because
0%u o z —z
922 = —2e~7 sin(y) + e~ " sin(y) — ye ™ cos(y) (1.3.53)
and
8%u e e —z
o = —ze " sin(y) + 2e~ " sin(y) + ye 7 cos(y), (1.3.54)

it follows that uzz + uyy = 0. Therefore, u(z, y) is harmonic. From the
Cauchy-Riemann equations,

v Ou . . e
Eialy i e~ 7 sin(y) — ze” " sin(y) + ye~ " cos(y) (1.3.55)
and
v Ou e - -
B oy e~ 7 cos(y) — ze™7 cos(y) — ye~ T sin(y). (1.3.56)

Integrating (1.3.55) with respect to y,
v(z,y) = ye " sin(y) + ze~" cos(y) + g(z). (1.3.57)
Using (1.3.56),

vy = —ye” " sin(y)—ze~ " cos(y) + e~ cos(y) + ¢'(x)
= e~ " cos(y) — e~ cos(y) — ye 7 sin(z). (1.3.58)

Therefore, g'(xz) = 0 or g{x) = constant. Consequently,
v(z,y) = e “[ysin(y) + z cos(y)] + constant. (1.3.59)

Hence, for our real harmonic function u(z,y), there are infinitely many
harmonic conjugates v(z, y) which differ from each other by an additive
constant.
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Problems

Show that the following functions are entire:

1. flz)=iz+2 2. f(z)=e*
3. f(z)=2° 4. f(z) = cosh(z)

Find the derivative of the following functions:

5. f(z) = (1+2°)%? 6. f(z) = (242113

7. f(e)=(1+4i)22-32-2 8. f(z) =(2z—1)/(z+2i)
9. f(z)=(iz—-1)"3

Evaluate the following limits:

. 22—2iz2-1 .z —sin(z)
0 e o

12. Show that the function f(z) = z* is nowhere differentiable.

For each of the following u(z, y), show that it is harmonic and then find
a corresponding v(z,y) such that f(z) = u + iv is analytic.

13.
u(z,y) =z° -y’
14.
u(z,y) =2t — 622y’ +y' + 2
15.
u(z,y) = z cos(z)e™ — ysin(z)e™¥
16.

u(z, y) = (z° — y*) cos(y)e” — 2zysin(y)e”

1.4 LINE INTEGRALS

So far, we discussed complex numbers, complex functions, and com-
plex differentiation. We are now ready for integration.

Just as we have integrals involving real variables, we can define an
integral that involves complex variables. Because the z-plane is two-
dimensional there is clearly greater freedom in what we mean by a com-
plex integral. For example, we might ask whether the integral of some
function between points A and B depends upon the curve along which
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we integrate. (In general it does.) Consequently, an important ingredi-
ent in any complex integration is the contour that we follow during the
integration.

The result of a line integral is a complex number or expression. Un-
like its counterpart in real variables, there is no physical interpretation
for this quantity, such as area under a curve. Generally, integration in
the complex plane is an intermediate process with a physically realizable
quantity occurring only after we take its real or imaginary part. For ex-
ample, in potential fluid flow, the lift and drag are found by taking the
real and imaginary part of a complex integral, respectively.

How do we compute fC f(2) dz? Let us deal with the definition; we
will illustrate the actual method by examples.

A popular method for evaluating complex line integrals consists of
breaking everything up into real and imaginary parts. This reduces the
integral to line integrals of real-valued functions which we know how to
handle. Thus, we write f(z) = u(z,y) + iv(z,y) as usual, and because
z = z + iy, formally dz = dz + idy. Therefore,

/ f(z)dz = / [u(z, y) + iv(z, y)][dx + i dy] (1.4.1)
C C

= / u(z,y)dz — v(z,y)dy + z/ v(z,y)dz + u(z,y) dy.
C C
(14.2)

The exact method used to evaluate (1.4.2) depends upon the exact path
specified.

From the definition of the line integral, we have the following self-
evident properties:

/Cf(z) dz = _/c: f(z)dz, (1.4.3)

where C” is the contour C taken in the opposite direction of C' and

/ f(z)dz = f(z)dz +/ f(z)dz. (1.4.4)
C1+C2 Cy Cz

o Example 1.4.1

Let us evaluate fc 2*dz from z = 0 to z = 4+ 2¢ along two different
contours. The first consists of the parametric equation z = t2 +it. The
second consists of two “dog legs”: the first leg runs along the imaginary
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o+
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Figure 1.4.1: Contour used in Example 1.4.1.

axis from z = 0 to z = 2¢ and then along a line parallel to the z-axis
from z = 24 to 2 = 4 + 2i. See Figure 1.4.1.

For the first case, the points z = 0 and z = 4+ 2i on C; correspond
tot = 0 and t = 2, respectively. Then the line integral equals

2 2
/C z*dz :/0 (82 4+ it)* d(t? + it) :/0 (2t —it* +t)dt =10~ &.
(1.4.5)
The line integral for the second contour C; equals

/ z*dz:/ z*dz+/ 2" dz, (1.4.6)
C2 Cga Cap

where C, denotes the integration from z = 0 to z = 2i while Cs,
denotes the integration from z = 2i to 2 = 4+ 2i. For the first integral,

2
/ 2'dz = / (z — iy)(dz + idy) = / ydy =2, (1.4.7)
C2a Caa 0

because £ = 0 and dz = 0 along C5,. On the other hand, along Ca,
¥y =2 and dy = 0 so that

4 4
/ z*dz:/ (z — iy)(dz + idy) :/ z‘d:c-}—i/ ~2dx =8 - 8i.
Ca2p Cap 0 0
(1.4.8)
Thus the value of entire C contour integral equals the sum of the two
parts or 10 — 84.

The point here is that integration along two different paths has
given us different results even though we integrated from z = 0 to
z = 4 + 2i both times. This results foreshadows a general result that
1s extremely important. Because the integrand contains nonanalytic
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Figure 1.4.2: Contour used in Example 1.4.2.

points along and inside the region enclosed by our two curves, as shown
by the Cauchy-Riemann equations, the results depend upon the path
taken. Since complex integrations often involve integrands that have
nonanalytic points, many line integrations depend upon the contour
taken.

o Example 1.4.2

Let us integrate the entire function f(z) = z* along the two paths
from z = 0 to z = 2 + i shown in Figure 1.4.2. For the first integration,
z = 2y while along the second path we have two straight paths: z =0
toz=2and z=2toz=2+41.

For the first contour integration,

1
/ 22dz = / (2y + 1y)*(2dy + i dy) (1.4.9)
(oY 0
1
= / (397 + 4y*)(2dy + i dy) (1.4.10)
0

1
=/ 6y? dy + 8y%idy + 3y?idy — 4y’ dy (1.4.11)
0

1

=/ 2y% dy + 11g%i dy (1.4.12)
0

2308 + Wil = 2448 (1.4.13)

For our second integration,

/ 22dz = / 22dz + / 22 dz. (1.4.14)
C2 Caq Ca
Along Cs, we find that y = dy = 0 so that

2
/ 22dz = / ?de=133=% (1.4.15)
Cae 0
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Figure 1.4.3: Contour used in Example 1.4.3.

and
2 ' 2 ¥ ' '
/ zdz:/(2+zy) zdy:z(4y+22y——3—) =4i-2-3,
Cap 0 0
(1.4.16)
because z = 2 and dz = 0. Consequently,
9 2 11z
2°dz = - + —. 1.4.17
=545 (1417)

In this problem we obtained the same results from two different contours
of integration. Exploring other contours, we would find that the results
are always the same; the integration is path-independent. But what
makes these results path-independent while the integration in Example
1.4.1 was not? Perhaps it is the fact that the integrand is analytic
everywhere on the complex plane and there are no nonanalytic points.
We will explore this later.

Finally, an important class of line integrals involves closed contours.
We denote this special subclass of line integrals by placing a circle on
the integral sign: §. Consider now the following examples:

e Example 1.4.3

Let us integrate f(z) = z around the closed contour shown in Figure
1.4.3.
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From Figure 1.4.3,

fzdz:/ zdz+/ zdz+/ zdz. (1.4.18)
[0} Cy C Cs

Now
0 0 y? |
/ zdz:/ iy(idy):—/ ydy=— =—| = -, (1.4.19)
Cy 1 1 2 1 2
-1 91—1
z 1
zdz = / zde= —| =2 1.4.20)
,/C2 0 2 |, 2 (
and
/2 0261 |72
/ zdz:/ efliefido = —| = -1, (1.4.21)
Ca - 2 -

where we have used z = ¢%® around the portion of the unit circle. There-

fore, the closed line integral equals zero.
e Example 1.4.4

Let us integrate f(z) = 1/(z — @) around any circle centered on
z = a. The Cauchy-Riemann equations show that f(z) is a meromorphic
function. It is analytic everywhere except at the isolated singularity
z=a.

If we introduce polar coordinates by letting z — a = re?® and dz =
irefide,

27 .. 0% 2T
f dz :/ T do=i [ do=2mi (1.4.22)
(o) 0

z—a refi o

Note that the integrand becomes undefined at z = a. Furthermore, the
answer is independent of the size of the circle. Our example suggests
that when we have a closed contour integration it is the behavior of the
function within the contour rather than the exact shape of the closed
contour that is of importance. We will return to this point in later
sections.

Problems

1. Evaluate §.(z*)? dz around the circle |z] = 1 taken in the counter-
clockwise direction.

2. Evaluate §. |z|®dz around the square with vertices at (0,0), (1,0),
(1,1), and (0,1) taken in the counterclockwise direction.
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Figure 1.5.1: Diagram used in proving the Cauchy-Goursat theorem.

3. Evaluate [, |z|dz eﬂong the right half of the circle |z| = 1 from z = —
toz=1.

4. Evaluate [, e” dz along the line y = z from (-1, —1) to (1, 1).
5. Evaluate [,(z*)? dz along the line y = z? from (0, 0) to (1, 1).

6. Evaluate [, 271/2dz, where C is (a) the upper semicircle |z| = 1 and
(b) the lower semicircle |z| = 1. If z = re®®, restrict —7 < # < 7. Take
both contours in the counterclockwise direction.

1.5 THE CAUCHY-GOURSAT THEOREM

In the previous section we showed how to evaluate line integrations
by brute-force reduction to real-valued integrals. In general, this direct
approach is quite difficult and we would like to apply some of the deeper
properties of complex analysis to work smarter. In the remaining por-
tions of this chapter we will introduce several theorems that will do just
that.

If we scan over the examples worked in the previous section, we
see considerable differences when the function was analytic inside and
on the contour and when it was not. We may formalize this anecdotal
evidence into the following theorem:

Cauchy-Goursat theorem?: Let f(z) be analytic in a domain D and

2 See Goursat, E., 1900: Sur la définition générale des fonctions an-
alytiques, d’aprés Cauchy. Trans. Am. Math. Soc., 1, 14-16.
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(a) (b)

S

A
y

Figure 1.5.2: Examples of a (a) simply closed curve and (b) not simply
closed curve.

let C be a simple Jordan curve® inside D so that f(z) is analytic on and
inside of C. Then §, f(z)dz = 0.

Proof: Let C denote the contour around which we will integrate w =
f(z). We divide the region within C into a series of infinitesimal rect-
angles. See Figure 1.5.1. The integration around each rectangle equals
the product of the average value of w on each side and its length,

Ow dz ow Ow d(iy) .
[w+0:c ]d +[ + xdm+——.y ]d(zy)

N [w+ w dz a? )d(zy)] (—dz) + [w+ 5%"(;”)] d(—iy)
= (g‘;’ f’a’”) (i dz dy) (1.5.1)

Substituting w = u + v into (1.5.1),

dw Ow du Ov .fOv Ou
5o (o 5) (G 5) (1.32)

Because the function is analytic, the right side of (1.5.1) and (1.5.2)
equals zero. Thus, the integration around each of these rectangles also
equals zero.

3 A Jordan curve is a simply closed curve. It looks like a closed loop
that does not cross itself. See Figure 1.5.2.
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We note next that in integrating around adjoining rectangles we
transverse each side in opposite directions, the net result being equiva-
lent to integrating around the outer curve C'. We therefore arrive at the
result §, f(z)dz = 0, where f(z) is analytic within and on the closed
contour. a

The Cauchy-Goursat theorem has several useful implications. Sup-
pose we have a domain where f(z) is analytic. Within this domain let
us evaluate a line integral from point A to B along two different con-
tours Cy and C3. Then, the integral around the closed contour formed
by integrating along C; and then back along C3, only in the opposite
direction, is

}4 f(z)dz = / f(z)dz — f(z)dz=0 (1.5.3)
C Cy Ca

or

f(z)dz = f(z)dz. (1.5.4)
C, Cs
Because C; and C3 are completely arbitrary, we have the result that
if, in a domain, f(z) is analytic, the integral between any two points
within the domain is path independent.

One obvious advantage of path independence is the ability to choose
the contour so that the computations are made easier. This obvious
choice immediately leads to

The principle of deformation of contours: The value of a line in-
tegral of an analytic function around any simple closed contour remains
unchanged if we deform the contour in such a manner that we do not
pass over a nonanalytic poind.

e Example 1.5.1
Let us integrate f(z) = 27! around the closed contour C in the
counterclockwise direction. This contour consists of a square, -centered
on the origin, with vertices at (1, 1), (1,-1), (—1,1), and (-1, -1).
The direct integration of fc z7ldz around the original contour is
very cumbersome. However, because the integrand is analytic every-
where except at the origin, we may deform the origin contour into a cir-
cle of radius r, centered on the origin. Then, z = re?® and dz = rie®*df

so that on .
f / ”eh do = 2/ df = 2ri. (1.5.5)
c V4 rée 0

The point here is that no matter how bizarre the contour is, as long as it
encircles the origin and is a simply closed contour, we can deform it into
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a circle and we will get the same answer for the contour integral. This
suggests that it is not the shape of the closed contour that makes the
difference but whether we enclose any singularities [points where f(2)
becomes undefined] that matters. We shall return to this idea many
times in the next few sections.

Finally, suppose that we have a function f(z) such that f(z) is an-
alytic in some domain. Furthermore, let us introduce the analytic func-
tion F'(z) such that f(z) = F'(z). We would like to evaluate fab f(2)dz
in terms of F(z).

We begin by noting that we can represent F, f as F((z) = U + iV
and f(z) = u + iv. From (1.3.30) we have that u = U, and v = V;.
Therefore,

b b
/ f(z)dz:/ (u + iv)(de + i dy) (1.5.6)
a ab )
:/ dez'—dey+i/ Vede + U, dy (1.5.7)
ab ab
=/ Urda:+Uydy+i/ Vede + V, dy (1.5.8)

b b
=/ﬂw+a/dV=F@-F@) (1.5.9)

or )
/ f(z)dz = F(b) — F(a). (1.5.10)

Equation (1.5.10) is the complex variable form of the fundamental the-
orem of calculus. Thus, if we can find the antiderivative of a function
f(z) that is analytic within a specific region, we can evaluate the in-
tegral by evaluating the antiderivative at the endpoints for any curves
within that region.

e Example 1.5.2

Let us evaluate foﬂ z sin(z?) dz.
The integrand f(z) = z sin(z?) is an entire function and has the
antiderivative —1 cos(z?). Therefore,

i .
/ z sin(z?) dz = —L cos(22)|] (1.5.11)
0

= 3[cos(0) — cos(—7?)] (1.5.12)
= (1 — cos(n?)]. (1.5.13)



30 Advanced Engineering Mathematics

Figure 1.6.1: Diagram used to prove Cauchy’s integral formula.
Problems

For the following integrals, show that they are path independent and
determine the value of the integral:

2+43mi 27
1. / e~ dz 2. / [e* — cos(z)] dz
1 0

-7
2

3. /sinz(z)dz 4. (z+1)dz
0 i

1.6 CAUCHY'S INTEGRAL FORMULA

In the previous section, our examples suggested that the presence
of a singularity within a contour really determines the value of a closed
contour integral. Continuing with this idea, let us consider a class of
closed contour integrals that explicitly contain a single singularity within
the contour, namely §. g(z) dz, where g(z) = f(z)/(z — z9) and f(2) is
analytic within and on the contour C. We have closed the contour in
the positive sense where the enclosed area lies to your left as you move
along the contour.

We begin by examining a closed contour integral where the closed
contour consists of the Cy, Cs, Cs, and Cy as shown in Figure 1.6.1. The
gap or cut between C; and Cj is very small. Because g(2) is analytic
within and on the closed integral, we have that

LZ)dz+ —Mdz+ —fgidz+ —fﬁdzzo.
c, %~ %20 Cc, £ 20 Cs 220 C, ¢ %0
(1.6.1)
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It can be shown that the contribution to the integral from the path
C5 going into the singularity will cancel the contribution from the path
C, going away from the singularity as the gap between them vanishes.
Because f(z) is analytic at zg, we can approximate its value on C3 by
f(z) = f(z0) + 6(2), where ¢ is a small quantity. Substituting into
(1.6.1),

S dz = ~f(z0) [ ! dz_/ 26 g (162
C

CIZ—Z — 2p 3.’.’—Z()

Consequently, as the gap between C3 and C4 vanishes, the contour C;
becomes the closed contour C' so that (1.6.2) may be written

27
G 4o = omifzo)+i [ 648, (1.6.3)
0

cZ— <2

where we have set z — zg = ee?® and dz = iee?* d#.
Let M denote the value of the integral on the right side of (1.6.3)
and A equal the greatest value of the modulus of 6 along the circle.

Then
27

27
|M| < / 15|d0 < | Ado = 27A. (1.6.4)
0 0

As the radius of the circle diminishes to zero, A also diminishes to zero.
Therefore, | M|, which is positive, becomes less than any finite quantity,
however small, and M itself equals zero. Thus, we have that

f(z0) = 5}; A ;L_(—ZZ—O (1.6.5)

This equation is Cauchy’s integral formula. By taking n derivatives of
(1.6.5), we can extend Cauchy’s integral formula® to

F™(z0) = 2—;}{0(&0& (1.6.6)

z — zo)"H!

4 See Carrier, G. F., Krook, M., and Pearson, C. E., 1966: Functions
of a Complex Variable: Theory and Technique, McGraw-Hill, New York,
pp. 39-40 for the proof.
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forn = 1,2,3,.... For computing integrals, it is convenient to rewrite
(1.6.6) as
f(2) 27 (n)
—————dz = — . 1.6.7
fetlgme= e, aen

e Example 1.6.1

Let us find the value of the integral

cos(mz)
SO\ TE) 4, 1.6.8
A (1o
where C is the circle |z| = 5. Using partial fractions,
! ! ! (1.6.9)

(z—l)(z—2):z—2_z—l

and

fi Ez‘%'d"’ = fi el aa - fc g (1610)

By Cauchy’s integral formula with zo = 2 and 2o = 1,

f cos(rz) dz = 2mi cos(27) = 2mi (1.6.11)
c < 2
and
% cc;s(ﬂ'z) dz = 2micos(m) = —2mi, (1.6.12)
. z—

because 29 = 1 and zp = 2 lie inside C and cos(7z) is analytic there.
Thus the required integral has the value

cos(mz) ) = dri
fé——(z TPy dz = 4ri. (1.6.13)

o Example 1.6.2

Let us use Cauchy’s integral formula to evaluate

I= ‘%i?'l:? md:{ (1614)

We need to convert (1.6.14) into the form (1.6.7). To do this, we
rewrite (1.6.14) as

¢ g £/,
.ﬁq:z (z-1)2(z-3) dz = v%iz|=2 (z—1)2 dz. (1.6.15)
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Therefore, f(z) = ¢?/(z —3), n = 1 and 2o = 1. The function f(z) is
analytic within the closed contour because the point zp = 3 lies outside
of the contour. Applying Cauchy’s integral formula,

et 2ri d e?
S = .6.16
ey = T b= (Sl wew
| €f e?
= 2mi L_?) - (z_3)2] . (1.6.17)
_3mie (1.6.18)
2
Problems

Use Cauchy’s integral formula to evaluate the following integrals.
Assume all of the contours are in the positive sense.

6 -
g jI{A:l :lﬁ 7(rz/)6 dz 2. }lgn:l %dz
3. ]|{z|=1 ;(22—1+74—)-dz 4 fi;:l E%de
2
> }I{z—1|=1/2Z?)1(z—7)dz 6. ]|{z|=5exi¥dz
S 2

7. f?;_uq ; i 74 8. fizl:z (z_il_yxdz
i’ }I{zI:z (7%(12 10. }I{z|=1 Z_C;(TZl)dz

1.7 TAYLOR AND LAURENT EXPANSIONS AND SINGULARITIES

In the previous section we showed what a crucial role singularities
play in complex integration. Before we can find the most general way of
computing a closed complex integral, our understanding of singularities
must deepen. For this, we employ power series.

One reason why power series are so important is their ability to
provide locally a general representation of a function even when its ar-
guments are complex. For example, when we were introduced to trigono-
metric functions in high school, it was in the context of a right triangle
and a real angle. However, when the argument becomes complex this
geometrical description disappears and power series provide a formalism
for defining the trigonometric functions, regardless of the nature of the
argument.
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Let us begin our analysis by considering the complex function f(z)
which is analytic everywhere on the boundary and the interior of a circle
whose center is at z = z5. Then, if z denotes any point within the circle,
we have from Cauchy’s integral formula that

_ 1 f(©) _L}{ f©) [ 1
fz) = 2m'f;c—zdc‘ prrl) gl §uny papsy raupeys K3
(1.7.1)
where C' denotes the closed contour. Expanding the bracketed term as

a geometric series, we find that

f()—2m[fc d¢ + ( z-z)}( zo)zd““'
+ (2 - }{(C fiC)nH dC+---]. (1.7.2)

Applying Cauchy’s 1ntegra.l formula to each integral in (1.7.2), we finally
obtain

(z Zo)f( RO Gl )i )f(n)(z)+ - (1.7.3)

f(z) = f(z0) +
or the familiar formula for a Taylor expansion. Consequently, we can
expand any analytic function into a Taylor series. Interestingly, the
radius of convergence® of this series may be shown to be the distance
between zy and the nearest nonanalytic point of f(z).

e Example 1.7.1

Let us find the expansion of f(z) = sin(2) about the point 2o = 0.
Because f(z) is an entire function, we can construct a Taylor ex-
pansion anywhere on the complex plane. For zg = 0,

f(z) = FO)+ L (0)z + £ £7(0)22 + L " (0) 22 + - - (1.7.4)

Because f(0) =0, f'(0) =1, f(0) =0, f""(0) = —1 and so forth,

2 8 7

f(z):z—g-l-a—ﬁ-l-"' (1.7.5)
Because sin(z) is an entire function, the radius of convergence is |z—0| <
00, L.e., all z.

5 A positive number h such that the series diverges for |z — 29| > h
but converges absolutely for |z — 2| < h.
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yll

-

X

Figure 1.7.1: Contour used in deriving the Laurent expansion.
e Example 1.7.2

Let us find the expansion of f(z) = 1/(1—2z) about the point zg = 0.
From the formula for a Taylor expansion,

f(z) = F0) + L (0)z + 5 77(0)2% + F(0)22 +--- (1.7.6)
Because f(")(0) = n!, we find that

1
f(z)=1+z+z2+za+z4+~-=-1—. (1.7.7)
-z
Equation (1.7.7) is the familiar result for a geometric series. Because
the only nonanalytic point is at z = 1, the radius of convergence is
[z — 0] < 1, the unit circle centered at z = 0.

Consider now the situation where we draw two concentric circles
about some arbitrary point zg; we denote the outer circle by C' while
we denote the inner circle by Cy. See Figure 1.7.1. Let us assume that
f(z) is analytic inside the annulus between the two circles. Outside of
this area, the function may or may not be analytic. Within the annulus
we pick a point z and construct a small circle around it, denoting the
circle by Cy. As the gap or cut in the annulus becomes infinitesimally
small, the line integrals that connect the circle Cs to C; and € sum to
zero, leaving
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£(©) 1O 4er § 1O, .
fiva=f fasf B ary
Because f() is analytic everywhere within Cs,
: £,
2mif(z) = }iz = (1.7.9)
Using the relationship:
S . [ f©)
}{clc—zdc— clz—CdC’ (1.7.10)
(1.7.8) becomes
- f() 1 f©)
f) = 5 ]{C e (1.7.11)
Now, ,
1 1 1 1

C—Z:C_zo_z+zo:C_ZOI—(Z—ZO)/(C—Z()) (1.7.12)

1 z— 2o z—2p 2 z—2\"
N [1+(C—Zo)+<C—Zo) R = }

(1.7.13)

where |z — z0|/|¢ — 20| < 1 and

1 1 1 1
z—C—z—~zo—-C+zo_z—zol—(C—ZO)/(z—zo) (1.7.14)

= 1 |:1+(C_ZO)+(C_Z0)2++(C__z0)n+j|,
z— 2 z— 2 z -2 z—zp

(1.7.15)

where |¢ — 20|/|z — 20| < 1. Upon substituting these expressions into
(1.7.11),

flz) = [2irzﬁ<f-(-?o d¢ + 22—”:0}2(({(2)2 ¢+ -
=1 f et

L—Zo?m% 7€) <+ 2)22”.1}{ Q) — z0)dC+ -

}{ FIOC —20)* 71 dC + - - ] (1.7.16)

(z — zo)™ 2mi



Complex Variables 37

or
— al a2 .. ——_———an
f(z)_z—z0+(z—zo)2+ +(z—z0)"
+b0+b1(z—zo)+~--+bn(z—zo)"+-~~ (1717)

Equation (1.7.17) is a Laurent ezpansion.’ If f(z) is analytic at 2o,
then a; = a2 = --- = a, = --- = 0 and the Laurent expansion reduces
to a Taylor expansion. If zg is a singularity of f(z), then the Laurent
expansion will include both positive and negative powers. The coefficient
of the (z —zp) ™! term, a1, is the residue, for reasons that will appear in
the next section.

Unlike the Taylor series, there is no straightforward method for
obtaining a Laurent series. For the remaining portions of this section
we will illustrate their construction. These techniques include replacing
a function by its appropriate power series, the use of geometric series
to expand the denominator, and the use of algebraic tricks to assist in
applying the first two method.

o Example 1.7.3

Laurent expansions provide a formalism for the classification of
singularities of a function. Isolated singularities fall into three types;
they are

e Essential Singularity: Consider the function f(z) = cos(1/z). Using
the expansion for cosine,

1 1 1 1
8 (;) =l-gataa g T (1.7.18)

for 0 < |z| < co. Note that this series never truncates in the inverse
powers of z. Essential singularities have Laurent expansions which have
an infinite number of inverse powers of z — zg. The value of the residue
for this essential singularity at z = 0 is zero.

e Removable Singularity: Consider the function f(z) = sin(z)/z. This
function has a singularity at z = 0. Upon applying the expansion for
sine,

sin(z) 1 P
L A A 1.7.19
: z<z CTITR TR (1.7.19)

22 4 8 28

:1'§+5_7T+§_‘” (1.7.20)

6 See Laurent, M., 1843: Extension du théoréme de M. Cauchy relatif

4 la convergence du développement d’une fonction suivant les puissances
ascendantes de la variable . C. R. Acad. Sci., 17, 938-942.
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for all z, if the division is permissible. We have made f(z) analytic by
defining it by (1.7.20) and, in the process, removed the singularity. The
residue for a removable singularity always equals zero.

o Pole of order n: Consider the function

1

&=

(1.7.21)

This function has two singularities: one at z = 1 and the other at
z = —1. We shall only consider the case z = 1. After a little algebra,

1 1
T (z=13 24+ (z-1)
11 1
T2(z-13 1+(z=1)/2
1 1 z—1 z—1)2 z—1)3
5(2—-1)3[1_ 2 +! 4) - 8)
1 1 1 1

T3G-1p Az-1¢ 8-1) 167" (1.7.25)

f(z) (1.7.22)

(1.7.23)

+- ] (1.7.24)

for 0 < |2—1] < 2. Because the largest inverse (negative) power is three,
the singularity at z = 1 is a third-order pole; the value of the residue is
1/8. Generally, we refer to a first-order pole as a simple pole.

o Example 1.7.4

Let us find the Laurent expansion for

z

f(z) = GoDGE=3) (1.7.26)
about the point z = 1.
We begin by rewriting f(z) as
_ 1+(z2-1)
f(z) = G2+ G =1 (1.7.27)
1 1+(z-1)
-5 G-DI-1G-1)] (1.7.28)
=P eyt
1 1 3 3 3
=_§ﬁ-Z—g(z—l)—ﬁ(z—l)h--- (1.7.30)
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provided 0 < |z — 1| < 2. Therefore we have a simple pole at z = 1 and
the value of the residue is —1/2. A similar procedure would yield the
Laurent expansion about z = 3.

For complicated complex functions, it is very difficult to determine
the nature of the singularities by finding the complete Laurent expansion
and we must try another method. We shall call it “a poor man’s Laurent
expansion”. The idea behind this method is the fact that we generally
need only the first few terms of the Laurent expansion to discover its
nature. Consequently, we compute these terms through the application
of power series where we retain only the leading terms. Consider the
following example.

o Example 1.7.5

Let us discover the nature of the singularity at z = 0 of the function

etz

fz) = (1.7.31)

zsinh(az)’
where a and t are real.

We begin by replacing the exponential and hyperbolic sine by their
Taylor expansion about z = 0. Then

14tz 422224

= . 1.7.32
1) z(az —a323/6 4+ - ) ( )
Factoring out az in the denominator,
floy= Lt 2y (1.7.33)
T az?(1—-a222/64 1) o

Within the parentheses all of the terms except the leading one are small.
Therefore, by long division, we formally have that

f(z)= a—;—(l +tz+t22%/24 )1 +a?2%/6+ ) (1.7.34)
= a%(l +tz+1222/2 4 a%22 6+ ) (1.7.35)
1 t  3t2+a?
= — 4 — 4t 1.7.36
az? + az t % + ( )

Thus, we have a second-order pole at z = 0 and the residue equals t/a.
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Figure 1.8.1: Contour used in deriving the residue theorem.
Problems
1. Find the Taylor expansion of f(z) = (1—2z)~2 about the point z = 0.

2. Find the Taylor expansion of f(2) = (z —1)e* about the point z = 1.
[Hint: Don’t find the expansion by taking derivatives.]

By constructing a Laurent expansion, describe the type of singularity
and give the residue at 2o for each of the following functions:

3. f(z) = 21%"Y, =0 4. f(z) = 27 3sin?(2); 20 =0
5. f(z) = C°Sh(zzz) —1 =0 6. f(z) = (2_4:27; 2 = —2
T f(z) = e_zf_ll; 2=0 8. f(z) = m 20 = bi
g,f(z)zz(zl_2); 20 =2 10-f(z)=?%&zﬁ; 20 =0

1.8 THEORY OF RESIDUES

Having shown that around any singularity we may construct a Lau-
rent expansion, we now use this result in the integration of closed com-
plex integrals. Consider a closed contour in which the function f(2) has
a number of isolated singularities. As we did in the case of Cauchy’s
integral formula, we introduce a new contour ¢’ which excludes all of
the singularities because they are isolated. See Figure 1.8.1. Therefore,
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%Cf(z)dz—fc1 f(z)dz—---—'?inf(z)dzz‘%le(z)dzzo. (1.8.1)

Consider now the mth integral, where 1 < m < n. Constructing a
Laurent expansion for the function f(z) at the isolated singularity z =
Zm, this integral equals

]{ fz)dz_zak}{ o )kdz+2bk}§ (z =z )F dz.

(1.8.2)
Because (z — 2,,)* is an entire function if k¥ > 0, the integrals equal
zero for each term in the second summation. We use Cauchy’s integral
formula to evaluate the remaining terms. The analytic function in the
numerator is 1. Because d*~1(1)/dz*~! = 0 if k > 1, all of the terms
vanish except for k = 1. In that case, the integral equals 27¢a;, where
ay is the value of the residue for that particular singularity. Applying
this approach to each of the singularities, we obtain

Cauchy’s residue theorem?: If f(z) is analytic inside and on a closed
contour C' (taken in the positive sense) except at points z1,z3,..., 2
where f(z) has singularities, then

% f(z)dz = 27rii Res([f(2); ], (1.8.3)
c =

where Res[f(z); z;] denotes the residue of the jth isolated singularity of
f(z) located at z = z;.

e Example 1.8.1

Let us compute ﬁzlzz z2/(z + 1) dz by the residue theorem, assum-
ing that we take the contour in the positive sense.

Because the contour is a circle of radius 2, centered on the origin,
the singularity at 2 = —1 lies within the contour. If the singularity were

" See Mitrinovié, D. S. and Ke¢ki¢, J. D., 1984: The Cauchy Method
of Residues: Theory and Applications, D. Reidel Publishing, Boston.
Section 10.3 gives the historical development of the residue theorem.
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not inside the contour, then the integrand would have been analytic
inside and on the contour C. In this case, the answer would then be
zero by the Cauchy-Goursat theorem.

Returning to the original problem, we construct the Laurent ex-
pansion for the integrand around the point z = 1 by noting that

2 [z+D-17 1
z4+1 z+1 Tz+1

-2+ (z+1). (1.8.4)

The singularity at z = —1 is a simple pole and by inspection the value
of the residue equals 1. Therefore,

22
f dz = 271 (1.8.5)
|z|=2 % +1

As it presently stands, it would appear that we must always con-
struct a Laurent expansion for each singularity if we wish to use the
residue theorem. This becomes increasingly difficult as the structure of
the integrand becomes more complicated. In the following paragraphs
we will show several techniques that avoid this problem in practice.

We begin by noting that many functions that we will encounter
consist of the ratio of two polynomials, i.e., rational functions: f(z) =
9(2)/h(z). Generally, we can write h(z) as (z — 21)™(z — 22)™% - -
Here we have assumed that we have divided out any common factors
between g(z) and h(z) so that g(z) does not vanish at z1, 23, .. .. Clearly
z1,zs,..., are singularities of f(z). Further analysis shows that the
nature of the singularities are a pole of order m; at z = 21, a pole of
order ms at z = z3, and so forth.

Having found the nature and location of the singularity, we compute
the residue as follows. Suppose we have a pole of order n. Then we know
that its Laurent expansion is

an an-1

(z = 20)" + (z = 20)" !

f(z) = +"-+b0+b1(z—20)+'-- (186)

Multiplying both sides of (1.8.6) by (z — z0)",

F(z) = (2 — 20)" f(2)
=ap +an_1(z — 20) + -+ bo(z — 2z0)" + b1z — zo)"H 4.
(1.8.7)

Because F(z) is analytic at z = z, it has the Taylor expansion

F(n-—l)(zO)

1) (z—20)" " '+--- (1.8.8)

F(z) = F(z0)+F'(20)(z—20)+ -+
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Matching powers of z — zp in (1.8.7) and (1.8.8), the residue equals

F(n—l)(ZO)

Res[f(2); 20] = a1 = ==—35;

(1.8.9)

Substituting in F(z) = (z — z0)" f(2), we can compute the residue of a
pole of order n by

n—1
Res[f(z); 2] = ﬁ zli.I?j % [(z - zj)"f(z)] .

(1.8.10)
For a simple pole (1.8.10) simplifies to
Res[f(2); z;] = zl_i_,r?.(z - z;) f(2).
7
(1.8.11)

Quite often, f(z) = p(z)/q(z). From I'Hospital’s rule, it follows that

p(z)
q'(z;)

Res[f(z); z;] =

(1.8.12)
Remember that these formulas work only for finite-order poles. For
an essential singularity we must compute the residue from its Laurent
expansion; however, essential singularities are very rare in applications.

e Example 1.8.2

Let us evaluate

}{ L (1.8.13)
C

22 +a?
where C' is any contour that includes both z = %a7 and is in the positive

sense.
From Cauchy’s residue theorem,

eiz ) eiz . eiz .
fc ;:—a—z-dz = 2w [Res (m;az) + Res (m; —az)].

(1.8.14)
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The singularities at z = =zai are simple poles. The corresponding
residues are

eiz Eiz e=a
Res [ —;ai ) = lim (z — ai) ————= = —— (1.8.15
s <z2 Taz ‘”) Jim (2 ‘”)(z “ai)(z +ai)  2Zia ( )
and
eiz eiz ot
Res | ———:—ai ] = | N ¢ __t_
® (z2 +a?’ az> zlrzlai(z + az)(z —ai)(z + ai) 2ia
(1.8.16)
Consequently,
eiz 27[' _ 27{' ]
.%C Pl s dz = ~5, (ea —e a) = - sinh(a). (1.8.17)
o Example 1.8.3
Let us evaluate
1 etz
=P o5 ¢ 1.8.18
27ri}{cvz2(z2+2z+2) % ( )

where C includes all of the singularities and is in the positive sense.

The integrand has a second-order pole at z = 0 and two simple
poles at z = —1 % i which are the roots of 22 + 2z + 2 = 0. Therefore,
the residue at z =0 is

Res —et_z__.o =1 li ( 0)2 _etz__
22(22 4+ 22+ 2)’ = |V 22(22 4+ 224 2)
(1.8.19)
. tet? (2z + 2)e** t—1
= lim - = = .
20|22+ 2242 (224224 2) 2
(1.8.20)

The residue at z = -1+ 7 1s

etz

22(22 4224 2)
(1.8.21)

I e'’ . z+1~-1
z_,l...nil.}.j 22 z—vl—nl]+i Z2 + 22’ =+ 2

(1.8.22)
_ exp[(—1 +1)t] _ exp[(—1 +7)t]
2i(—1 +1)2 1 '

etz

Res 2222+ 224 2);_

z—-—1

1+i] = lim [ = (=1+9)

(1.8.23)
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Similarly, the residue at z = —1 — i is
et? . . _ et?
Res [z?(;:2 +2z+42) 1= Z] - z—!l—nll-i[z —(=1-9) 22(22+2242)
(1.8.24)
= ( lim it—z-) ( Im z_—l—i)
zo—1—i 22 zo—1-i 22 + 2242
(1.8.25)
exp[(=1 —9)t] _ exp[(—1— i)t]
T Ri(-1-i2 1 '
(1.8.26)

Then by the residue theorem,

1 etz [ et‘z
LI S .9
2mi }i 22(22 4+ 22+ 2) z = Res [ 22(22 + 22+ 2)’ ]

etz

Res | 5—————=—1
+Res zz(z +2z+2) +Z]
etz
—_—;—1—1 8.2

_zz(z2+2z+2)’ Z] (1.8.27)

_t-1 4 exp((—1 +1)t] 4 exp[(—1 — i)t]

+ Res

2 4 4
(1.8.28)
=1[t—1+e " cos(t)]. (1.8.29)

Problems

Assuming that all of the following closed contours are in the positive
sense, use the residue theorem to evaluate the following integrals:

z+1 (z +4)°
1. —_d . —_—
}ﬁ 1z‘*—2z3 ‘ 2 fi;I 124+5z3+672d
2_y4
5 ¢ z R
2]=1 1—6 1z)=2 (z = 1)*
5% 6. 2% dz, n>0
2)=2 #* —1 lz]=1

7. % *cos(1/z)dz 8,‘% M@dz
l2]=1 =2 2(z —1)°
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1.9 EVALUATION OF REAL DEFINITE INTEGRALS

One of the important applications of the theory of residues consists
in the evaluation of certain types of real definite integrals. Similar tech-
niques apply when the integrand contains a sine or cosine. See Section
3.4.

o Example 1.9.1

Let us evaluate the integral

*° dz 1 [ dr
= == . 191
/0 z2+1 2 ,/_oo z2+1 ( )

This integration occurs along the real axis. In terms of complex variables
we can rewrite (1.9.1) as

[ dz 1 dz
—_— == —_ 1.9.2
/0 z2 41 2/01 2241’ ( )

where the contour Cj is the line Im(z) = 0. However, the use of the
residue theorem requires an integration along a closed contour. Let us
choose the one pictured in Figure 1.9.1. Then

dz dz dz
= —_ 1.93
fczz+1 /(;122+1+/czz2+1’ ( )

where C' denotes the complete closed contour and C» denotes the inte-
gration path along a semicircle at infinity. Clearly we want the second
integral on the right side of (1.9.3) to vanish; otherwise, our choice of
the contour C» is poor. Because z = Re®® and dz = iRe%'d#,

dz ™ Rdf
—_ < —_ 9.
/sz2+1 —/0 RT -1’ (1.9:4)

which tends to zero as R — oo. On the other hand, the residue theorem
gives

dz . 1 L. z—1 .1
}im:%rzl{es <;2—+1;z) = 27i ll_rgm:%rzx 52;:71'.
(1.9.5)

*® dz T
A ';2-+-—1 —_— 5. (1.9.6)

/7r iRexp(01) df
o 1+ RZexp(267)

Therefore,
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Figure 1.9.1: Contour used in evaluating the integral (1.9.1).

Note that we only evaluated the residue in the upper half-plane because
it is the only one inside the contour.

This example illustrates the basic concepts of evaluating definite
integrals by the residue theorem. We introduce a closed contour that
includes the real axis and an additional contour. We must then evaluate
the integral along this additional contour as well as the closed contour
integral. If we have properly chosen our closed contour, this additional
integral will vanish. For certain classes of general integrals, we shall now
show that this additional contour is a circular arc at infinity.

Theorem: If, on a circular arc Cgr with a radius R and center at the
origin, 2f(z) — 0 uniformly with |z| € Cr and as R — oo, then

lim f(z)dz = 0. (1.9.7)
R—o0 CR

This follows from the fact that if |zf(z)] < Mg, then |f(z)|] <
Mpg/R. Because the length of Cg is R, where « is the subtended
angle,

f(z)dz} < %R@ aR=aMgr — 0, (1.9.8)

Cr

because Mrp — 0 as R — oo. ]
o Example 1.9.2

A simple illustration of this theorem is the integral

e dx dz
-_— = —_— 1.99
/:oo:c2+z+1 /Clz2+z+1 ( )
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A quick check shows that z/(2% + 2 + 1) tends to zero uniformly as
R — oco. Therefore, if we use the contour pictured in Figure 1.9.1,

o dz dz 1
—_— = — =9 . 1l
/_Oox2+x+1 ji-z2+z+1 71-1R“es(z2—{~,z+l’ 2t %"

(1.9.10)
1 27
=2m lim = —. 1.9.11
z—»—%-&-igi (22 + 1) \/5 ( )
e Example 1.9.3
Let us evaluate o g
z
—_ 1.9.12
In place of an infinite semicircle in the upper half-plane, consider
the following integral
d
}{ = (1.9.13)
c ? + 1

where we show the closed contour in Figure 1.9.2. We chose this contour
for two reasons. First, we only have to evaluate one residue rather than
the three enclosed in a traditional upper half-plane contour. Second, the
contour integral along Cj3 simplifies to a particularly simple and useful
form.

Because the only enclosed singularity lies at z = e™/¢

dz . 1 i/6 . . 2 — e™i/6
‘i m = 277 Res <26 T 1,6 =27 z_l,leIP;/s z6—+1— (1914)

.. 1 T o
= 2mi z.ller’{l'/s 6= —?e" s, (1.9.15)

Let us now evaluate (1.9.12) along each of the legs of the contour:

dz *  dx
- = e 1.9.16
/c,z6+1 /0 T (1.9.16)

dz
— =0 1.9.17

because of (1.9.7) and

dz 0 emi/3 gp . mi/3 *® dr 1918
T[S e [T ey
e 5 +1 ), 11 ) 041
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\n/ 3

C, X

Y

Figure 1.9.2: Contour used in evaluating the integral (1.9.13).

since z = re™/3,

Substituting into (1.9.15),

. *®  dz T
_ ,mi/3 _ _ "t wi/6
(1-e )/0 e (1.9.19)
or
©  de e 2ie™i/6 T T
_m_ & _ =T (1920
/0 2841 6 emi/6 (em/6 — -7i/6) "~ Bsin(n/6) 3 ( )

Problems

Use the residue theorem to verify the following integral:

1.
/°° dz __7r\/§
o xi+17 4
2.
/°° dz _T
oo (22 +42+5)2 2
3.
/°° zdz T
oo (2 (22 +224+2) 5
4.

o gl T
— dr ==
/0 S+17 7%
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5.
/°° dz _w
o (22+1)? T4
6.
/ ” da _ o
o (24 1)(z2+4)2 " 288
7.

SNE

/°° t2 gt = 1 1—h/a
o @+ D[Ee/h+ 1)+ (a/h— D] T+h/a|’
where h/a < 1.

8. During an electromagnetic calculation, Strutt® needed to prove that

smh (oz) 9 Z cos[(n+ %) (z — )]
cosh(mr) — o2+ (n+i )

=l

Verify his proof.

Step 1: Using the residue theorem, show that

bl

1 f sinh(zz) dz sinh(oz) Y. (=) sin[(n+ 3) 2]
- m =7 - E 3 1
271 Jo, cosh(mz)z—o cosh(om) | c—i(n+3)

where Cy is a circular contour that includes the poles z = o and z, =
+i(n+3),n=0,1,2,...,N.

Step 2: Show that in the limit of N — oo, the contour integral vanishes.
[Hint: Examine the behavior of z sinh(zz)/[(z—0) cosh(72)] as |z| — co.
Use (1.9.7) where Cpg is the circular contour.]

Step 3: Break the infinite series in Step 1 into two parts and simplify.

In the next chapter we shall show how we can obtain the same series
by direct integration.

8 Strutt, M. J. O., 1934: Berechnung des hochfrequenten Feldes
einer Kreiszylinderspule in einer konzentrischen leitenden Schirmhiulle
mit ebenen Deckeln. Hochfrequenztechn. Elecktroak., 43, 121-123.



Chapter 2

Fourier Series

Fourier series arose during the eighteenth century as a formal solu-
tion to the classic wave equation. Later on, it was used to describe phys-
ical processes in which events recur in a regular pattern. For example, a
musical note usually consists of a simple note, called the fundamental,
and a series of auxiliary vibrations, called overtones. Fourier’s theo-
rem provides the mathematical language which allows us to precisely
describe this complex structure.

2.1 FOURIER SERIES

One of the crowning glories! of nineteenth century mathematics

! “Fourier’s Theorem ... is not only one of the most beautiful re-
sults of modern analysis, but may be said to furnish an indispensable
instrument in the treatment of nearly every recondite question in mod-
ern physics. To mention only sonorous vibrations, the propagation of
electric signals along a telegraph wire, and the conduction of heat by
the earth’s crust, as subjects in their generality intractable without it,
is to give but a feeble idea of its importance.” (Quote taken from Thom-
son, W. and Tait, P. G., 1879: Treatise on Natural Philosophy, Part I,
Cambridge University Press, Cambridge, Section 75.)
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was the discovery that the infinite series

+Zan cos( )+b sin ("gt> (2.1.1)

can represent a function f(¢) under certain general conditions. This
series, called a Fourier series, converges to the value of the function
f(t) at every point in the interval [—L, L] with the possible exceptions
of the points at any discontinuities and the endpoints of the interval.
Because each term has a period of 2L, the sum of the series also has the
same period. The fundamental of the periodic function f(¢) is then =1
term while the harmonics are the remaining terms whose frequencies
are integer multiples of the fundamental.

We must now find some easy method for computing the a,’s and
b,’s for a given function f(¢). As a first attempt, we integrate (2.1.1)
term by term? from —L to L. On the right side, all of the integrals
multiplied by a,, and b, vanish because the average of cos(nwt/L) and
sin(nwt/L) is zero. Therefore, we are left with

a0 = l/L £() dt. (2.1.2)

Consequently ag is twice the mean value of f(¢) over one period.
We next multiply each side of (2.1.1) by cos(m=t/L), where m is a
fixed integer. Integrating from —L to L,

[ ()
S [ o (7)o (1)
+§: /sm("”) os(mgrt) dt. (2.1.3)

The ap and b,, terms vanish by direct integration. Finally all of the a,

2 We assume that the integration of the series can be carried out term
by term. This is sometimes difficult to justify but we do it anyway.
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integrals vanish when n # m. Consequently, (2.1.3) simplifies to

L
an = —}:/_L f(t) cos (nTﬂ> dt,

(2.1.4)

because f_LL cos?(nwt/L)dt = L. Finally, by multiplying both sides of
(2.1.1) by sin(mnt/L) (m is again a fixed integer) and integrating from

—~L to L,

L
by = %/_L f(t)sin (nTﬂ) dt.

(2.1.5)

Although (2.1.2), (2.1.4), and (2.1.5) give us ao, a,, and b, for
periodic functions over the interval [—L, L], in certain situations it is
convenient to use the interval [r, 7 + 2L], where 7 is any real number.

In that case, (2.1.1) still gives the Fourier series of f(t) and

1=

T74+2L
/ £(t) dt,

T

(2.1.6)

These results follow when we recall that the function f(t) is a peri-
odic function that extends from minus infinity to plus infinity. The
results must remain unchanged, therefore, when we shift from the inter-
val [-L, L] to the new interval [, 7+ 2L].

We now ask the question: what types of functions have Fourier
series? Secondly, if a function is discontinuous at a point, what value
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will the Fourier series give? Dirichlet®* answered these questions in
the first half of the nineteenth century. He showed that if any arbitrary
function is finite over one period and has a finite number of maxima and
minima, then the Fourier series converges. If f(¢) is discontinuous at the
point ¢ and has two different values at f(¢~) and f(¢*), where t* and
t~ are points infinitesimally to the right and left of ¢, the Fourler series
converges to the mean value of [f(¢*) + f(t7)]/2. Because Dirichlet’s
conditions are very mild, it is very rare that a convergent Fourier series
does not exist for a function that appears in an engineering or scientific
problem.

e Example 2.1.1

Let us find the Fourier series for the function

0, -T<t<0
o) = {t, 0<t< (2.1.7)

We compute the Fourier coefficients e, and b, using (2.1.6) by
letting L = w and 7 = —w. We then find that

1 /7 1 [ T

ap = ; . f(t) dt = ;A tdt = 5, (218)
an = l/ t cos(nt) dt = 1 [tSIH(nt) + cos(2nt)] (2.1.9)

T Jo T n n 0

_cos(nm) -1 (=1)" -1
= (2.1.10)
because cos(n7) = (—1)" and

by = l/ tsin(nt)dt = — ["t cos(nt) | Sln(:t)] (2.1.11)

7 Jo T n n 0
_ _cos(nm) _ (=)™ (2.1.12)

n n

3 Dirichlet, P. G. L., 1829: Sur la convergence des séries trigonométri-
ques qui servent & représenter une fonction arbitraire entre des limites
données. J. reine angew. Math., 4, 157-169.

* Dirichlet, P. G. L., 1837: Sur I'usage des intégrales définies dans
la sommation des séries finies ou infinies. J. reine angew. Math., 17,
57-67.
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Figure 2.1.1: A product of the French Revolution, (Jean Baptiste)
Joseph Fourier (1768-1830) held positions within the Napoleonic Em-
pire during his early career. After Napoleon’s fall from power, Fourier
devoted his talents exclusively to science. Although he won the Institut
de France prize in 1811 for his work on heat diffusion, criticism of its
mathematical rigor and generality led him to publish the classic book
Théorie analytique de la chaleur in 1823. Within this book he intro-
duced the world to the series that bears his name. (Portrait courtesy of
the Archives de I’Académie des sciences, Paris.)

for n=1,2,3,.... Thus, the Fourier series for f(t) is

)n+1

5

sin(nt)  (2.1.13)

W

f) ==+ E — )n L cos(nt) LU

=1

|
SN

2 & cos[(2m — 1)t - .
- Z;l 2m— 1)2)] nZ:::l(—n—sm(nt). (21.14)
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Figure 2.1.2: Second to Gauss, Peter Gustav Lejeune Dirichlet (1805-
1859) was Germany’s leading mathematician during the first half of the
nineteenth century. Initially drawn to number theory, his later studies
m analysis and applied mathematics led him to consider the conver-
gence of Fourier series. These studies eventually produced the modern
concept of a function as a correspondence that associates with each real
z in an interval some unique value denoted by f(z). (Taken from the
frontispiece of Dirichlet, P. G. L., 1889: Werke. Druck und Verlag von
Georg Reimer, Berlin, 644 pp.) ’

We note that at the points t = +(2n — I)m, where n = 1,2,3, ..,
the function jumps from zero to 7. To what value does the Fourier
series converge at these points? From Dirichlet’s conditions, the series
converges to the average of the values of the function just to the right
and left of the point of discontinuity, i.e., (7 + 0)/2 = n/2. At the
remaining points the series converges to f(t).

In Figure 2.1.3 we show how well (2.1.13) approximates the function
by graphing various partial sums of (2.1.13) as we include more and more
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5 T T

mean plus 1 term

mean plus 2 terms

mean plus 3 terms

mean plus 4 terms

mean plus 5 terms

Figure 2.1.3: Partial sum of the Fourier series for (2.1.7).

57

terms (harmonics). As the figure shows, successive corrections are made
to the mean value of the series, /2. As each harmonic is added, the

Fourier series fits the function better in the sense of least squares:

T+2L
/ (f(x) - fn (17)]2 dr = minimum,

where fxn(z) is the truncated Fourier series of N terms.

e Example 2.1.2

(2.1.15)

Let us calculate the Fourier series of the function f(¢) = |t| which
is defined over the range —7 <t < 7.
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From the definition of the Fourier coefficients,

1 0 w
a():—[/ —tdt—i—/ tdt]:
m -7 0

an = [/0 —~t cos(nt) dt + /;W t cos(nt) dt] (2.1.17)

-7

+g=m (2.1.16)

o N

nt sin(nt) + cos(nt) 0

+ ntsin(nt) + cos(nt) |

= 2.1.18
n?mw o nw 0 ( )
2 n
- m[(_l) —1] (2.1.19)
and
1 0 X
b, = p [/ —tsin(nt) dt +/ t sin(nt) dt] (2.1.20)
-7 0
. 0 . T
_n cos(nt) —sin(nt)|"  ntcos(nt) — sin(nt) —0 (2121)
nir o nin 0
forn =1,2,3,.... Therefore,
T 2 = 1)" T4 cos[(2m — 1)t]
= — — —_——
i 2 T z_: COS(-nt) 2 E (2m —1)2

(2.1.22)
for - <t <.

In Figure 2.1.4 we show how well (2.1.22) approximates the function
by graphing various partial sums of (2.1.22). As the figure shows, the
Fourier series does very well even when we use very few terms. The
reason for this rapid convergence is the nature of the function: it does
not possess any jump discontinuities.

e Example 2.1.3
Sometimes the function f(t) is an even or odd function.® Can we

use this property to simplify our work? The answer is yes.
Let f(t) be an even function. Then

L L
a0 = %/_L f(t)dt = %/0 £(t) dt (2.1.23)

5 An even function f.(t) has the property that f.(—t) = fe(t); an
odd function f,(t) has the property that f,(—t) = —fo(t).
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mean plus | term

T T

mean plus 2 terms

mean plus 3 terms

mean plus 4 terms
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mean plus 6 terms

Figure 2.1.4: Partial sum of the Fourier series for f(t) = |t|.

and

L
a, = %[_L f(t) cos ("_21

whereas

L
by = %/_L f(t)sin ("T“) dt = 0.

Here we have used the properties that f_LL fe(z)dz = 2f0L fe(z) dz and

f_LL Jo(z)dz = 0. Thus, if we have an even function, we merely compute

59

) dt = %/OL £(2) cos ("—2’1) dt (21.24)

(2.1.25)

ao and a, via (2.1.23)-(2.1.24) and b, = 0. Because the corresponding
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series contains only cosine terms, it is often called a Fourier cosine
series.

Similarly, if f(t) is odd, then

L
ag=2a, =0 and b, = —2—/ f(t)sin (n—ﬂ> dt. (2.1.26)
L J, L

Thus, if we have an odd function, we merely compute b, via (2.1.26)
and ag = a, = 0. Because corresponding series contains only sine terms,
it is often called a Fourier sine series.

o Example 2.1.4

In the case when f(z) consists of a constant and/or trigonometric
functions, it is much easier to find the corresponding Fourier series by
inspection rather than by using (2.1.6). For example, let us find the
Fourier series for f(z) = sin’(z) defined over the range —7 <z < 7.

We begin by rewriting f(z) = sin’(z) as f(z) = %[1 — cos(2z)].
Next, we note that any function defined over the range —7 < = < 7 has
the Fourier series

flz) = a2_0 + nz—:l an cos(nz) + by sin(ne) (2.1.27)
= 02—0 + aj cos(z) + by sin(z) + aa cos(22) + basin(2z) + - - -
(2.1.28)

On the other hand,

f(z) = § — § cos(2z) (2.1.29)
L +0cos(z) + Osin(z) — § cos(2z) + Osin(2z) +---  (2.1.30)

Consequently, by inspection, we can immediately write that
ags=1,a1=b; =0,ay = —‘%,bQ =0,a,=b,=0,n>3. (2.1.31)

Thus, instead of the usual expansion involving an infinite number of
sine and cosine terms, our Fourier series contains only two terms and is
simply

f(z) =1~ Lcos(2z), —r<r<m. (2.1.32)

o Example 2.1.5: Quieting snow tires

An application of Fourier series to a problem in industry occurred
several years ago, when drivers found that snow tires produced a loud
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whine® on dry pavement. Tire sounds are produced primarily by the
dynamic interaction of the tread elements with the road surface.” As
each tread element passes through the contact patch, it contributes a
pulse of acoustic energy to the total sound field radiated by the tire.

For evenly spaced treads we envision that the release of acoustic
energy resembles the top of Figure 2.1.5. If we perform a Fourier analysis
of this distribution, we find that

—7/24¢ n/2+4¢
ol [ [ e | m] e (2.1.33)
T ™

T —m/2—¢ /2—¢

where ¢ is half of the width of the tread and

1 —7m/2+4¢€ m/24€
ap, = = / cos(nt) dt +/ cos(nt)dt| (2.1.34)
T —7r/2—¢ Tf2~¢
1 g, - .
=— [sm(nt)|_:;§tz + sin(nt) :ﬁi] (2.1.35)
171, nmw . nmw
= o [sm (—? + nc) ~ s1n (—7 - ne)
+ sin (712_7r + ne) - sin (712_7r - ne)] (2.1.36)
1 nw nmw\] .
=— [2 cos (——2—) + 2 cos (7)] sin(ne) (2.1.37)
4 nwy .
= ——cos (—2—-) sin(ne). (2.1.38)

Because f(t) is an even function, b, = 0.

The question now arises of how to best illustrate our Fourier coeffi-
cients. In Section 2.4 we will show that any harmonic can be represented
as a single wave A, cos(nwt/L + ¢,) or Ay sin(nnt/L + 4,), where the
amplitude A, = /a2 + 2. At the bottom of Figure 2.1.5, we have
plotted this amplitude, usually called the amplitude or frequency spec-
trum 3\/a2 + b2, as a function of n for an arbitrarily chosen € = 7/12.
Although the value of ¢ will affect the exact shape of the spectrum,
the qualitative arguments that we will present remain unchanged. We
have added the factor % so that our definition of the frequency spec-
trum is consistent with that for a complex Fourier series stated after
(2.5.15). The amplitude spectrum in Figure 2.1.5 shows that the spec-

trum for periodically placed tire treads has its largest amplitude at small

® Information based on Varterasian, J. H., 1969: Math quiets rotating
machines. SAE J., 77(10), 53.

" Willett, P. R., 1975: Tire tread pattern sound generation. Tire Sci.
Tech., 3, 252-266.
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Figure 2.1.5: Temporal spacing (over two periods) and frequency spec-
trum of a uniformly spaced snow tire.

n. This produces one loud tone plus strong harmonic overtones because
the n = 1 term (the fundamental) and its overtones are the dominant
terms in the Fourier series representation.

Clearly this loud, monotone whine is undesirable. How might we
avoid it? Just as soldiers marching in step produce a loud uniform sound,
we suspect that our uniform tread pattern is the problem. Therefore,
let us now vary the interval between the treads so that the distance
between any tread and its nearest neighbor is not equal. Figure 2.1.6
illustrates a simple example. Again we perform a Fourier analysis and
obtain that

1 —1I'/2+€ 1I'/4+€ 46
a0 =~ / 1clt+/ 1dt| = —, (2.1.39)
T ™

-mf2—¢€ [/4—c¢



Fourier Series 63

3n/4

T -
n t
[
s
- [ ] ®

S 010+

+

o = d o

3 °

e 005+

[ ]
[ ]
o ® o *
° e ® o °
} . } } } 4 } } } +—

Figure 2.1.6: Temporal spacing and frequency spectrum of a nonuni-
formly spaced snow tire.

1 —7/2+4€ w[4+e
an —/ cos(nt)dt+/ cos(nt)dt| (2.1.40)

w —m/2—¢ T/d-¢
1 —m/24¢ w/44¢€
= —ssin(nt) + — sin(nt) (2.1.41)
nmw —rj2-¢ N7 T/4—¢

i ) ()
[sm ( ne) — sin (—— - ne)] (2.1.42)

= % [cos( 5 ) + cos (714—71-)] sin(ne) (2.1.43)

and
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b, =

A~

n/2—-¢ w/d4—e€

= _n%r [cos (%ﬂ: — nc) — cos (n2—ﬂ' + ne)]
1 nw nm
Y [cos (T + ne) — cos (71— - ne)] (2.1.45)
-2 [sin (27) - sin (%)] sin(ne). (2.1.46)

nmw 4

—7n/24¢ /4+e
[/ sin(nt) dt + / sin(nt) dt] (2.1.44)

Figure 2.1.6 illustrates the amplitude of each harmonic as a function
of n. The important point is that our new choice for the spacing of the
treads has reduced or eliminated some of the harmonics compared to
the case of equally spaced treads. On the negative side we have excited
some of the harmonics that were previously absent. However, the net
effect is advantageous because the treads produce less noise at more
frequencies rather than a lot of noise at a few select frequencies.

If we were to extend this technique so that the treads occurred at
completely random positions, then the treads would produce very little
noise at many frequencies and the total noise would be comparable to
that generated by other sources within the car. To find the distribution
of treads with the whitest noise® is a process of trial and error. Assuming
a distribution, we can perform a Fourier analysis to obtain the frequency
spectrum. If annoying peaks are present in the spectrum, we can then
adjust the elements in the tread distribution that may contribute to the
peak and analyze the revised distribution. You are finished when no
peaks appear.

Problems

Find the Fourier series for the following functions. Plot various partial
sums and compare them against the exact function.

1.
-T<t<0

17
f(t)z{o, O<t<m

t, -T<t<0
f(t)_{O, O<t<m

8 White noise is sound that is analogous to white light in that it is
uniformly distributed throughout the complete audible sound spectrum.
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10.

11.

12.

13.

-, —-rT<t<0
o={7T TS

0, —-T1<t<0
f(t):{ t, 0<t< /2

7 —t, 7/2<t< T

1

1+t -1<t<0
t)=<2 S
1® {%—t, 0<t<1
fy=e*, —-L<it<lL

0, -r<t<0
fo) = {sin(t), 0<t<r

fO)=t+t*, -—-L<t<lL
t -i1<t<t
) = ) 2>t 3
0 {1—t, 3<t<3
0, —-r<t< ~-n/2
f(t) = < sin(2t), —7r/2<t< w2
0, T/2<t< 7w
0, —a<t<0
f(t)_{Qt O0<t<a
T—1
fit) = 7 0<t<2

65
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14.
Tr<t<0

0’ - =
f(t):{ﬂ, 0<t<m

- f(t) = sinh [a (% - ltl)] ,  —r<t<m

2.2 PROPERTIES OF FOURIER SERIES

In the previous section we introduced the Fourier series and showed
how to compute one given the function f(¢). In this section we examine
some particular properties of these series.

I Differentiation of a Fourier series '

In certain instances we only have the Fourier series representation
of a function f(t). Can we find the derivative or the integral of f(t)
merely by differentiating or integrating the Fourier series term by term?
Is this permitted? Let us consider the case of differentiation first.

Consider a function f(t) of period 2L which has the derivative f/(t).
Let us assume that we can expand f/(t) as a Fourier series. This implies
that f'(t) is continuous except for a finite number of discontinuities and
f(t) is continuous over an interval that starts at ¢ = 7 and ends at
t =7+ 2L. Then

/

- +Za cos( )+b' i ("Tﬂ) (2.2.1)

where we have denoted the Fourier coefficients of f’(¢) with a prime.
Computing the Fourier coefficients,

1 742L 1

a = f/ F)dt= 3 +20) - f(] =0,  (2.22)

if f(1+2L) = f(7). Similarly, by integrating by parts,

, 1 T+2L , t
o, = f/, £(t) cos (%) dt (2.2.3)
T+2L T+2L

- % [f(t)cos ("T’”)] o %’;} f(t)sm( ) dt (2.2.4)
L (2.2.5)

L
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and
T+2L
B, = % / " ity sin ("T”t) dt (2.2.6)
T+2L 74+2L
_ %[f(t)sin (f?)] - - T ' f(t)cos( - ) dt (2.2.7)
=—"¥“. (2.2.8)

Consequently, if we have a function f(t) whose derivative f’(t) is contin-
uous except for a finite number of discontinuities and f(7) = f(r+2L),

then
>\ nw nmwt . nnt
"t) = ; T [bn cos (T) — ap sin (T)] . (2.2.9)

That is, the derivative of f(¢) is given by a term-by-term differentiation
of the Fourier series of f(t).

e Example 2.2.1

The Fourier series for the function

0, —r<t<0
ﬂnz{ t, 0<t< /2 (2.2.10)
T —1, rf2<t<™

is

ft) = % _ %; COS([;(l?f 1—) 21)11 % Zz: )" > sin[(2n — 1)t].

(2.1.11)
Because f(t) is continuous over the entire interval (-, 7) and f(—7) =
f(m) =0, we can find f'(¢) by taking the derivative of (2.2.11) term by
term:

£(t) = Z sm[22(jri—1 1)¢] %Z

n=1

cos[(2n - 1)t]. (2.2.12)

This is the Fourier series that we would have obtained by computing
the Fourier series for

0, -T<t<0
F@)= { 1, 0<t< /2 (2.2.13)
-1, r/2<t< .
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I Integration of a Fourier series

To determine whether we can find the integral of f(t) by term-by-
term integration of its Fourier series, consider a form of the antideriva-

tive of f(¢):

F(t) = /Ot[ f(r) = 2] ar (2.2.14)
Now
F(t+2L)=/0t -2 dr+[t+2L - 2] dar (2215)
= F(t) + /_ [£(r) - 5‘22] dr (2.2.16)
=ro+ [ () dr — Lao = F(0), (22.17)

so that F'(?) has a period of 2L. Consequently we may expand F(t) as
the Fourier series

F(t)=22 4 f:An cos ( ) + B, sin ("Lt) . (2.2.18)

For A,,,

1 [E nwt
1 sin(nwt/L)] | 1 ff ag} . [nnt
=1 [F(f)w} vy [ = ] sin (77 ) at
(2.2.20)
by,
=TT (2.2.21)
Similarly,
an :
Ba= o tr (2.2.22)
Therefore,
_ aot Ao 2\ a, sin(nwt/L) ~ by, cos(nmt/L)
/ f(r +5 =+ -3 . (2.2.23)

n=1
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This is identical to a term-by-term integration of the Fourier series for
f(t). Thus, we can always find the integral of f(t) by a term-by-term
integration of its Fourier series.

e Example 2.2.2

The Fourier series for f(t) =t for —7 <t < wis

fty=-25" (=1 sin(nt). (2.2.24)

n

To find the Fourier series for f(t) = t?, we integrate (2.2.24) term by
term and find that

t =2 i (_12)n cos(nt) — 2 i (=" (2.2.25)
0 n=1 n=1

2
2 n n?

But 5.°°,(—1)"/n? = —x?/12. Substituting and multiplying by 2, we
obtain the final result that

) _ T — (="
t° = £l +4Z 5— cos(nt). (2.2.26)
n=1

n
L Parseval’s equality

One of the fundamental quantities in engineering is power. The
power content of a periodic signal f(t) of period 2L is fTT+2L f(t)dt/L.
This mathematical definition mirrors the power dissipation I?R that
occurs in a resistor of resistance R where I is the root mean square
(RMS) of the current. We would like to compute this power content as
simply as possible given the coefficients of its Fourier series.

Assume that f(¢) has the Fourier series

f@) = 229 + Z @y COS (nTﬂ) + by, sin (nTﬂ) . (2.2.27)
n=1
Then,
1 74+2L a 742L
7 / F2(t)dt = 5% f(t)dt
o an T+2L nw
— t _ t
+nZ=:1 : f( )cos( 7 ) d

0 T42L
+Zlbf"/r ’ () sin (Pth> dt  (2.2.28)

2 oQ
- %" + 3 (a? +52). (2.2.29)
n=1
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Equation (2.2.29) is Parseval’s equality.® It allows us to sum squares
of Fourier coefficients (which we have already computed) rather than

performing the integration fT+2L F?

(t) dt analytically or numerically.
e Example 2.2.3

The Fourier series for f(t) = t* over the interval [-r, ] is

= % Z cos(nt). (2.2.30)
Then, by Parseval’s equality,
1 . 2% |7 4rt 1
;/_"t dt = 5, =TT 167;7—Iz (2.2.31)
2 4\ 4, 1
'(3 _ Tg) = 16; — (2.2.32)
S |
5= > = (2.2.33)

I Gibbs phenomena

In the actual application of Fourier series, we cannot sum an infinite
number of terms but must be content with N terms. If we denote this
partial sum of the Fourier series by Sy(t), we have from the definition
of the Fourier series:

N :
Sn(t) = $ao +,Zan cos(nt) + by, sin(nt) (2.2.34)
n=1
1

27
= ﬁ A f(:c) dz

% Parseval, M.-A., 1805: Mémoire sur les séries et sur Pintégration
compléte d’une equatlon aux différences partielles linéaires du second
ordre, & coefficients constants. Mémoires présentés a I'Institut des sci-
ences, lettres et arts, par divers savans, el lus dans ses assemblées:
Sciences mathématiques et Physiques, 1, 638-648.
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Figure 2.2.1: The scanning function over 0 < z < 27 for N = 5.

1 2% N
+ ; f(z) [ E cos(nt) cos(nz) + sin(nt) sin(nx):| dz
) (2.2.35)
27 N
Sn(t) = % /0. f(z) {% + Z cos[n(t — x)]} dz (2.2.36)
1 [ sin[(NV + 1)(z — 1)) p (2.2.37)

~ar )y () sin[2(z —t)]

The quantity sin[(N + 3)(z —1)]/ sin[3(z —1)] is called a scanning func-
tion. Over the range 0 < z < 27 it has a very large peak at z =t where
the amplitude equals 2N + 1. See Figure 2.2.1. On either side of this
peak there are oscillations which decrease rapidly with distance from
the peak. Consequently, as N — oo, the scanning function becomes
essentially a long narrow slit corresponding to the area under the large
peak at z = t. If we neglect for the moment the small area under the
minor ripples adjacent to this slit, then the integral (2.2.37) essentially
equals f(t) times the area of the slit divided by 27. If 1/2x times the
area of the slit equals unity, then the value of Sy(t) & f(t) to a good
approximation for large V.
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For a relatively small value of N, the scanning function deviates
considerably from its ideal form, and the partial sum Sy (t) only crudely
approximates the given function f(¢). As the partial sum includes more
terms and N becomes relatively large, the form of the scanning function
improves and so does the degree of approximation between Sy (t) and
f(t). The improvement in the scanning function is due to the large
hump becoming taller and narrower. At the same time, the adjacent
ripples become larger in number and hence also become narrower in the
same proportion as the large hump becomes narrower.

The reason why Sy(t) and f(¢) will never become identical, even
in the limit of N — o0, is the presence of the positive and negative side
lobes near the large peak. Because

sin[(N + $)(z — t)]
sin[3(z — t)]

N
=1+2 Z cos[n(t — z)], (2.2.38)

an integration of the scanning function over the interval 0 to 27 shows
that the total area under the scanning function equals 2x. However,
from Figure 2.2.1 the net area contributed by the ripples is numerically
negative so that the area under the large peak must exceed the value
of 27 if the area of the entire function equals 27. Although the exact
value depends upon N, it is important to note that this excess does not
become zero as N — oo.

Thus, the presence of these negative side lobes explains the depar-
ture of our scanning function from the idealized slit of area 27. To
illustrate this departure, consider the function:

ft) = {_11 7?<<tt<<2”7r' (2.2.39)
Then,
_ 1 [Tsin[(N + Dz -1)) 1 [?"sin[(N + %)(z —1)]
Sw(t) = %/0 sin[%(; —1)] i sin[1(z — 1)] da
(2.2.40)
1 [T sinl(N+3)—1)]  sinl(N +5)(z +1)] .
= 27r/0 { sl 0] T sl 4] }
(2.2.41)
1 [™!sin[(N + 1)g] 1 ™ sin[(N + 1))
T om /_, sin(%t?)2 d0 - %,/, sin(%ﬁ)2 6.
(2.2.42)

The first integral in (2.2.42) gives the contribution to Sx(t) from the
Jump discontinuity at ¢ = 0 while the second integral gives the con-
tribution from ¢ = x. In Figure 2.2.2 we have plotted the numerical
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Figure 2.2.2: The finite Fourier series representation Sy(t) for the
function (2.2.39) for the range ~1 <t < 7 for N = 27 and N = 81.

integration of (2.2.42) for N = 27 and N = 81. Residual discrepancies
remain even for very large values of N. Indeed, even as N increases this
figure changes only in that the ripples in the vicinity of the discontinuity
of f(t) show a proportionally increased rate of oscillation as a function
of ¢ while their relative magnitude remains the same. As N — oo these
ripples compress into a single vertical line at the point of discontinu-
ity. True, these oscillations occupy smaller and smaller spaces but they
still remain. Thus, we can never approximate a function in the vicin-
ity of a discontinuity by a finite Fourier series without suffering from
this over- and undershooting of the series. This peculiarity of Fourier
series is called the Gibbs phenomena.’® Gibbs phenomena can only be
eliminated by removing the discontinuity.!?

10 Gibbs, J. W., 1898: Fourier’s series. Nature, 59, 200; Gibbs, J.
W., 1899: Fourier’s series. Nature, 59, 606. For the historical develop-
ment, see Hewitt, E. and Hewitt, R. E., 1979: The Gibbs-Wilbraham
phenomenon: An episode in Fourier analysis. Arch. Hist. Ezact Seci.,
21, 129-160.

! For a particularly clever method for improving the convergence of
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Problems

Additional Fourier series representation can be generated by differenti-
ating or integrating known Fourier series. Work out the following two
examples.

1. Given
oo
x? —27r:c Z cos{(2n + 1)z ], 0<z<m
— (2n+1)2 -
obtain
2, oo
w2z — wz? =Zsm[2n+l)z’] 0<z<m

(2n+1)3 °

by term-by-term integration. Could we go the other way, i.e., take the
derivative of the second equation to obtain the first? Explain.

2. Given
7 =322 & n+1 cos(ne)
i § _ +1Z7P\ ) _
12 - "_1( 1) n2 ) T S x S T,
obtain

z - 23 1)n+1s1n(n:c) r<z<n

IIM8

by term-by-term integration. Could we go the other way, i.e., take the
derivative of the second equation to obtain the first? Explain.

3. (a) Show that the Fourier series for the odd function:

2+ -2<t<0
f(t)_{Qt—tz, 0<t<2

1s

£(t) = 3—3§ T [(2”‘2”“] |

a trigonometric series, see Kantorovich, L. V. and Krylov, V. 1., 1964:
Approzimate Methods of Higher Analysis. Interscience, New York, pp.
77-88.
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(b) Use Parseval’s equality to show that

6 Ao 1

960 ; (2n—1)8"

This series converges very rapidly to 7°/960 and provides a convenient
method for computing .

2.3 HALF-RANGE EXPANSIONS

In certain applications, we will find that we need a Fourler series
representation for a function f(z) that applies over the interval (0, L)
rather than (—L, L). Because we are completely free to define the func-
tion over the interval (—L, 0), it is simplest to have a series that consists
only of sines or cosines. In this section we shall show how we can obtain
these so-called half-range expansions.

Recall in Example 2.1.3 how we saw that if f(z) is an even function
[fo(z) = 0], then b, = 0 for all n. Similarly, if f(z) is an odd function
[fe(z) = 0], then ag = a, = 0 for all n. We now use these results to find
a Fourier half-range expansion by extending the function defined over
the interval (0,L) as either an even or odd function into the interval
(—L,0). If we extend f(x) as an even function, we will get a half-range
cosine series; if we extend f(x) as an odd function, we obtain a half-
range sine series.

It is important to remember that half-range expansions are a special
case of the general Fourier series. For any f(z) we can construct either
a Fourlier sine or cosine series over the interval (—L, L). Both of these
series will give the correct answer over the interval of (0, L). Which one
we choose to use depends upon whether we wish to deal with a cosine
or sine series.

e Example 2.3.1

Let us find the half-range sine expansion of

f(z) =1, O<z <. (2.3.1)
We begin by defining the periodic odd function
= -1, —T<r<0
f(w)—{ 1 O<eoe<n (2.3.2)
with f(z 4 27) = f(z). Because f(z) is odd, ap = a, = 0 and
2 [ 2 x
b, = ;/0 Isin(ne)dz = - cos(n)l, (2.3.3)

—% [cos(nm) — 1] = —;12—” (=)™ =1]. (2.3.4)
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Figure 2.3.1: Partial sum of N terms in the Fourier half-range sine
representation of a square wave.

The Fourier half-range sine series expansion of f(z) is therefore

2 — 1) ] 4 >, sin[(2m — 1)z]
= ; Z sm(n.L') . Z W (235)
n=1 m=1
As counterpoint, let us find the half-range cosine expansion of
f(z)=1,0 <z <. Now, we have that b, = 0,

ap = 2/ lde =2 (2.3.6)
T Jo
and
2 /7r cos(nz) dz 2 sin(nz)|; =0 (2.3.7)
a" = - = — = . Y N
T Jo nw 0

Thus, the Fourier half-range cosine expansion equals the single term:
f(z) =1, D<ez <. (2.3.8)

This is perfectly reasonable. To form a half-range cosine expansion we
extend f(z) as an even function into the interval (—,0). In this case,
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we would obtain f(z) = 1 for =7 < z < 7. Finally, we note that the
Fourier series of a constant is simply that constant.

In practice it is impossible to sum (2.3.5) exactly and we actu-
ally sum only the first N terms. Figure 2.3.1 illustrates f(z) when
the Fourier series (2.3.5) contains N terms. As seen from the figure,
the truncated series tries to achieve the infinite slope at ¢ = 0, but
in the attempt, it overshoots the discontinuity by a certain amount (in
this particular case, by 17.9%). This is another example of the Gibbs
phenomena. Increasing the number of terms does not remove this pe-
culiarity; it merely shifts it nearer to the discontinuity.

o Example 2.3.2: Inertial supercharging of an engine

An important aspect of designing any gasoline engine involves the
motion of the fuel, air, and exhaust gas mixture through the engine.
Ordinarily an engineer would consider the motion as steady flow; but
in the case of a four-stroke, single-cylinder gasoline engine, the closing
of the intake valve interrupts the steady flow of the gasoline-air mixture
for nearly three quarters of the engine cycle. This periodic interruption
sets up standing waves in the intake pipe — waves which can build up
an appreciable pressure amplitude just outside the input value.

When one of the harmonics of the engine frequency equals one of the
resonance frequencies of the intake pipe, then the pressure fluctuations
at the valve will be large. If the intake valve closes during that portion
of the cycle when the pressure is less than average, then the waves
will reduce the power output. However, if the intake valve closes when
the pressure is greater than atmospheric, then the waves will have a
supercharging effect and will produce an increase of power. This effect
is called inertia supercharging.

While studying this problem, Morse et al.!? found it necessary to
express the velocity of the air-gas mixture in the valve, given by

0, —r<wt<—7/4
f(t) = { wcos(2wt)/2, —wf4 <wt < 7w/4 (2.3.9)
0, rfd<wt<m

in terms of a Fourier expansion. The advantage of working with the
Fourier series rather than the function itself lies in the ability to write
the velocity as a periodic forcing function that highlights the various
harmonics that might be resonant with the structure comprising the
fuel line.

12 Morse, P. M., Boden, R. H., and Schecter, H., 1938: Acoustic vibra-
tions and internal combustion engine performance. I. Standing waves in
the intake pipe system. J. Appl. Phys., 9, 16-23.
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Figure 2.3.2: The spectral coefficients of the Fourier cosine series of
the function (2.3.9).

Clearly f(t) is an even function and its Fourier representation will

be a cosine series. In this problem 7 = —7/w and L = 7 /w. Therefore,
2 7r/4w 7/ 4w
ap = — z cos(2wt) dt = %sin(?wt)l_/:/4 =1 (2.3.10)
T Jow/dw 2 it
and
9 /4w +
an = — Zcos(2¢.ut) cos (nl) dt (2.3.11)
T Jorfaw 2 7!'/0.1
w /4w
= - {cos[(n + 2)wt] + cos[(n — 2)wt]} dt (2.3.12)
2 -7 /4w .
[(n200t]  sinftn=20 |
sin[(n42)wt sin[(n—2)wt
2ng) T 2(n—2)w y n#F2
= | w1 (2.3.13)
th_*_sm!:wt! , n=2
—m /4w
= { NG cos (%), n#2 (2.3.14)
) n=2.

Because these Fourier coefficients become small rapidly (see Figure
2.3.2), Morse et al. showed that there are only about three resonances
where the acoustic properties of the intake pipe can enhance engine
performance. These peaks occur when ¢ = 30¢/NL = 3,4, or 5, where ¢
is the velocity of sound in the air-gas mixture, L is the effective length
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1220 RPM.
2.56" diam.

Figure 2.3.3: Experimental verification of the resonance of the n =
3,4, and 5 harmonics of the Fourier representation (2.3.14) of the flow
of an air-gas mixture with the intake pipe system. The parameter ¢ is
defined in the text. (From Morse, P., Boden, R. H., and Schecter, H.,
1938: Acoustic vibrations and internal combustion engine performance.
J. Appl. Phys., 9, 17 with permission.)

of the intake pipe, and N is the engine speed in rpm. See Figure 2.3.3.
Subsequent experiments!? verified these results.

Such analyses are valuable to automotive engineers. Engineers are
always seeking ways to optimize a system with little or no additional
cost. Our analysis shows that by tuning the length of the intake pipe
so that it falls on one of the resonance peaks, we could obtain higher
performance from the engine with little or no extra work. Of course,
the problem is that no car always performs at some optimal condition.

Problems

Find the Fourier cosine and sine series for the following functions:

- =t o0<t<~
2.
f(t)y=m—1t, O<t<m
> t 0<t<i
f(t)={1_’t’ 1<i<

13 Boden, R. H. and Schecter, H., 1944: Dynamics of the inlet system
of a four-stroke engine. NACA Tech. Note 935.



80

10.

11.

12.

13.

Advanced Engineering Mathematics

f(t)=n% %
ro={}
0)
fty=qt-5
%a
1
-+
2t
f(t) = { 3ai;t
2a
2
w={,
f =",
Oy
=91
07
£ = t(a=1),

f(t) =€,

O<t<nm

0<t<1
1<t<?2

0<t<$
a 2a
§<t<?
2?"<t<a

0<t< g
$<t<a

0<t< 2
f£<t<a

0<t< g
f<t<a

0<t<a

0<t< §

3
F<t<F
34—a<t<a

O<t<a

O<t<a
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A= 0, 0<t<$
16y = 1, $<t<a

14.

15. The function

t 3 s
f@)=1-(+a)-+(@-Dz+(@+tl)z-a5, 0<t<m

is a curve fit to the observed pressure trace of an explosion wave in the
atmosphere. Because the observed transmission of atmospheric waves
depends on the five-fourths power of the frequency, Reed'* had to re-
express this curve fit as a Fourier sine series before he could use the
transmission law. He found that

f(t) = %Z % [ %} sin(2nt)

1 OZ 2(a—-1) 48a .
el zz: 2n 1 [ 71_2(2,1 — 1) - T@n— 1) sin[(2n - 1)t].

=1

Confirm his result.
2.4 FOURIER SERIES WITH PHASE ANGLES

Sometimes it is desirable to rewrite a general Fourier series as a
purely cosine or purely sine series with a phase angle. Engineers often
like to speak of some quantity leading or lagging another quantity. Re-
expressing a Fourier series in terms of amplitude and phase provides a
convenient method for determining these phase relationships.

Suppose, for example, that we have a function f(¢) of period 2L,
given in the interval [—L, L], whose Fourier series expansion is

f =3+ Z ap cos < ) + by sin ("zt) . (2.4.1)

We wish to replace (2.4.1) by the series:

ft) = %9 + ) Bpsin (”T” + <pn> . (2.4.2)
n=1

14 From Reed, J. W., 1977: Atmospheric attenuation of explosion
waves. J. Acoust. Soc. Am., 61, 39-47 with permission.
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To do this we note that

. nmt nnt . nwt
B, sin (T + go,,) = a, cos (T) + b, sin (T) (2.4.3)
(1 t
= By sin (%) cos(pn) + By sin(ey, ) cos (%) .
(2.4.4)

We equate coefficients of sin(nnt/L) and cos(nwt/L) on both sides and
obtain

an = By sin(py) and bn = By cos(py). (2.4.5)
Hence, upon squaring and adding,
By = /a2 + b2, (2.4.6)
while taking the ratio gives
@n = tan"(an /bn). (2.4.7)
Similarly we could rewrite (2.4.1) as

f(t) = —2— + E A, cos (T + gon) , (2.4.8)

n=1

where

Ap =+/a2 + b2 and on = tan"(=b,/ay) (2.4.9)
and

an = A, cos(n) and b, = — A, sin(pn). (2.4.10)
In both cases, we must be careful in computing ¢, because there are
two possible values of ¢, which satisfy (2.4.7) or (2.4.9). These ¢,’s
must give the correct a, and b, using either (2.4.5) or (2.4.10).
o Example 2.4.1

The Fourier series for f(t) = €' over the interval —L <t < L is

smh(aL) (-~ nmt
(t) = + 2s1nh aL) Z m (T)

. > arn(=1)" . [nnt
— 2smh(aL) Z m sin (—L—) . (2411)
n=1
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Let us rewrite (2.4.11) as a Fourier series with a phase angle. Regard-
less of whether we want the new series to contain cos(nwt/L + ¢,) or
sin(nwt/L + ¢,), the amplitude A, or B, is the same in both series:

A, =B, =+/a2 +b2 = M. (2.4.12)
If we want our Fourier series to read
f(t) = S‘“h(L“L) + 2sinh(aL) Z cijf%%), (2.4.13)
then
¢n = tan~! <—2—:> = tan™! (%) , (2.4.14)

where @, lies in the first quadrant if n is even and in the third quadrant
if n is odd. This ensures that the sign from the (—1)" is correct.
On the other hand, if we prefer

s1nh(aL) . o= sin(nmt/L + @)
t) = ——— + 2sinh(aL , 2.4.15
ft) = sinn(an) - ST, 241s)
then I
o=l @Y _ 1@
¢n = tan (bn) = —tan (mr) , (2.4.16)

where ¢, lies in the fourth quadrant if n is odd and in the second
quadrant if n is even.

Problems

Write the following Fourier series in both the cosine and sine phase angle
form:

1.
1 2 X sinf(2n —
o=y 255 md
2.
3 2 (=" (2n — 1)t
f(t)—2+7rnz=:l2n_1cos[ 2 ]
3.
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T 4 cos( 2n—1)t]
2_7r712=:1 (2n —1)2

2.5 COMPLEX FOURIER SERIES

So far in our discussion, we have expressed Fourier series in terms
of sines and cosines. We are now ready to reexpress a Fourier series
as a series of complex exponentials. There are two reasons for this.
First, in certain engineering and scientific applications of Fourier series,
the expansion of a function in terms of complex exponentials results
in coefficients of considerable simplicity and clarity. Secondly, these
complex Fourier series point the way to the development of the Fourier
transform in the next chapter.

We begin by introducing the variable

nw
wn = —, (2.5.1)
where n = 0,£1,£2,. ... Using Euler’s formula we can replace the sine

and cosine in the Fourier series by exponentials and find that

(o]
. . b .
ft) = 229 + E In (e +e7int) + 2—7; (ent —e7™nt)  (2.5.2)

‘—-.__q S a_"_M iwnt Eﬁ _bﬂi —iwnt
—2+E(2 2)e +<2+2)e . (25.3)

If we define ¢, as

en = 3(an — iby), (2.5.4)
then
T+2L
en = 2(an —ib,) = 3 f)[cos(wnt) — isin(w,t)]dt  (2.5.5)
1 T42L )
=57 f(t)e™*ntdt. (2.5.6)

Similarly, the complex conjugate of ¢,, ¢}, equals

1 T42L .
¢ = Han +iby) = ﬁ/ ft)entdt. (2.5.7)

To simplify (2.5.3) we note that

—N)T nmw
Won = % = —T = —Wwn, (258)
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which yields the result that

1 T42L . 1 74+2L et
-n = t)e~tw=ntg He*ridt = ¢ (2.5.
=gy [ Sttt g [T fetit= g, (259

so that we can write (2.5.3) as

00 00
_ @ giwnt * _—iwat __ 40 giwnt —twat
_7 E S "t — E +c_pe .

2
(2.5.10)
Letting n = —m in the second summation on the right side of (2.5.10),
oo ) -1 .
Z c_ne—-zw,. . Z em e—zw_mt Z em ezwmt _ Z Cnelw"t,
n=1 m=-1 m=-oo n=-—00
(2.5.11)

where we have introduced m = n into the last summation in (2.5.11).
Therefore,

-1
ft) == + ch font 4 3" cpetnt (2.5.12)

On the other hand,
T+2L
%0 = 515 f(t)dt = co = coe™, (2.5.13)

because wg = O0m/L = 0. Thus, our final result is

e .
D enetnt, (2.5.14)
n=—00
where
1 7+2L )
en = — f()e ™ n" dt (2.5.15)
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and n = 0,%1,+2,.... Note that even though ¢, is generally complex,
the summation (2.5.14) always gives a real-valued function f(?).

Just as we can represent the function f(¢) graphically by a plot of
t against f(t), we can plot ¢, as a function of n, commonly called the
frequency spectrum. Because ¢, is generally complex, it is necessary
to make two plots. Typically the plotted quantities are the amplitude
spectra |c,| and the phase spectra ¢,, where ¢, is the phase of ¢,.
However, we could just as well plot the real and imaginary parts of c,,.
Because n is an integer, these plots consist merely of a series of vertical
lines representing the ordinates of the quantity |c,| or ¢, for each n.
For this reason we refer to these plots as the line spectra.

Because 2c, = a, — tb,, the ¢,’s for an even function will be purely
real; the ¢,’s for an odd function are purely imaginary. It is important
to note that we lose the advantage of even and odd functions in the sense
that we cannot just integrate over the interval 0 to L and then double
the result. In the present case we have a line integral of a complex
function along the real axis.

o Example 2.5.1
Let us find the complex Fourier series for

1, O<t<m
£(t) = {_1, Cret<o (2.5.16)

which has the periodicity f(t + 27) = f(¢).
With L = 7 and 7 = —7, w, = nw/L = n. Therefore,

1 0 —int 1 " —int
=g [ (Dt ﬁ/o (De~™dt  (2.5.17)
1 _° 1 _ial”
- in — n 2.5.18
2nmi Inmi o ( )
_ ___i_ _ pnmi _ {p—nmi _
=-5 (1 e ) + o (e 1) , (2.5.19)

if n # 0. Because e®™ = cos(nm) + isin(n7) = (—=1)* and e~"" =
cos(—nm) + isin(—n7) = (=1)", then

i n 0, n even
Cn = —';;r'[l - (=)= {_%’ n odd (2.5.20)
with -
f&)= Y cae™ (2.5.21)

n=—o
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A amplitude

ote 4/
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Figure 2.5.1: Amplitude and phase spectra for the function (2.5.16).

In this particular problem we must treat the case n = 0 specially
because (2.5.18) is undefined for n = 0. In that case,

1 f° I 1 0 1, =
co =5 _”(—l)dt+ ﬁ/o (1)dt = 27(_t)|-" + ﬁ(t)|0 =0.
(2.5.22)
Because ¢y = 0, we can write the expansion:
2% i e(2m—1)it
t)=—— — 2.5.23
£ ™ mzz—:oo 2m -1~ ( )

because we can write all odd integers as 2m — 1, where m = 0,1, +2,
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+3,.... In Figure 2.5.1 we present the amplitude and phase spectra for
the function (2.5.16).

Problems

Find the complex Fourier series for the following functions:

Lft)y=1t], -n<t<n 2. f(t) =€, 0<t<?2

3.ft)=t, O0<t<?2 4. ft)=t}, —r<t<n
_ |0, -T/2<t<0 _ _

5.f(t)_{1, 0<t<m/2 6. f(t) =t¢, 1<t<1

2.6 THE USE OF FOURIER SERIES IN THE SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

An important application of Fourier series is the solution of or-
dinary differential equations. Structural engineers especially use this
technique because the occupants of buildings and bridges often subject
these structures to forcings that are periodic in nature.!?

o Example 2.6.1

Let us find the general solution to the ordinary differential equation
y' +9y = f(t), (2.6.1)

where the forcing is
f(t) =1, —r<t<m, ft+2m) = f(t). (2.6.2)

'This equation represents an oscillator forced by a driver whose displace-
ment is the saw-tooth function.

We begin by replacing the function f(t) by its Fourier series rep-
resentation because the forcing function is periodic. The advantage of
expressing f(t) as a Fourier series is its validity for any time ¢. The
alternative would have been to construct a solution over each interval
nw <t < (n+ 1)7 and then piece together the final solution assuming
that the solution and its first derivative is continuous at each junction

'3 Timoshenko, S. P., 1943: Theory of suspension bridges. Part II.
J. Franklin Inst., 235, 327-349; Inglis, C. E., 1934: A Mathematical
Treatise on Vibrations in Railway Bridges, Cambridge University Press,
Cambridge.
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t = n7. Because the function is an even function, all of the sine terms
vanish and the Fourler series is

=2-2 Z COEQS’:)IZ)t]. (2.6.3)

Next, we note that the general solution consists of the complemen-
tary solution, which equals

ya(t) = Acos(3t) + Bsin(3t), (2.6.4)

and the particular solution y,(t) which satisfies the differential equation

T 4 = cos[(2n — 1)1]
y;,' + 9yp = 5 - ; Z —(—Z-R—'_T (265)
n=1

To determine this particular solution, we write (2.6.5) as

Yp +9yp = - — % s(t) — iﬂ_ cos(3t) — 4 cos(ot) - (2.6.6)

N 2

By the method of undetermined coefficients, we would have guessed the
particular solution:

yp(t) = ‘12—0 + ajy cos(t) + by sin(t) + az cos(3t) + by sin(3t) + - -+ (2.6.7)

or

oQ
yp(t) = Jao + Zan cos[(2n — 1)t] + by sin[(2n — 1)¢]. (2.6.8)
n=1
Because

oo

=3 —(2n - 1)*{an cos[(2n — 1)t] + b sin[(2n — 1)]}, (2.6.9)

> =(2n — 1)*{an cos[(2n — 1)t] + b, sin[(2n — 1)#]}

n=1

+ Sao + QZan cos[(2n — 1)t] + by, sin[(2n —~ 1)i]

n=1

-Tr_Z Z cosgj’i_l 1] (2.6.10)
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or

gao - g + 'lz::l {[9 —(2n - 1)Ya, + 7r—(_2—7f——1)2} cos[(2n — 1)t]

+ i[g — (2n — 1)?]b, sin[(2n — 1)t] = 0. (2.6.11)
n=1

Because (2.6.11) must hold true for any time, each harmonic must vanish
separately:
o _ 4

W9 T T IEn— 129 - (2n— 1)F
and b, = 0. All of the a,’s are finite except for n = 2, where a, becomes
undefined. The coefficient as is undefined because the harmonic cos(3t)
in the forcing function is resonating with the natural mode of the system.

Let us review our analysis to date. We found that each harmonic in
the forcing function yields a corresponding harmonic in the particular
solution (2.6.8). The only difficulty arises with the harmonic n = 2. Al-
though our particular solution is not correct because it contains cos(3t),
we suspect that if we remove that term then the remaining harmonic
solutions are correct. The problem is linear, and difficulties with one
harmonic term should not affect other harmonics. But how shall we
deal with the cos(3t) term in the forcing function? Let us denote the
particular solution for that harmonic by Y (¢) and modify our particular
solution as follows:

Yp(t) = $ao + ay cos(t) + Y (t) + azcos(5t) + - - - (2.6.13)

Substituting this solution into the differential equation and simplifying,
everything cancels except

(2.6.12)

Y'+9Y = —é—i—r cos(3t). (2.6.14)

The solution of this equation by the method of undetermined coefficients
is

Y (t) = _Q%t sin(3t). (2.6.15)

This term, called a secular term, is the most important one in the solu-
tion. While the other terms merely represent simple oscillatory motion,
the term ¢sin(3t) grows linearly with time and eventually becomes the
dominant term in the series. Consequently, the general solution equals
the complementary plus the particular solution:

y(t) = Acos(3t) + Bsin(3?)

+ L — —2—7rt sin(3t) _ %Z (2n _C(;jg([zn——(;it]— 1)2] . (2616)
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e Example 2.6.2

Let us redo the previous problem only using complex Fourier se-
ries. That is, let us find the general solution to the ordinary differential

equation
©  gi(2n-1)t

> e (2.6.17)

yll+9y=

T2
2 7
n
From the method of undetermined coefficients we guess the partic-
ular solution for (2.6.17) to be

) =co+ Y cpel@rr (2.6.18)
n=—oo
Then -
Y()= Y. —(2n - 1)2c, el (2.6.19)
n=——oo

Substituting (2.6.18) and (2.6.19) into (2.6.17),

. T 2 i ei(2n-1)t
9co+ Z [9—(2n—1)%]cpei(n—1t = Tr Z T (2.6.20)

n="—o
Because (2.6.20) must be true for any ¢,

2
7(2n - 1)2[2n—1)2 = 9]

co=— and ¢, = (2.6.21)

18
Therefore,

et(2n-1)t

WD) = 75+ Z G DA@ = gDt (2.6.22)

However, there is a problem when n = —1 and n = 2. Therefore, we
modify (2.6.22) to read

y(t) = ﬁ + cotedt 4 c_jte™ 3
9 X et(2n—1)t .
. i(n-1)t 2.6.23
t n:z_:oo (2n - 1)2[(2n—-1)2—9] ( )
n#-1,2

Substituting (2.6.23) into (2.6.17) and simplifying,

1 1
2T and C.1 = —Fﬂ'z (2624)

Cy = —
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The general solution is then

T te3it . te—3it
18~ 27Tmi = 27mi
1(271, 0t

Z Gn—1[2n—-17 -9

n# 12

(t)_AeSzt+Be—3zt+

(2.6.25)

The first two terms on the right side of (2.6.25) represent the comple-
mentary solution. Although (2.6.25) is equivalent to (2.6.16), we have
all of the advantages of dealing with exponentials rather than sines and
cosines. These advantages include ease of differentiation and integra-
tion, and writing the series in terms of amplitude and phase.

e Example 2.6.3: Temperature within a spinning satellite

In the design of artificial satellites, it is important to determine the
temperature distribution on the spacecraft’s surface. An interesting spe-
cial case is the temperature fluctuation in the skin due to the spinning
of the vehicle. If the craft is thin-walled so that there is no radial depen-
dence, Hrycak!® showed that he could approximate the nondimensional
temperature field at the equator of the rotating satellite by

d*T  dT 3 weF(n)+p/4
ol c(T—4)_—4 i (2.6.26)
where 16mS
b= 4772r2f/a, c= 7;00 <1 + ﬂ;l—ﬁ) , (2.6.27)
cos(2mn), 0<n<i3
F(n) = 0, 1<n<? (2.6.28)
cos(27n), 3<n<l,
1/4 1/4
T. = (i) (flﬂ_/f) , (2.6.29)
ToE€ 1+ 4

a is the thermal diffusivity of the shell, f is the rate of spin, r is the radius
of the spacecraft, S is the net direct solar heating, 3 is the ratio of the
emissivity of the interior shell to the emissivity of the exterior surface,
€ is the overall emissivity of the exterior surface, ¥ is the satellite’s skin
conductance, and ¢ is the Stefan-Boltzmann constant. The independent
variable 77 1s the longitude along the equator with the effect of rotation

16 Hrycak, P., 1963: Temperature distribution in a spinning spherical
space vehicle. ATAA J., 1, 96-99.
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subtracted out (27n = ¢ — 27 ft). The reference temperature T, equals
the temperature that the spacecraft would have if it spun with infinite
angular speed so that the solar heating would be uniform around the
craft. We have nondimensionalized the temperature with respect to To.
We begin our analysis by introducing the new variables
3 w3 2r2r2 f Tp?

=7 - — — ——— = Ag = — 6.
y=T 4 16+ 4n8’ v apy 0 44+ 78 (2.6.30)

and p3 = ¢ so that

d2

e pey = AoF (). (2.6.31)

+2 I/d
Pooah7

Next, we expand F'(n) as a Fourier series because it is a periodic function
of period 1. Because it is an even function,

f(n) = a0+ Zan cos(2nmn), (2.6.32)
n=1
where
1 [ der L[ e 2
= — = - 2.6.
ag 1/2/0 cos(2mz) dr + 1/2/ cos(2rz) dz - (2.6.33)
a ! /1/4 cos?(2wz) dx + ! /1 cos?(2rz) d ! (2.6.34)
= — — r= < 6.
T 12 ), 1/2 Ja4 2
and
1 1/4 1 1
an = -1—7—2-/0 cos(27z) cos(2nwz) de + 1/2/ cos(2mz) cos(2nmz) d
(2.6.35)
2(-1)» nw
—m Cos (7) y (2636)
if n > 2. Therefore,
1 2w (=1)"
f(n) = —+ —cos(27rn) Z e 1cos(4n7r7;). (2.6.37)

From the method of undetermined coefficients, the particular solu-
tion is

yp(1) = a0 + ay cos(2wn) + by sin(27n)

+ Zagn cos(4nmn) + bay, sin(4nmy), (2.6.38)

n=1
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which yields

Yp(n) = —2ma; sin(27n) + 27b; cos(27n)
o0

+ Z[—élmragn sin(4nmn) + 4nwby, cos(4nmn)]  (2.6.39)

n=1
and
Yy (1) = ~4n?ay cos(2mn) — 47?b, sin(27n)

+ Z[—lanwzagn cos(4nmn) — 16n°7%by, sin(dnwn)]. (2.6.40)

n=1

Substituting into (2.6.31),

1 Ag Ag
2p0a0 - —+ (—47r2a1 + 4w povpby — pia; — ?) cos(27n)
+ (—47r2b1 — 4mpovoar — piby) sin(27n)

> 2A0(—
+ Z [—16n27r2a2n + 8nmporoby, — pgag,, + (dn? )1)] cos(4nmn)

+ Z (—16n27r2b2,, — 8nmporoas, — pgbgn) sin(4nmn) = 0. (2.6.41)
n=1

In order to satisfy (2.6.41) for any 7, we set
24,

ap = =28 2.6.42
p3 ( )
2, 2 Ao
—(47* + p§lay + 4mpovphy = 5 (2.6.43)
4wpovpa; + (472 + pg)bl =0, (2.6.44)
24,(-1)"
and

8nmpovoasy, + (16n27r2 + pg)bgn =0 (2.6.46)

or 4 4 oA
[167%p21E + (472 + p2)?]a; = —(ﬂ-%m)ﬁ, (2.6.47)
(1672 p2v2 + (472 + p2)*]by = 27 poro Ao, (2.6.48)

240(-1)"(16n%7?% + p3) (

2.6.49
m(4n? - 1) )

[64n2m?p2ud + (160272 + p?)?]ag, =
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Figure 2.6.1: Temperature distribution along the equator of a spinning
spherical satellite. (From Hrycak, P., 1963: Temperature distribution
in a spinning spherical space vehicle. ATAA J., 1, 97. (©1963 AIAA,

reprinted with permission.)

and

16(—1)npol/onA0

2.6.50
4n2 — 1 ( )

[64n272p2vd + (160272 + pg)*]bon = —

Substituting for ag, a1, by, ass, and ba,, the particular solution is

(n) = Ao (47 4 p§)Ag cos(2mn) 2w povoAg sin(27n)
YW= =22 7 o[(an? + pR)2 + 1672p203] | (4n2 + p3)2 + 16729202
4 24p — (=1)"(16n272 + pZ) cos(2nmn)
T A (4n? - 1)[64n?7?pud + (160272 + pf)?]
= (=D)*nsin(2nmn)
— 16porpA .{2.6.51
porosio nzzzl (4n? — 1)[64n272p2vE + (160272 + p2)?] ( )

In Figure 2.6.1 we reproduce a figure from Hrycak’s paper showing
the variation of the nondimensional temperature as a function of 5 for
the spinning rate vy. The other parameters are typical of a satellite
with aluminum skin and fully covered with glass-protected solar cells.
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As a check on the solution, we show the temperature field (the dashed
line) of a nonrotating satellite where we neglect the effects of conduction
and only radiation occurs. The difference between the vy = 0 solid and
dashed lines arises primarily due to the linearization of the nonlinear
radiation boundary condition during the derivation of the governing
equations.

Problems

Solve the following ordinary differential equations by Fourier series if
the forcing is by the periodic function

1, O<t<n
f(t)‘{o, T<t<2m

and f(t) = f(t + 27):
Ly'—y=f@1t), - 2.y +y=f@), 3.y =3y +2y = f(2).

Solve the following ordinary differential equations by complez Fourier
series if the forcing is by the periodic function

F(t) = |t —-rT<t< T,
and f(t) = f(t + 27):
4.y" -y = f(1), 5.y +4y = f(t).

6. An object radiating into its nocturnal surrounding has a temperature
y(t) governed by the equation!”:

d = ,
Yy ay = Ao + Z A cos(nwt) + By, sin(nwt),
dt
n=1
where the constant a is the heat loss coefficient and the Fourier series
describes the temporal variation of the atmospheric air temperature and

the effective sky temperature. If y(0) = Ty, find y(2).

7. The equation that governs the charge ¢ on the capacitor of an LRC
electrical circuit is
qII + 2aql +w2q — sz,

17 Reprinted from Solar Energy, 28, Sodha, M. S., Transient radiative
cooling, 541, (©1982, with the kind permission from Elsevier Science
Ltd, The Boulevard, Langford Lane, Kidlington, OX5 1GB, UK.



Fourier Series 97

where o = R/2L, w? = 1/LC, R denotes resistance, C' denotes ca-
pacitance, L denotes the inductance, and E is the electromotive force
driving the circuit. If E' is given by

e
— inwot
E= E $ne )

n=—oc
find q(?).
2.7 FINITE FOURIER SERIES

In many applications we must construct a Fourier series from values
given by data or a graph. Unlike the situation for an analytic formula
where we have an infinite number of data points and, consequently, an
infinite number of terms in the Fourier series, the Fourier series contains
a finite number of sine and cosines. This number is controlled by the
number of data points; there must be at least two points (one for the
crest, the other for the trough) to resolve the highest harmonic.

Assuming that these series are useful, the next question is how do
we find the Fourier coefficients? We could compute them by numerically
integrating (2.1.6). However, the results would suffer from the trunca-
tion errors that afflict all numerical schemes. On the other hand, we
can avoid this problem if we again employ the orthogonality properties
of sines and cosines, now in their discrete form. Just as in the case of
conventional Fourier series, we can use these properties to derive formu-
las for computing the Fourier coefficients. These results will be ezact
except for roundoff errors.

We begin our analysis by deriving some preliminary results. Let us
define z,, = mP/(2N). Then, if k is an integer,

& (2mike g A=
Z exp (—-P—) = Z exp( N ) = ,,,2_:0 ™ (2.7.1)

m=0 m=0

= (2.7.2)

because r?V = exp(27ki) = 1if r # 1. If r = 1, then the sum consists of
2N terms, each of which equals one. The condition » = 1 corresponds
to k = 0,+2N,+4N, .. .. Taking the real and imaginary part of (2.7.2),

2%—:Icos 2rkzm ) _ [0, k#0,£2N, 24N, ... (2.7.3)
P ) 12N, k=0,4+2N,+4N, ... b

m=0



98 Advanced Engineering Mathematics

and -
- ko
E sin <27r d ) =0 (2.7.4)
P
m=0
for all k.

Consider now the following sum:

zi_:lcos 2wkx,, cos 27T m
P P

m=0
1233t 20k + §)Zm 2m(k — §)Zm
=3 {cos [—P——] + cos [T]} (2.7.5)
m=0
0, |k — j| and |k + m| # 0,2N,4N, ...
=< N, |k —j| or |[k+m|#0,2N,4N,... (2.7.6)
2N, Ik — j| and |k + m| = 0,2N, 4N, ...

Let us simplify the right side of (2.7.6) by restricting ourselves to k + j
lying between 0 to 2N . This is permissible because of the periodic nature
of (2.75). Ifk+j=0,k=5=0;ifk+j=2N,k=j=N. In either
case, k — j = 0 and the right side of (2.7.6) equals 2N. Consider now
the case k # j. Then k+j # 0 or 2N and k — j # 0 or 2N. The right
side of (2.7.6) must equal 0. Finally,if k= j #0or N, then k+j #0
or 2N but k— j = 0 and the right side of (2.7.6) equals N. In summary,

2N-1 . 0 k#£j
2rkz,, 2TjTm \ ) [
E cos( 2 )cos( P )_{N k=j#0,N

m=0 2N, k=3=0,N.
(2.7.7)
In a similar manner,
IN-1 .
2rkzy\ . (27jTm
mZ=:0 cos ( WPZ )sm ( 7r_7Px > =0 (2.7.8)

for all k and j and

2N-1 . 0, k#£jg

Z sin (27r11‘:3xm)sin <27r;):cm) ={N, k=j#0,N

=0 0, k=j=0N.
(2.7.9)

Armed with (2.7.7)-(2.7.9) we are ready to find the coefficients A4,

and B, of the finite Fourier series,
N-1
A 2nk k
f(z) = —20 + kzzzl [Ak cos ( sz> + By sin (27;39:)]

An 2rNz
+ —5cos ( 2 ) , (2.7.10)
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where we have 2N data points and we now define P as the period of the
function.

To find A; we proceed as before and multiply (2.7.10) by cos(27jz/
P) (j may take on values from 0 to N) and sum from 0 to 2NV — 1. At
the point z = zy,,

2N-1 9mi 4, 2Nt omi
mzz:o f(xm) cos (—Plxm> = —22 Z cos <—Pl:cm)

+ AN i cos 27rNx cos 2—7rix
(2.7.11)

If j # 0 or N, then the first summation on the right side vanishes
by (2.7.3), the third by (2.7.9), and the fourth by (2.7.7). The second
summation does not vanish if k = j and equals N. Similar considerations
lead to the formulas for the calculation of A and Byg:

1 2 2k
Ap = ¥ mz=:0 f(zm) cos (—P—xm) , k=012...,.N (2.7.12)

and
2N-1
1 . 2nk
B, = ¥ mgzo f(zm)sin <—P—z‘m) , k=12,...,N-1. (2.7.13)

If there are 2N + 1 data points and f(zo) = f(z2n), then (2.7.12)-
(2.7.13) is still valid and we need only consider the first 2N points.
If f(zo) # f(z2n), we can still use our formulas if we require that the
endpoints have the value of [f(zo)+ f(z2n)]/2. In this case the formulas
for the coefficients A and By are

aN-1
A = % [_fﬂ)izf_(x_m_) + Z J(zm) cos (2%16.7:",)] , (2.7.14)

m=1

where £k =0,1,2,...,N and

1 2 2k
B = v mzzzl f(zm)sin (—-P—:cm) , (2.7.15)
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Table 2.7.1: The Depth of Water in the Harbor at Buffalo, NY (Minus
the Low-Water Datum of 568.8 ft) on the 15*" Day of Each Month
During 1977.

mo n depth mo n depth mo n  depth
Jan 1 1.61 May &5 3.16 Sep 9 2.42
Feb 2 1,57 Jun 6 295 Oct 10 295
Mar 3 201 Jul 7 310 Nov 11 2.74
Apr 4 268 Aug 8 290 Dec 12  2.63

where k =1,2,..., N — 1.

It is important to note that 2N data points yield 2N Fourier co-
efficients Ay and By. Consequently our sampling frequency will always
limit the amount of information, whether in the form of data points
or Fourier coefficients. It might be argued that from the Fourier series
representation of f(t) we could find the value of f(t) for any given t,
which is more than we can do with the data alone. This is not true. Al-
though we can calculate a value for f(t) at any t using the finite Fourier
series, we simply do not know whether those values are correct or not.
They are simply those given by a finite Fourier series which fit the given
data points. Despite this, the Fourier analysis of finite data sets yields
valuable physical insights into the processes governing many physical
systems.

o Example 2.7.1: Water depth at Buffalo, NY

Each entry'® in Table 2.7.1 gives the observed depth of water at Buf-
falo, NY (minus the low-water datum of 568.6 ft) on the 15 of the corre-
sponding month during 1977. Assuming that the water level is a periodic
function of 1 year, and that we took the observations at equal intervals,
we want to construct a finite Fourier series from these data. This corre-
sponds to computing the Fourier coefficients Ao, 41,. .., Ag, By, ..., Bs,
which give the mean level and harmonic fluctuations of the depth of wa-
ter, the harmonics having the periods 12 months, 6 months, 4 months,
and so forth.

In this problem, P equals 12 months, N = P/2 = 6 and z,, =
mP/(2N) = m(12 mo)/12 = m mo. That is, there should be a data

'® National Ocean Survey, 1977: Great Lakes Water Level, 1977, Daily
and Monthly Average Water Surface Elevations, National Oceanic and
Atmospheric Administration, Rockville, MD.
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point for each month. From (2.7.12) and (2.7.13),

11
1 mkw
A = g E f(zm) cos (T) , k=01,2,34,56 (2.7.16)

and

11
1 . [ mkw
By = g E f(zm)sin < 5 > , k=1,234)5. (2.7.17)

m=0

Substituting the data into (2.7.16)-(2.7.17) yields

Ag = twice the mean level = +5.120 ft
A; = harmonic component with a period of 12 mo = —0.566 ft
B; = harmonic component with a period of 12 mo = —0.128 ft
A, = harmonic component with a period of 6 mo = —0.177 ft
B, = harmonic component with a period of 6 mo = —0.372 ft
Az = harmonic component with a period of 4 mo = —0.110 ft
Bs = harmonic component with a period of 4 mo = —0.123 ft
A4 = harmonic component with a period of 3 mo = +0.025 ft
B, = harmonic component with a period of 3 mo = +0.052 ft
As = harmonic component with a period of 2.4 mo = —0.079 ft
Bs = harmonic component with a period of 2.4 mo = —0.131 ft
A¢ = harmonic component with a period of 2 mo = -0.107 ft

Figure 2.7.1 is a plot of our results using (2.7.10). Note that when
we include all of the harmonic terms, the finite Fourier series fits the
data points exactly. The values given by the series at points between
the data points may be right or they may not. To illustrate this, we
also plotted the values for the first of each month. Sometimes the values
given by the Fourier series and these intermediate data points are quite
different.

Let us now examine our results in terms of various physical pro-
cesses. In the long run the depth of water in the harbor at Buffalo,
NY depends upon the three-way balance between precipitation, evapo-
ration, and inflow-outflow of any rivers. Because the inflow and outflow
of the rivers depends strongly upon precipitation, and evaporation is of
secondary importance, the water level should correlate with the precip-
itation rate. It is well known that more precipitation falls during the
warmer months rather than the colder months. The large amplitude
of the Fourier coefficient A; and Bj, corresponding to the annual cycle
(k = 1), reflects this.

Another important term in the harmonic analysis corresponds to
the semiannual cycle (k = 2). During the winter months around Lake
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Figure 2.7.1: Partial sums of the finite Fourier series for the depth
of water in the harbor of Buffalo, NY during 1977. Circles indicate
observations on the 15 of the month; crosses are observations on the
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Figure 2.7.2: The effect of sampling in the representation of periodic
functions.

Ontario, precipitation falls as snow. Therefore, the inflow from rivers
is greatly reduced. When spring comes, the snow and ice melt and
a jump in the water level occurs. Because the second harmonic gives
periodic variations associated with seasonal variations, this harmonic
is absolutely necessary if we want to get the correct answer while the
higher harmonics do not represent any specific physical process.

o Example 2.7.2: Aliasing

In the previous example, we could only resolve phenomena with
a period of 2 months or greater although we had data for each of the
12 months. This is an example of Nyquist’s sampling criterial®: At
least two samples are required to resolve the highest frequency in a
periodically sampled record.

Figure 2.7.2 will help explain this phenomenon. In case (a) we
have quite a few data points over one cycle. Consequently our picture,
constructed from data, is fairly good. In case (b), we have only taken
samples at the ridges and troughs of the wave. Although our picture

19 Nyquist, H., 1928: Certain topics in telegraph transmission theory.
AIEE Trans., 47, 617-644.
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of the real phenomenon is poor, at least we know that there is a wave.
From this picture we see that even if we are lucky enough to take our
observations at the ridges and troughs of a wave, we need at least two
data points per cycle (one for the ridge, the other for the trough) to
resolve the highest-frequency wave.

In case (c) we have made a big mistake. We have taken a wave
of frequency N Hz and misrepresented it as a wave of frequency N/2
Hz. This mispresentation of a high-frequency wave by a lower-frequency
wave is called aliasing. It arises because we are sampling a continuous
signal at equal intervals. By comparing cases (b) and (c), we see that
there is a cutoff between aliased and nonaliased frequencies. This fre-
quency Is called the Nyquist or folding frequency. It corresponds to the
highest frequency resolved by our finite Fourier analysis.

Because most periodic functions require an infinite number of har-
monics for their representation, aliasing of signals is a common problem.
Thus the question is not “can I avoid aliasing?” but “can I live with
it?” Quite often, we can construct our experiments to say yes. An ex-
ample where aliasing.is unavoidable occurs in a Western at the movies
when we see the rapidly rotating spokes of the stagecoach’s wheel. A
movie is a sampling of continuous motion where we present the data as
a succession of pictures. Consequently, a film aliases the high rate of
revolution of the stagecoach’s wheel in such a manner so that it appears
to be stationary or rotating very slowly.

o Example 2.7.3: Spectrum of the Chesapeake Bay

For our final example we will perform a Fourier analysis of hourly
sea-level measurements taken at the mouth of the Chesapeake Bay dur-
ing the 2000 days from 9 April 1985 to 29 June 1990. Figure 2.7.3 shows
200 days of this record, starting from 1 July 1985. As this figure shows,
the measurements contain a wide range of oscillations. In particular,
note the large peak near day 90 which corresponds to the passage of
hurricane Gloria during the early hours of 27 September 1985.

Utilizing the entire 2000 days, we have plotted the amplitude of
the Fourier coefficients as a function of period in Figure 2.74. We
see a general rise of the amplitude as the period increases. Especially
noteworthy are the sharp peaks near periods of 12 and 24 hours. The
largest peak is at 12.417 hours and corresponds to the semidiurnal tide.
Thus, our Fourier analysis has shown that the dominant oscillations
at the mouth of the Chesapeake Bay are the tides. A similar situation
occurs in Baltimore harbor. Furthermore, with this spectral information
we could predict high and low tides very accurately.

Although the tides are of great interest to many, they are a nuisance
to others because they mask other physical processes that might be
occurring. For that reason we would like to remove them from the tidal
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Figure 2.7.3: The sea elevation at the mouth of the Chesapeake Bay
from its average depth as a function of time after 1 July 1985.

gauge history and see what is left. One way would be to zero out the
Fourier coefficients corresponding to the tidal components and then plot
the resulting Fourier series. Another method is to replace each hourly
report with an average of hourly reports that occurred 24 hours ahead
and behind of a particular report. We will construct this average in such
a manner that waves with periods of the tides sum to zero.?’ Such a
filteris a popular method for eliminating unwanted waves from a record.
Filters play an important role in the analysis of data. We have plotted
the filtered sea level data in Figure 2.7.5. Note that summertime (0-50
days) produces little variation in the sea level compared to wintertime
(100-150 days) when intense coastal storms occur.

Problems
Find the finite Fourier series for the following pieces of data:
1.2z(0)=0,2(1)=1,2(2)=2,2(3) =3 and N =2.

2.2000=1,2z(1)=1,2(2)=-1,2(3) =—1land N = 2.

20 See Godin, G., 1972: The Analysis of Tides, University of Toronto
Press, Toronto, Section 2.1.



106 Advanced Engineering Mathematics

10000.0 ¢ —r—r T T T
S s
D
j=)
= 10000 | :
“ : ]
V) 4
.S S J
= 1000 1
s | |
§ 10.0 3 3
= 3 3
= .
WV I 4
a" 10 f 3
< ‘ :
3
'i 0.1 F -
S Bay bridge and tunnel
1 . ““‘]0 = .““1.00 l 1000 1(;000

S 10000 ¢ — T vy ———y

S s

D <

S

~

S

g 1000 f 3

= i 3

g

S 100} 1

s 3

1S

WV

&

..% 10 - 3

s ;

3 Baltimore harbor

3 1 A b b aaaal A A A L o P AW w ey | " Aebrdrdeabedds

1 10 100 1000 10000

period (hours)

Figure 2.7.4: The amplitude of the Fourier coefficients for the sea
elevation at the Chesapeake Bay bridge and tunnel (top) and Baltimore
harbor (bottom) as a function of period.



Fourier Series 107

3-0 v ¥ v L) L]

20 1
=
VL
< 10} 1
—
VL
=N
=
i 00 i
3
WV
>

-1.0}

_2.0 A 1 A L A (] A

0 50 100 150 200
time (days)

Figure 2.7.5: Same as Figure 2.7.3 but with the tides removed.
Project: Spectrum of the Earth’s Orography

Table 2.7.3 gives the orographic height of the earth’s surface used
in an atmospheric general circulation model (GCM) at a resolution of
2.5° longitude along the latitude belts of 28°S, 36°N, and 66°N. In this
project you will find the spectrum of this orographic field along the
various latitude belts.

Step 1: Write code to read in the data and find A, and B,. Although
you could code (2.7.12)-(2.7.13), no one does Fourier analysis that way
any more. They use a fast Fourier transform (FFT) that is available as
a system’s routine on their computer or use one that is given in various
computer books.?! Many of these routines deal with finite Fourier series
in its complex form. The only way that you can be confident of your
results is to first create a data set with a known Fourier series, for
example:

2wz . [ 27z 67z
f(z) =5+ cos <§—]7> + 3sin (5—1\7) + 6 cos <W> ,

21 For example, Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Vetterling, W. T., 1986: Numerical Recipes: The Art of Scientific Com-
puting, Cambridge University Press, New York, chap. 12.
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Table 2.7.2: The Fourier Coefficients Generated by the IMSL Sub-
routine FFTRF with N = 8 for the Test Case Given in Step 1 of the
Project.

x f(z) Fourier coefficient Value of Fourier coefficient
0.00000 12.00000 2N A 80.00001
1.00000 9.36803 N4 8.00001
2.00000 3.58579 —-NB; —-24.00000
3.00000 2.61104 NA, 0.00000
4.00000 8.00000 —NB, 0.00001
5.00000 12.93223 NA; 48.00000
6.00000 10.65685 ~N B3 0.00001
7.00000 2.92807 NA, —0.00001
8.00000 —2.00000 —NB, 0.00000
9.00000 0.63197 NA; 0.00000

10.00000 6.41421 —NBs 0.00000
11.00000 7.38895 NAg 0.00000
12.00000  2.00000 —NBg 0.00000
13.00000 —2.93223 NA; —0.00001
14.00000 —0.65685 —N Bz 0.00000
15.00000 7.07193 2N Ag 0.00001

and then find the Fourier coefficients given by the subroutine. In Table
2.7.3 we show the results from using the IMSL routine FFTRF. From
these results, you see that the Fourier coefficients given by the subrou-
tine are multiplied by N and the B,s are of opposite sign.

Step 2: Construct several spectra by using every data point, every
other data point, etc. How do the magnitudes of the Fourier coeffi-
cient change? You might like to read about leakage from a book on
harmonic analysis.??

Step 3: Compare and contrast the spectra from the various latitude
belts. How do the magnitudes of the Fourier coefficients decrease with
n? Why are there these differences?

Step 4: You may have noted that some of the heights are negative, even
in the middle of the ocean! Take the original data (for any latitude
belt) and zero out all of the negative heights. Find the spectra for this

22 For example, Bloomfield, P., 1976: Fourier Analysis of Time Series:
An Introduction, John Wiley & Sons, New York.
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Figure 2.7.6: The orography of the earth and its spectrum in meters
along three latitude belts.

new data set. How has the spectra changed? Is there a reason why the
negative heights were introduced?
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Table 2.7.3: Orographic Heights (in m) Along Three Latitude Belts.

Longitude 28°S  36°N 66°N Longitude 28°S 36°N  66°N
-180.0 4. 3. 25632, -—825 36.  4047. 737.
-177.5 1. —2. 1665. —80.0 —64. 3938. 185.
-175.0 1. 2. 1432. -775 138.  1669. 71.
—-172.5 1. =3. 1213. -75.0 —-363.  236. 160.
—-170.0 1. 1.  501. -725 4692. 31. 823.
—167.5 1. -3. 367. -=70.0 19317. —8.  1830.
—165.0 1. 1. 963. —-67.5 21681. 0. 3000.
-162.5 0. 0. 1814. —65.0 9222. -2, 3668.
-160.0 -1 6. 2562. —62.5 1949. -2, 2147.
-157.5 0. 1. 3150. -—60.0 774. 0. 391.
—155.0 0. 3. 4008. -—57.5 955. 5. =TT7.
-152.5 1. —-2. 4980. -55.0 2268. 6. 601.
—150.0 -1 4. 6011. -525 4636. —-1.  3266.
—147.5 6. —-1. 6273. =50.0 4621. 2. 9128.
—145.0 14. 3. 5928. —475 1300. —4. 17808.
—-142.5 6. —-1. 6509. -45.0 -91. 1. 22960.
—140.0 -2. 6. 7865. —425 57. —1. 20559.
-137.5 0. 3. T752. —40.0 —25. 4. 14296.
-135.0 -2. 5. 6817. =375 13. —-1.  9783.
—132.5 1. -2. 6272, -35.0 —10. 6. 5969.
-130.0 -2. 0. 5582. -325 8. 2. 1972.
-127.5 0. 5. 4412, -30.0 —4. 22. 640.
-125.0 -2. 423. 3206. —27.5 6. 33. 379.
—-122.5 1. 3688. 2653. —25.0 -2. 39. 286.
—120.0 -3. 10919. 2702. -225 3. 2. 981.
-117.5 2. 16148. 3062. —20.0 -3. 11.  1971.
-115.0 -3. 17624. 3344. -175 1. —-6.  2576.
-112.5 7. 18132. 3444. -15.0 -1 19.  1692.
-110.0 12 19511. 3262. —125 0. -18. 357.
-107.5 9. 22619. 3001. -—10.0 -1.  490. -21.
-105.0 =5. 20273. 2931. —-7.5 0. 2164. -5.
-102.5 3. 12914. 2633. -5.0 1. 4728. -10.
—100.0 —=5. T434. 1933. -2.5 0. 5347. 0.

-97.5 6. 4311. 1473. 0.0 4. 2667. —-6.
-95.0 —8.  2933. 1689. 2.5 =5. 1213. -1
—92.5 8. 2404. 2318. 5.0 7. 1612,  -31.
-90.0 =12, 1721. 2285. 7.5 —-13. 1744. 58,
—87.5 18.  1681. 1561. 10.0 28. 1153. 381.
-85.0 —-23.  2666. 1199. 12.5 107.  838. 2472
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Table 2.7.3, contd.: Orographic Heights (in m) Along Three Latitude
Belts.

Longitude  28°S  36°N  66°N Longitude 28°S 36°N 66°N

15.0 2208. 1313. 5263. 97.5 0. 35538. 6222.
17.5 6566. 862. 5646. 100.0 —2. 31985. 5523.
20.0 9091. 1509. 3672. 102.5 0. 23246. 4823.
225 10690. 2483. 1628. 105.0 —4. 17363. 4689.
25.0 12715.  1697.  889. 107.5 2. 14315. 4698.

275 14583.  3377. 1366. 110.0 —17. 12639. 4674
30.0 11351.  7682. 1857. 112.5 302. 10543. 4435.
325 3370. 9663. 1534 115.0  1874. 4967. 3646.

35.0 15. 10197.  993. 117.5  4005. 1119. 2655.
37.5 49. 10792.  863. 120.0  4989. 696. 2065.
40.0 —-31. 11322.  756. 122.5  4887. 475. 1583.
42.5 20. 13321.  620. 125.0  4445. 1631. 3072.
45.0 —17. 15414.  626. 127.5  4362. 2933. 7290.
47.5 —19. 12873.  836. 130.0  4368. 1329. 8541.
50.0 —18. 6114. 1029. 132.5  3485. 88. 7078.
52.5 6. 2962. 946. 135.0 1921.  598. 7322
55.0 —-2. 4913.  828. 137.5 670. 1983. 9445.
57.5 3. 6600. 1247. 140.0 666. 2511. 10692.
60.0 —-3.  4885. 2091. 142.5  1275. 866. 9280.
62.5 2. 3380. 2276. 145.0  1865. 13. 8372.
65.0 —1. 5842. 1870. 1475  2452. 11. 6624.
67.5 2. 12106. 1215. 150.0  3160. —-4. 3617.
70.0 0. 23032.  680. 152.5  2676. -1. 2717.
72.5 2. 35376.  531. 155.0 697. 0. 3474.
75.0 —1. 36415.  539. 157.5 —67. —3. 4337.
77.5 1. 26544.  579. 160.0 25. 3. 4824.
80.0 0. 19363. 554. 162.5 —12. —1. 5525.
82.5 1. 17915. 632 165.0 10. 4. 6323.
85.0 —2. 22260. 791 167.5 —5. —2. 5899.
87.5 —1. 30442. 1455. 170.0 0. 1. 4330.
90.0 —3. 33601. 3194. 172.5 0. —4. 3338.
92.5 —1. 30873. 4878. 175.0 4. 3. 3408.
95.0 0. 31865. 5903. 177.5 3 —1.  3407.







Chapter 3

The Fourier Transform

In the previous chapter we showed how we could expand a periodic
function in terms of an infinite sum of sines and cosines. However, most
functions encountered in engineering are aperiodic. As we shall see,
the extension of Fourier series to these functions leads to the Fourier
transform.

3.1 FOURIER TRANSFORMS

The Fourier transform is the natural extension of Fourier series to a
function f(t) of infinite period. To show this, consider a periodic func-
tion f(t) of period 2T that satisfies the so-called Dirichlet’s conditions.!

If the integral fab |f(t)| dt exists, this function has the complex Fourier
series:

&)=Y cae™mT, (3.1.1)

! A function f(t) satisfies Dirichlet’s conditions in the interval (a, b)
if (1) it is bounded in (a,b), and (2) it has at most a finite number
of discontinuities and a finite number of maxima and minima in the
interval (a, b).
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where r
1 —inwt/T
n= 75 . 3.12
o= g7 [ O (3.1.2)

Equation (3.1.1) applies only if f(¢) is continuous at ¢; if f(¢) suffers from
a jump discontinuity at £, then the left side of (3.1.1) equals -;—[f(t*') +
f(t7)], where f(tt) = lim,_;+ f(z) and f(t~) = lim,_,,~ f(z). Substi-
tuting (3.1.2) into (3.1.1),

o0 T
f(t):i > T [ f(z)em e/ Tdy. (3.1.3)
T —~ T

Let us now introduce the notation w, = nx/T so that Aw, = wy41 —
wp = m/T. Then,

1 ;
ft) = o > Flwn)e™rt Awn, (3.1.4)
where r
F(wn)z/ f(z)e " dz. (3.1.5)
-T

As T — o0, w, approaches a continuous variable w and Aw, may be
interpreted as the infinitesimal dw. Therefore, ignoring any possible
difficulties.?

ft)= %/m F(w)e*'dw (3.1.6)
and
F(w)=/°° f(t)e ™tdt. (3.1.7)

2 For a rigorous derivation, see Titchmarsh, E. C., 1948: Introduction
to the Theory of Fourier Integrals, Clarendon Press, Oxford, chap. 1.
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Figure 3.1.1: Graph of the Fourier transform for (3.1.9).

Equation (3.1.7) is the Fourier transform of f(t) while (3.1.6) is the
inverse Fourier iransform which converts a Fourier transform back to
f(t). Alternatively, we may combine (3.1.6)-(3.1.7) to yield the equiv-
alent real form:

£(t) = %/Ooo {/_0; (z) cosfw(t — :c)]d:c} dw. (3.1.8)

Hamming? has suggested the following analog in understanding the
Fourier transform. Let us imagine that f(t) is a light beam. Then the
Fourier transform, like a glass prism, breaks up the function into its
component frequencies w, each of intensity F(w). In optics, the various
frequencies are called colors; by analogy the Fourier transform gives
us the color spectrum of a function. On the other hand, the inverse
Fourier transform blends a function’s spectrum to give back the original
function.

Most signals encountered in practice have Fourier transforms be-
cause they are absolutely integrable since they are bounded and of fi-
nite duration. However, there are some notable exceptions. Examples
include the trigonometric functions sine and cosine.

3 Hamming, R. W., 1977: Digital Filters, Prentice-Hall, Englewood
Cliffs, NJ, p. 136.
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e Example 3.1.1

Let us find the Fourier transform for

1, [t| < a

f&)= {0, it > a. (3.1.9)

From the definition of the Fourier transform,

—-a a >

F(w):/ oe-mdt+/ 1e““‘“’dt+/ Oe™*'dt (3.1.10)

—00 —a a

wai __ ,—wat :

= .e = 2sin(wa) = 2asinc(wa), (3.1.11)
wi w

where sinc(z) = sin(z)/z is the sinc function.

Although this particular example does not show it, the Fourier
transform is, in general, a complex function. The most common method
of displaying it is to plot its amplitude and phase on two separate graphs
for all values of w. See Figure 3.1.1. Of these two quantities, the am-
plitude is by far the more popular one and is given the special name of
frequency spectrum.

From the definition of the inverse Fourier transform,

_ 1 [®sin(wa) ., [1, [t < a

An important question is what value does f(¢) converge to in the
limitast — a and ¢ — —a? Because Fourier transforms are an extension
of Fourier series, the behavior at a jump is the same as that for a Fourier
sleries. For that rea.son,lf(a) = 3[f(at) + f(a7)] = 3 and f(—a) =
Lf(=a*)+ f(~a™)] = &

o Example 3.1.2: Dirac delta function

Of the many functions that have a Fourier transform, a particularly
important one is the (Dirac) delta function.* For example, in Section
3.6 we will use it to solve differential equations. We define it as the
inverse of the Fourier transform F(w) = 1. Therefore,

5(t) = 2%/ e dw. (3.1.13)

— 00

* Dirac, P. A. M., 1947: The Principles of Quantum Mechanics,
Clarendon Press, Oxford, Section 15.
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Table 3.1.1: The Fourier Transforms of Some Commonly Encountered
Functions. The Heaviside Step Function H(t) Is Defined by (3.2.16).

£(8), [t < o0 F(w)
1
1. e H(t), a>0 -
a4+ we
1
2. e H(=t), a>0 .
a— wi
1
. —atH(t —_—
3 te t), a>0 @t
-1
: atH(—t ——
4 te®H(-t), a>0 (@ wi)?
n!
—~at — y —_—
5. t"e”* H(t), Re(a) >0, n=1,2,... PR
_ 2a
6. e~dltl a>0 S ral
—4dawi
. t —a|t| R A
7 e , a>0 @+ a2y
1 T
L e—lw/at
8 1+ a2t lale
cos(at) T o—|w— —lw+
9 1+ ¢2 5 (e7lomal yemletal)
sin(at) e _
10. T 37 (e7lmel —emlvel)
1 1, lt| < a 2sin(wa)
' 0, [t] > a w
sin{at) 7/a, lw| < a
12. —_—
at 0, lw| > a

To give some insight into the nature of the delta function, consider

another band-limited transform:

_J1, lw] < Q
Fo(w) = {0’ ols 0, (3.1.14)
where € is real and positive. Then,
falt) = i/n ot g, = 25I0() (3.1.15)
M= on _Qe YET T h
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Figure 3.1.2: Graph of the function given in (3.1.15) for = 300.

Figure 3.1.2 illustrates fo(t) for a large value of Q. We observe that as
2 — 00, fa(t) becomes very large near t = 0 as well as very narrow. On
the other hand, fa(t) rapidly approaches zero as |t| increases. Therefore,
we may consider the delta function as the limit:

5(t):f}in;o@ (3.1.16)
8() = {%o ;; 8' (3.1.17)

Because the Fourier transform of the delta function equals one,
/ 6(t)e™dt = 1. (3.1.18)
— 00
Since (3.1.18) must hold for any w, we take w = 0 and find that
/ s(t)dt =1. (3.1.19)

Thus, the area under the delta function equals unity. Taking (3.1.17)
Into account, we can also write (3.1.19) as

b
/6(t)dt:1, a,b> 0. (3.1.20)

Finally, )
[ wste - to)dt = s00), (3.1.21)
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if @ < to < b. This follows from the law of the mean of integrals.

We may also use several other functions with equal validity to repre-
sent the delta function. These include the limiting case of the following
rectangular or triangular distributions:

l’ tl< £
6(t) = limy ¢ <5 (3.1.22)
e—0 | 0, [t] > 5
or
110
8(t) = lim { ¢ (1 ¢ ) < (3.1.23)
€0 0, [t] > €
and the Gaussian function:
42
5(t) = lim exp(~mt’/€), (3.1.24)

e~0 \/E

Note that the delta function is an even function.
Problems
1. Show that the Fourier transform of
fy=e, a>0,
18
2a
w? +a?’

Now plot the amplitude and phase spectra for this transform.

Fw) =

9. Show that the Fourier transform of
ft) =te M, a>0,

is .
daw1
(? + a?)? :

Now plot the amplitude and phase spectra for this transform.

F(w)=-

3. Show that the Fourier transform of
2t t<0

e b
f&y = {e", t>0

3
(2 —iw)(1 + iw)’

is

Flw) =
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Now plot the amplitude and phase spectra for this transform.

4. Show that the Fourier transform of

e~ (i) t>0
) = {—e(l"')’, t<0

1s
—2i(w +1)

P =3

Now plot the amplitude and phase spectra for this transform.

5. Show that the Fourier transform of

_ | cos(at), lt] <1
f(t)—{ 0, > 1

18

Flw) sinfw —a)  sin(w + a)
w) = .
w—a w+a

Now plot the amplitude and phase spectra for this transform.

6. Show that the Fourier transform of

_ ] sin(t), 0<t«1
f(t) _{ 0, otherwise
) (0 =1) , cos(w+1)
111 —cos(w—1 cos(w+1)—1
F(w)__'i[ w—1 w+1 ]
_ i[sin(w—1) sin(w+1)
2] w-1 w+1l |

Now plot the amplitude and phase spectra for this transform.

7. Show that the Fourier transform of

1=t/ 0<t<2r
ey = { 0, otherwise

18

F(w) =

2et [sin(wr)
wT

- cos(wr)}

w

Now plot the amplitude and phase spectra for this transform.
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8. The integral representation® of the modified Bessel function K, ( ) is

dt

B T'(v+3)(2a)> [ cos(wt
K, (a|w]|) = ( 2)( )/0 (t2+a(2)u)+1/2 ’

lwl"T (3)

where T'( ) is the gamma function, ¥ > 0 and a > 0. Use this relationship
to show that

1 _ 2wPT (3) Ky (alw])
d [(t2 + az)"“/Q] - T(v+131)(2e)y

9. Show that the Fourier transform of a constant K is 2mé(w)K.
3.2 FOURIER TRANSFORMS CONTAINING THE DELTA FUNCTION

In the previous section we stressed the fact that such simple func-
tions as cosine and sine are not absolutely integrable. Does this mean
that these functions do not possess a Fourier transform? In this section
we shall show that certain functions can still have a Fourler transform
even though we cannot compute them directly.

The reason why we can find the Fourier transform of certain func-
tions that are not absolutely integrable lies with the introduction of the
delta function because

/ 6(w — wo)e'™ dw = e'wo! (3.2.1)

— 00

for all ¢. Thus, the inverse of the Fourier transform é(w — wo) is the
complex exponential e*“°! /27 or

F (e!) = 2mé(w — wo). (3.2.2)

This yields immediately the result that
F (1) = 2wé(w), (3.2.3)
if we set wg = 0. Thus, the Fourier transform of 1 is an impulse at w = 0
with weight 27. Because the Fourier transform equals zero for allw # 0,

F(t) = 1 does not contain a nonzero frequency and is consequently a DC
signal.

5 Watson, G. N., 1966: A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, p. 185.
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Another set of transforms arises from Euler’s formula because we
have that

Flsin(wot)] = % [F (eiwe?) — F (emtwot)] (3.2.4)
= L [6(w —wo) — b(w + wo)] (3.2.5)
= —7ib(w — wo) + Tib(w + wo) (3.2.6)
and
Fleos(wot)] = 3 [F (ewo?) + F (eiwot)] (3.2.7)
= 7 [6(w — wo) + 6(w + wo)]. (3.2.8)

Note that although the amplitude spectra of sin(wgt) and cos(wgt) are
the same, their phase spectra are different.

Let us consider the Fourier transform of any arbitrary periodic func-
tion. Recall that any such function f(t) with period 2L can be rewritten
as the complex Fourier series:

&)=Y cae™ot, (3.2.9)

n=-—00

where wg = m/L. The Fourier transform of f() is

F(w) = F[f@®)] = Z 27ené(w — nwo). (3.2.10)

n=-—0oo

Therefore, the Fourier transform of any arbitrary periodic function is
a sequence of impulses with weight 27c, located at w = nwy with
n = 0,£1,%2,.... Thus, the Fourier series and transform of a peri-
odic function are closely related.

o Example 3.2.1: Fourier transform of the sign function

Consider the sign function

i, t>0

sgn(t) = { 0, t=0 (3.2.11)
-1, t <0.

The function is not absolutely integrable. However, let us approximate

it by e~<l*lsgn(t), where ¢ is a small positive number. This new function
is absolutely integrable and we have that

0 ) oo .
ete ™ dt +/ e~ et dt] (3.2.12)
—-00 0

:lim( L, b ) (3.2.13)

Flogn(0)] = liy |- |

e—0 \ € — lw €+ w
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fw#0,(3.2.13) equals 2/iw. If w =0, (3.2.13) equals 0 because

lim (_—1 + l) =0. (3.2.14)
e—0 € €
Thus, we conclude that
2/iw, w#0

Flsgn(t)] = { 0, (3.2.15)

w=0.

o Example 3.2.2: Fourier transform of the step function

An important function in transform methods is the (Heaviside) step
function:

1, t>0
H(t):{o’ oo (3.2.16)

In terms of the sign function it can be written
H(t) = 1 + §sgn(?). (3.2.17)

Because the Fourier transforms of 1 and sgn(t) are 276(w) and 2/iw,
respectively, we have that

FIH(D) = 6) + = (3.2.18)

These transforms are used in engineering but the presence of the delta
function requires extra care to ensure their proper use.

Problems
1. Verify that
Flsin(wot) H(t)] = = + = [6(w + wo) — 8(w — wo)]-
Wi —w 2

2. Verify that

Fleos(wot)H(t)] = U—Jg—if? + g[&(w + wo) + 6(w — wo)].
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3.3 PROPERTIES OF FOURIER TRANSFORMS

In principle we can compute any Fourier transform from the defini-
tion. However, it is far more efficient to derive some simple relationships
that relate transforms to each other. This is the purpose of this section.

I Linearity

If f(t) and g(¢) are functions with Fourier transforms F(w) and
G(w), respectively, then

Flei f(t) + c29(t)] = e1 F(w) + c2G(w), (3.3.1)

where ¢; and ¢z are (real or complex) constants.
This result follows from the integral definition:

[o e}

Flerf(t) + cag(t)] = / oo[clf(t) + cog(t)]e ™" dt (3.3.2)

=c /oo f®)e™™tdt + ¢, /oo g(t)e™™dt (3.3.3)

Lade

=1 F(w) + c2G(w). (3.3.4)

I Time shifting

If f(t) is a function with a Fourier transform F(w), then F{f(t —
)] = e‘i‘”F(w).
This follows from the definition of the Fourier transform:

FLf(t— 1) = /_ Y f = yemitdy = /_ Y f@)em i+ (3.3.5)

=e 7 /oo f(z)e™™“dz = e™™" F(w). (3.3.6)

e Example 3.3.1

The Fourier transform of f(t) = cos(at)H(t) is F(w) = iw/(a? —
w?) + 7[6(w + a) + 6(w — a)]/2. Therefore,

F{cos[a(t — k)| H(t — k)} = e~ ¥ Flcos(at) H (t)] (3.3.7)



The Fourier Transform 125

4.0

w
=)

amplitude
n
o

0.0
4.0 T T T

7
7/

oLl

20k

/

i

0.0 F

zl>
(=)
s
s
Vs
= rT———"--7

phase (radians)

-4.0 L 1 :
-10.0 -5.0 0.0 5.0 10.0

Figure 3.3.1: The amplitude and phase spectra of the Fourier trans-
form for cos(2t)H (t) (solid line) and cos[2(t — 1)]H (t — 1) (dashed line).
The amplitude becomes infinite at w = £2.

or
iwe_ik“' T ikw 5 5

(3.3.8)
In Figure 3.3.1 we present the amplitude and phase spectra for cos(2t)
H(t) (the solid line) while the dashed line gives these spectra for cos[2(t—
1)]H(t — 1). This figure shows that the amplitude spectra are identical
(why?) while the phase spectra are considerably different.

F{cos[a(t — k)]H(t - k)} =

| Scaling factor

Let f(t) be a function with a Fourier transform F(w) and k be a
real, nonzero constant. Then F[f(kt)] = F(w/k)/|k|.
From the definition of the Fourier transform:

Ff(kt)] = ” f(kt)e-"wfdt:i ” f(x)e-“w“c)xdx:iF 2.
—oo k| J oo |k (31;9)
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Figure 3.3.2: The amplitude and phase spectra of the Fourier trans-
form for e*H(t) (solid line) and e~2*H(t) (dashed line).

o Example 3.3.2

The Fourier transform of f(t) = e~ *H(t) is F(w) = 1/(1 + wi).
Therefore, the Fourier transform for f(at) = e % H(t), a > 0, is

Flf(at)] = <%) <1+:w/a) = a:wi. (3.3.10)

In Figure 3.3.2 we present the amplitude and phase spectra for e~ H(t)
(solid line) while the dashed line gives these spectra for e=2* H(t). This
figure shows that the amplitude spectra has decreased by a factor of two
for e=2' H(t) compared to e~* H(t) while the differences in the phase are
smaller.

I Symmetry

If the function f(¢) has the Fourier transform F(w), then F[F(¢)] =
27 f(—w). »
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From the definition of the inverse Fourier transform,

f(t) = él;/_oo F(w)e™'dw = 51;/_00 F(z)e'™'dz. (3.3.11)
Then
2rf(—w) = / ” F(z)e ™%de = / ” F(t)e™*“'dt = F[F(t)].
o - (3.3.12)

e Example 3.3.3

The Fourier transform of 1/(1 +t2) is me~!¢l. Therefore,

27
-ty =
F (7re ) = Tro? (3.3.13)
or 0
-ty —
FeM) = . (3.3.14)

I Derivatives of functions

Let f*)(t),k =0,1,2,...,n—1, be continuous and f(™)(t) be piece-
wise continuous. Let |f*)(#)] < Ke™%,b > 0,0 < ¢ < oo; IF®@)| <
Me* a>0,—00 <t<0,k=0,1,.,n Then, F[f("(t)] = (iw)" F(w).

We begin by noting that if the transform F[f’(t)] exists, then

FIf@®) = /_0; fl()e ™t (3.3.15)
- /_ Z (1)t [cos(wrt) — isin(wrt)] dt (3.3.16)
= (~w; +z‘w,)/_°:o f(t)e¥  [cos(wrt) — isin(w,t)] dt (3.3.17)
= iw / o:o f()e ™ dt = iwF(w). (3.3.18)
Finally,
FIfO W) = iwF[f@)] = (W) FFODO) = - = ()" F(w).

(3.3.19)
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Figure 3.3.3: The (amplitude) spectrum of a rectangular pulse (3.1.9)
with a half width a = 10 that has been modulated with cos(5t).

e Example 3.3.4

The Fourier transform of f(t) = 1/(141?)is F(w) = me~1“l. There-

fore,
2t
|

_(1_+_t2_)2] = jwme™ ¥l (3.3.20)

or

t wn
= -l
die= R

I Modulation

In communications a popular method of transmitting information
is by amplitude modulation (AM). In this process some signal is carried
according to the expression f(t)e*“°!, where wq is the carrier frequency
and f(t) is some arbitrary function of time whose amplitude spectrum
peaks at some frequency that is usually small compared to wg. We now

(3.3.21)
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Figure 3.3.4: The (amplitude) spectrum of a rectangular pulse (3.1.9)
with a half width a = 10 that has been modulated with cos(t/2).

want to show that the Fourier transform of f(t)e’“o! is F(w —wo), where
F(w) is the Fourier transform of f(t).
We begin by using the definition of the Fourier transform:

F[f(t)eo!] = /_ ” f(t)elote tdt = /_ ” f(t)eiw-wlgs (3.3.22)
= F(w —wo). (3.3.23)

Therefore, if we have the spectrum of a particular function f(t), then
the Fourier transform of the modulated function f(¢)ei°! is the same as
that for f(¢) except that it is now centered on the frequency wo rather
than on the zero frequency. /

o Example 3.3.5

Let us determine the Fourier transform of a square pulse modulated
by a cosine wave as shown in Figures 3.3.3 and 3.3.4. Because cos(wot) =
3[e*°! + ¢=#o’] and the Fourier transform of a square pulse is F(w) =
2sin{wa)/w,

sinf[(w — wo)a) = sin[(w + wo)a]
W — wp + wHwy

F[f(t) cos(wet)] = (3.3.24)
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Figure 3.3.5: The amplitude and phase spectra of the Fourier trans-
form for e=2* H(t) (solid line) and e~2* cos(4t)H (t) (dashed line).

Therefore, the Fourier transform of the modulated pulse equals one half
of the sum of the pulse centered on wp and the other that of the pulse
centered on —wg. See Figures 3.3.3 and 3.3.4.

In many practical situations, wo > 7/a. In this case we may con-
sider that the two terms are completely independent from each other
and the contribution from the peak at w = wq has a negligible effect on
the peak at w = —wy.

e Example 3.3.6

The Fourier transform of f(t) = e~ H(t) is F(w) = 1/(b + iw).
Therefore,

Fle=" cos(at)H(t)] = %]: iat=bt | o—iaty -bt) (3.3.25)
= 1
i §< w’:w_a ’ m w'=w+a) (3326)
f[e tcos (at)H(t) _1_ 1 05am
2 (b+zw)—az b+ iw) + ai 3.
b+ iw
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Figure 3.3.6: The (amplitude) spectrum |G(w)|/T of a frequency-
modulated signal (shown top) using the parameters w,;T = 27 and
woT = 107. The transform becomes undefined at w = wy.

We have illustrated this result using e=2'H(t) and e~2! cos(4t)H(t) in
Figure 3.3.5.

o Example 3.3.7: Frequency modulation

In contrast to amplitude modulation, frequency modulation (FM) trans-
mits information by instantaneous variations of the carrier frequency.

It may be expressed mathematically as exp [z fioo f(r) dr+iC] e

where C is a constant. To illustrate this concept, let us find the Fourier
transform of a simple frequency modulation:

iwol
’

_ Wi, |t| < T/2 -
ft) = { o ST (3.3.29)
and C = —w1T/2. In this case, the signal in the time domain is
t
g(t) = exp [z/ f(r)dr+ iC] giwol (3.3.30)
E_iwlleeiwot, t < _T/2
={ eiwntgivor ~T/2<t<T/2 (3.3.31)

T2t {5 T/2,
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Figure 3.3.7: The (amplitude) spectrum |G(w)|/T of a frequency-
modulated signal (shown top) using the parameters w7 = 87 and
woT = 107. The transform becomes undefined at w = wy.

We have illustrated this signal in Figures 3.3.6 and 3.3.7.
The Fourier transform of the signal G(w) equals

-T/2 T/2
G(w) - e—-iwlT/2/ ei(wo—w)t dt +/ ei(wo+w1—w)t di
—o0 -T/2
00
+e"‘“1T/2/ eflwo—w)t gy (3.3.32)
T/2
0 =5}
= e—iw,T/?/ ei(wo—w)t dt + eiw;T/?/ ei(wo—w)t dt
oo 0
0 T/2
_ e—iwlT/2/ ei(wo—w)t di +/ ei(wo+w1—w)t di
-T/2 -T/2
T/2
- e“""’T/z/ efwo=w)t gy (3.3.33)
0

Applying the fact that

/ eXi dt = n6(a) £ z—! (3.3.34)
0
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G(w) = 7é(w — wo) [e’.““T/2 + e_i‘”’T/z]

N [ei(wo+w1—w)T/2 _ e—z’(wo+w1—w)T/2]

t(wo +wy —w)
[ei(wg+w1—w)T/2 _ e—i(wg-{—wl—w)T/Z}
_ (3.3.35)

i(wo - w)

= 27é(w —wp) cos(w1T/2) + 2wy sin((w — wo —w1)T/2]

(w bt wo)(w — Wy — wl)

. (3.3.36)

In Figures 3.3.6 and 3.3.7 we have illustrated the amplitude spectrum
for various parameters. In general, the transform is not symmetric, with
an increasing number of humped curves as w; T increases.

L Parseval’s equality

In applying Fourier methods to practical problems we may en-
counter a situation where we are interested in computing the energy
of a system. Energy is usually expressed by the integral ffooo |£(1)]? dt.
Can we compute this integral if we only have the Fourier transform of

F(w)?
From the definition of the inverse Fourier transform
1 [* .
f(t) = —/ F(w)e*'dw, (3.3.37)
27 J_ oo

we have that

/ If@)|dt = i/ f(@® [/ F(u)eiwfdw] dt. (3.3.38)
-0 2m —o0 -00
Interchanging the order of integration on the right side of (3.3.38),

/ If()|2dt = % / F(w) [ / f(t)e"wtdt] dw. (3.3.39)

However, .
F*(w) = / f(t)e™ dt. (3.3.40)
— Q0

Therefore,

| wera=g [ iF@pd (3.3.41)

-0
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This is Parseval’s equality® as it applies to Fourier transforms. The
quantity |F(w)|? is called the power spectrum.

o Example 3.3.8
In Example 3.1.1, we showed that the Fourier transform for a unit

rectangular pulse between —a < t < a is 2sin(wa)/w. Therefore, by
Parseval’s equality,

oo _: 2 a
3/ wd‘“:/ 12dt = 2a (3.3.42)
T J_oo w ~a
or ® sin(wa) '
sin“ (wa
/_oo T d = ma. (3.3.43)

| Poisson’s summation formula ‘

If f(z) is integrable over (—o0, 00), there exists a relationship be-
tween the function and its Fourier transform, commonly called Poisson’s
summation formula.”

We begin by inventing a periodic function g(z) defined by

g(x)= > flz+2mk). (3.3.44)
k=—-o00

Because g(z) is a periodic function of 27, it can be represented by the
complex Fourier series:

g(x)= D cae™” (3.3.45)
90)= > f@erk)= > cn. (3.3.46)
k=—o0 n=-o00

6 Apparently first derived by Rayleigh, J. W., 1889: On the character
of the complete radiation at a given temperature. Philos. Mag., Ser. 5,
27, 460-469.

7 Poisson, S. D., 1823: Suite du mémoire sur les intégrales définies et
sur la sommation des séries. J. Ecole Polytech., 19, 404-509. See page
451.
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Computing ¢,, we find that

Cn = L g(z)e” " dz = — Z flz + 2km)e™"" dz

2 )on T k=—oo
(3.3.47)

f ¢ + 2km)e” " dz = —/ f(z)e " de

:271'Z

(3.3.48)
F(n)

_ 3.3.4
2r ( 9)

where F(w) is the Fourier transform of f(z). Substituting (3.3.49) into
(3.3.46), we obtain

> f(27rk)=% > F(n) (3.3.50)

k=—o00 n=-—o0

or

T flak)= < T F(Q%") (3.3.51)

k=—00 n=-—00

e Example 3.3.9

One of the popular uses of Poisson’s summation formula is the
evaluation of infinite series. For example, let f(z) = 1/(a* + 2%) with a
real and nonzero. Then, F(w) = me~1%!/|a| and

o0 o0

11 glanl = L ~laln
Z a2+(2ﬂ—k)2_2nzz_:oo|a| 2' |(1+2Z al)

k=—o0 n=1

(3.3.52)

1 2 1 la|
= — | -1+ —— oth .
2|a|( *1—e-*a) 3a] (2)

(3.3.53)
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Problems

1. Find the Fourier transform of 1/(1+a?t?), where a is real, given that
F/(1+1%)]) = me~lel,

2. Find the Fourier transform of cos(at)/(1 + t2), where a is real, given
that F[1/(1 + t2)] = me~lvl.

3. Use the fact that Fle"**H(t)] = 1/(a+iw) with a > 0 and Parseval’s

equality to show that
/°° de. _ «
o T2+ a2  a’

4. Use the fact that F[1/(1+ t?)] = me~1*l and Parseval’s equality to
show that
/°° de _m
—oo (2241227

5. Use the function f(t) = e~ sin(bt)H (t) with a > 0 and Parseval’s
equality to show that

2/°° dz _ /°° dz
o (@2 +a? 022 +4a%?  J_, (2 + a2 — b%)2 + 4a2b?
™
" 2a(a? + b?)’

6. Using the modulation property and F[e=** H(t)] = 1/(b + iw), show

that
a

.7:[6 sin(at)H(t)] = m.

Plot and compare the amplitude and phase spectra for e~*H(t) and
e~tsin(2t) H(t).
7. Use Poisson’s summation formula to prove that

o0

S T - Z 5 <27f_" 3 a)

n=-—o0 n=—oo

where 6( ) is the Dirac delta function.
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3.4 INVERSION OF FOURIER TRANSFORMS

Having focused on the Fourier transform in the previous sections,
we consider in detail the inverse Fourier transform in this section. Recall
that the improper integral (3.1.6) defines the inverse. Consequently one
method of inversion is direct integration.

e Example 3.4.1

Let us find the inverse of F(w) = me~1¥l.
From the definition of the inverse Fourier transform,

f(@) :2% /:_oo re~lwleiwt gy (3.4.1)
1 /° . 1 [® :
:5/ e+t gy, 4 5/ el=1Hitw gy, (3.4.2)
—o0 0
(1+4it)w |0 (—14it)w |
L™ + (3.4.3)
2 L+t |_ L+t |
1 1 1 1
== - = . 3.4.4
2[1+it —1+it} 141¢2 ( )

Another method for inverting Fourier transforms is rewriting the
Fourier transform using partial fractions so that we can use transform
tables. The following example illustrates this technique.

o Example 3.4.2

Let us invert the transform

1
= . 4.5
Fwl = aroa=zwy (34.5)
We begin by rewriting (3.4.5) as

1 1 2 6
Flw)= 5[1 i 1-%w (1= 2w) (3.4.6)

1 1 1
+ =3 (3.4.7)

Tt Toiw 6L —iw)?
Using Table 3.1.1, we invert (3.4.7) term by term and find that

f(t) = S tH(t) + Fet/2H(~t) — ttet/2H (). (3.4.8)
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Although we may find the inverse by direct integration or partial
fractions, in many instances the Fourier transform does not lend itself
to these techniques. On the other hand, if we view the inverse Fourier
transform as a line integral along the real axis in the complex w-plane,
then perhaps some of the techniques that we developed in Chapter 1
might be applicable to this problem. To this end, we rewrite the inver-
sion integral (3.1.6) as

f(t) = %/ F(W)eitw dw = %ﬁF(Z)C“Z dz — %‘/CR F(z)eitz dz,

— 00

(3.4.9)
where C denotes a closed contour consisting of the entire real axis plus
a new contour Cr that joins the point (o0, 0) to (—o0,0). There are
countless possibilities for Cg. For example, it could be the loop (o0, 0)
to (oo, R) to (—o0, R) to (—o0,0) with R > 0. However, any choice
of Cr must be such that we can compute fCR F(z)e'*? dz. When we
take that constraint into account, the number of acceptable contours
decrease to just a few. The best is given by Jordan’s lemma:8

Jordan’s lemma: Suppose that, on a circular arc Cr with radius R
and center at the origin, f(z) — 0 uniformly as R — oo. Then

(1) lim f(2)e™dz =0, (m > 0) (3.4.10)
R—o0 Cr

if Cr lies in the first and/or second quadrani;

(2) lim /C f(2)e”™*dz =0, (m>0) (3.4.11)

R—o0

if Cr lies in the third and/or fourth quadrant;

(3) lim f(z)e™*dz =0, (m >0) (3.4.12)
R—o0 Cr

if Cr lies in the second and/or third quadrant; and

4) lim f(z)e"™dz =0, (m>0) (3.4.13)
R—x Cr

if Cr lies in the first and/or fourth quadrant.

8 Jordan, C., 1894: Cours D’Analyse de I’Ecole Polytechnique. Vol.
2, Gauthier-Villars, Paris, pp. 285-286. See also Whittaker, E. T.
and Watson, G. N., 1963: A Course of Modern Analysis, Cambridge
University Press, Cambridge, p. 115.
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Technically, only (1) is actually Jordan’s lemma while the remaining
points are variations.

Proof: We shall prove the first part; the remaining portions follow by
analog. We begin by noting that

|Ir| = l/ f(z)e™ dz| < / |£(2)] || |dz]. (3.4.14)
CR CR
Now .
|dz| = Rd8, |f(z)] < Mg, (3.4.15)
lei’"zl = |exp(imRe“)| = |exp{imR[cos(f) + isin(6)]}| = e~™Rsin(®),
(3.4.16)
Therefore,
1
Hg| < RMR/ exp[—mRsin(6)] df, (3.4.17)
fo

where 0 < 6y < 6; < 7. Because the integrand is positive, the right side
of (3.4.17) is largest if we take §p = 0 and #; = 7. Then

v . /2 .
|Ir| < RMR/ e-"?RS‘"U’)de:mMR/ e~mRsin(®)gg. (3.4.18)
0 0

We cannot evaluate the integrals in (3.4.18) as they stand. However,
because sin(f) > 26/7 if 0 < # < 7/2, we can bound the value of the
integral by

/2
lIr| < 2RMR/ e2mBO/mgg — T prp (1—e~™R) . (3.4.19)
0 m

If m > 0, |Ig| tends to zero with Mg as R — oo. o
Consider now the following inversions of Fourier transforms:
o Example 3.4.3

For our first example we find the inverse for

1

= . .4.20
Fw) w? — 2ibw — a? — b? (3.4.20)
From the inversion integral,
6y = 2 /oo e d (3.4.21)
T 2m J_ o w? — 2ibw — a? — b2 v o
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a+bi

L

contour

S |

Cg fort<0

Figure 3.4.1: Contour used to find the inverse of the Fourier transform
(3.4.20). The contour C consists of the line integral along the real axis
plus Cg.

or

1 eitz 1 eitz
1 = 2_7rfc 22 — 2ibz — a? — b2 dz - ﬁ‘/CR 22 — 2ibz — a® — b2 dz,
(3.4.22)

where C denotes a closed contour consisting of the entire real axis plus
Cr. Because f(z) = 1/(2% — 2ibz — a® — b%) tends to zero uniformly
as |z| — oo and m = t, the second integral in (3.4.22) will vanish by
Jordan’s lemmaif Ck is a semicircle of infinite radius in the upper half of
the z-plane when t > 0 and a semicircle in the lower half of the z-plane
when ¢ < 0.

Next we must find the location and nature of the singularities. They
are located at

22— 2bz—a? - b =0 (3.4.23)

or
z = %a+ bi. (3.4.24)

Therefore we can rewrite (3.4.22) as

1 eitz
fO) = ﬁ}é e (3.4.25)

Thus, all of the singularities are simple poles.
Consider now ¢t > 0. As stated earlier, we close the line integral
with an infinite semicircle in the upper half-plane. See Figure 3.4.1.
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Inside this closed contour there are two singularities: z = +a + bi. For
these poles,

eitz )
Res (z2 iz —a? -2’ " + bz)

eitz

= 1 —a—bi .4.26

z—l»lﬂbi(z a - bi) (z —a—bi)(z +a—bi) (3 )
_ e ie-b’[ s(at) + isin(at)] (3.4.27)
= %0 "~ 2a co sin , 4.

where we have used Euler’s formula to eliminate e!**. Similarly,

itz
Res (zz — 2in — ot bi) = —%e‘“[cos(at) — isin(at)).

(3.4.28)
Consequently the inverse Fourier transform follows from (3.4.25) after
applying the residue theorem and equals

f@) = —%e"bt sin(at) (3.4.29)

for ¢t > 0.

For t < 0 the semicircle is in the lower half-plane because the con-
tribution from the semicircle -vanishes as R — co. Because there are
no singularities within the closed contour, f(t) = 0. Therefore, we can
write in general that

f(t) = —2%6_“ sin(at) H(t). (3.4.30)

e Example 3.4.4

Let us find the inverse of the Fourlier transform

e—wz

Fo)=mra

(3.4.31)

where a is real and positive.
From the inversion integral,

f(t) 1/00 S (3.4.32)

= — w
21 J_ oo w2+ a?

i(t—1)z i(t—1)z
= i]{ S dz- i/ S _d:  (3.4.33)
27 Jo 22 4 a? 27 Jop 22+ a?
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where C denotes a closed contour consisting of the entire real axis plus
Cr. The contour Cg is determined by Jordan’s lemma because 1/(2? +
a?) — 0 uniformly as |z|] — co. Since m = t — 1, the semicircle Cg
of infinite radius lies in the upper half-plane if ¢ > 1 and in the lower
half-plane if t < 1. Thus, if t > 1,

1 ., ei(t_l)z X e—a(t—l)
f@) = %(27”)}{65 [Z—z"_{_—ag;al} = (3.4.34)
whereas for ¢t < 1,
1 9ri)R ei(t—l)z ) ea(t—l) 3.4.35
) = gr(=2miRes [ S —ai] = <o (3.4.35)

The minus sign in front of the 27 arises from the negative sense of the
contour. We may write the inverse as the single expression:

f@) = %e"‘"‘”. (3.4.36)

o Example 3.4.5

Let us evaluate the integral

/ ” costka) 4 (3.4.37)

2 27
0 ¢+ a

where a, k > 0.
We begin by noting that

<} oo ikx ikz
/ co:(k:cg dr = Re (/ —:—-—Edz) = Re (% %dZ),
—o % ta -0 X ta c, ?°ta
(3.4.38)
where C; denotes a line integral along the real axis from —oco to co. A
quick check shows that the integrand of the right side of (3.4.38) satisfies
Jordan’s lemma. Therefore,

0 eikz- eilcz . eikz )
/Oo 22+ a? de = f; . dz = 271 Res (m;az) (3.4.39)

— A\ otk2
= omi lim G T ke (3.4.40)
z—ai 22 4 a? a

where C' denotes the closed infinite semicircle in the upper half-plane.
Taking the real and imaginary parts of (3.4.40),

* cos(kz) T
/oo Pt dz = —e @ (3.4.41)
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Figure 3.4.2: Contour used in Example 3.4.6.

and

/oo sinke) ;. — . (3.4.42)

2 2
o Tt a

o Example 3.4.6

So far we have used only the first two points of Jordan’s lemma.
In this example® we illustrate how the remaining two points may be
applied.

Consider the contour integral

f cot(wz)[ e + e ] dz,
c (r+2m2)2+ B2 (1—272)2+ B2

where ¢ > 0 and 3,7 are real. Let us evaluate this contour integral
where the contour is shown in Figure 3.4.2.

® Reprinted from Int. J. Heat Mass Transfer, 15, Hsieh, T. C., and
R. Greif, Theoretical determination of the absorption coefficient and
the total band absorptance including a specific application to carbon
monoxide, 1477-1487, (©1972, with kind permission from Elsevier Sci-
ence Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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From the residue theorem,
e—CZ e—CZ
t d
fc cot(mz) [(‘r +27z)? 4 32 + (r—272)2 + ﬁz] ¢

o o= e—¢?
=2ni 3 Res{cot(r:) et )

n=1

/ e e rl+gi
+ 27 Res{cot(frz)[(r+2ﬂz)z + 32 + = 972)? +ﬂ2]’ o }
' e ) lrl-pi
+ 271t Res{cot(ﬂz)[(r+ 2712)2 + 32 + (r = 972)? +ﬂ2]’ o }
(3.4.43)
Now
e—¢? e—¢?
Res{“’“”) [(r+ 2m2) + B2 (r = 272)° +ﬂ2J ;"}
- (2 — n)cos(nz) . e—¢? e—c* ]
= sin(mz) i [(7- +272)? + 32 + (r=272)2 + 32
(3.4.44)
1 e—n¢ P
= T [(7- +2nm)2 + 32 + (r = Inm)? + ﬁz}’ (3.4.45)
e |rl+5i
Res{ cot(wz)[(r+ 212)2 + 32 + (r —2r7)2 +,32]’ = }
_ cot(mz)
T a—(Ir|+Bi)/2n An?
(z = || = Bi)e~e: (z = |r| = Bi)e=c*
* [(Z + 7'/27r)2 + ,32/47r2 + (z — 7'/27!‘)2 + 132/4772] (3'4‘46)
— ot(I7l/2 + Bi/2) exp(—c||/2m)[cos(cB/27) — isin(cB/2r)]
- 470
(3.4.47)
and
e—¢% e—¢* . ITI _ IBZ
Res{ COt(”)[(r+27rz)2 + 32 + r = 272)? +ﬂ2]’ o }
_ cot{mz)
amrl-Biyj2r  4n?
(z = Irl + Bi)e== (z = |r| + Bi)e=*
* [(z +7/2m)2 4+ B2 /a2 T (2 —1/27)2 ¥ ﬂ3/47r2} (3.4.48)

_ cot(|r|/2 - Bif2) exp(—c|r|/2m)[cos(cB/27) + isin(cB/27)]
—4r3i

(3.4.49)
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Therefore,

et e~
.?i'COt(WZ) [(T+ 212)? + 32 + (r—272)2 + ﬂz] 4

-nc

) o e e—n¢
= E [(r + 2nm)? + 32 + (r —2n7)? + ﬁz]

n=1

i eilml o of
n %%ﬁ-i—;e‘clrl/z”[cos(cﬂ/%r) — isin(cf/2)]

el e
—'2—15 z;%;e"clrl/z”[cos(cﬂ/%r) + ¢sin{eB/27)] (3.4.50)

. o e~ e e—ne
- 22; [(‘r + 2nm)? + 32 + (7 —2nm)? + ﬂz]
_ i sinh(p) cos(cf/2m) + sin(|7]) sin(cB/27) _or/2n

I¢; cosh(3) — cos(T) ¢ 7, (3451)

where cot(a) = i(e?* 4 1)/(e*> — 1) and we have made extensive use
of Euler’s formula.

Let us now evaluate the contour integral by direct integration. The
contribution from the integration along the semicircle at infinity van-
ishes according to Jordan’s lemma. Indeed that is why this particular
contour was chosen. Therefore,

f cot(wz)[ e + e ]dz
c (r+2r2)24+ 52 (r—27z)% + (2

[ ottt + ]
- ,-OOCO ‘ (T+272)2 4+ 682 (r—2mz2)? + (2 ¢

-cz —cz
€

e
4./e cot(rz) [(7‘ ¥ 212) + B2 + (r—2m2)? + 52] 4

—100 e—cz e—cz
e e e L
(3.4.52)

Now, because z = iy,

/” cot(mz) e~ + e d
oo (T4 2Znz)2 + B2 (r—2me) +52)

€ . e-icy e~t d
= /oo coth(my) [(7’ FImig)? 4 B (7 2mig) + ﬁz] ’
(3.4.53)

. /°° coth(my)(7? + B2 — 4n?y?)e 'Y

3.4.54
(T2 + 3% — An2y?)? + 16m2r2y? Y, ( )
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/—iOO t( ) e~ % N e~ 2 J
e conmz (r+2m2)2+ 82 (r—2m2)? 4+ 32 g

—o0 N ety et d
B /_ coth(my) [(r Y I ey ﬂ:'] !
(3.4.55)

oS 2 2 _ Ax22) ety
_ 2/ coth(my)(7* + 57 — 4n°y*)e d (3.4.56)
e (7487 —4n?y?)? + 167272y

and

/ cot(7rz)|: e =+ e ,,] dz
c. (r+2m2)2+ 0% (r—27mz)2 + B2

—m2ro mee?! T
:/ [W—T—"']€lezd9
w/2

exp(—cee®?) exp(—cee®?)
- - .(3.4.57
X [(7‘ + 2mee®)2 + 32 (7 — 2mee??)? + 32 ( )

In the limit of € — 0,

f cot(mz) e + e dz
™
NN Fr 2 1 B2 (- 2m2)? + B2
. [ coth(my)(r? + 3% — 47%y?) sin(cy) 2
= - 3.4.58
4’/0 (72 + B2 — dn2y?)? 1 167277y° dy— T3 ( )

. e—nc e—ﬂc
- 212[ T+ 2nw)?2 + 32 + (‘r—2n7r)2+ﬂ2]
i sinh(B) cos(cB/27) + sin(|r|) sin(cB/27) oclrl/2r
B cosh(f3) — cos(T)

(3.4.59)

or

4 /°° coth(my)(r? + 8% — 4x?y?) sin(cy)
o (2 + 02 — 4n%y?)? + 167272y

e—nc e—nc
- 2; [(7‘ + 2nw)? + (2 + (7 —-2nm)% + ,32]
_ 1sinh(8) cos(cB/2w) + sin(|7]) sin(cB/2) o-elrl/zm

B cosh(B3) — cos(T)
2

72 +,82
If we let y = z/2m,

8 coth(z/2)(7% + 8% — z?)sin(cz/27)
/ 7-2 + ﬂZ _ x2) + 47-21.2 dx

+ (3.4.60)
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Figure 3.4.3: The correspondence between the location of the simple
poles of the Fourier transform F'(w) and the behavior of f(¢).
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o0 e—ne e—ne
= 25; [(’r + 2nm)? 4+ B2 + (1~ 2nm)? +ﬁ2]

_ sinh(B) cos(cB/2m) + sin(|7]) sin(cB/27) o—clrl/2
cosh(3) — cos(7)

2p

m. (3.4.61)

+

e Example 3.4.7

An additional benefit of understanding inversion by the residue
method is the ability to qualitatively anticipate the inverse by knowing
the location of the poles of F(w). This intuition is important because
many engineering analyses discuss stability and performance entirely in
terms of the properties of the system’s Fourier transform. In Figure 3.4.3
we have graphed the location of the poles of F(w) and the corresponding
f(t). The student should go through the mental exercise of connecting
the two pictures.

Problems
1. Use direct integration to find the inverse of the Fourier transform
wT

Flw)= Te"“".

Use partial fractions to invert the following Fourier transforms:

1 1
2. (1+w)(1 + 2iw) 3. (14+iw)(1 - iw)
w 1

(14 dw)(1 + 2iw)

(1 + iw)(1 + 2iw)?

By taking the appropriate closed contour, find the inverse of the follow-
ing Fourier transform by contour integration. The parameter a is real

and positive.

1 W
w? + a2 w? + a2
w 9 wz
(w? + a?)? " (W2 +a?)?
1 1
10, —— o
0 w? — 3iw — 3 1 (w — ia)?n+2
2
12. d 13. 3

(w? - 1) + 4a%w?

(2 — wi)(1 +wi)
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14. Find the inverse of F(w) = cos(w)/(w?+a?), a > 0, by first rewriting
the transform as

ezw e-—zw

2w+ a?) 3wt )

F(w)=
and then using the residue theorem on each term.

15. As we shall show shortly, Fourier transforms can be used to solve
differential equations. During the solution of the heat equation, Taitel
et al.'% had to invert the Fourier transform

cosh(yvw? + 1)
Vw? + 1 sinh(pvw? +1/2)’

where y and p are real. Show that they should have found

F(w)=

——|t

e—\/l-}-tln""rﬂ/p2 jt}

1= Z \/Tmp_ (%)

In this case, our time variable ¢ was their spatial variable x — €.

16. Find the inverse of the Fourier transform

ro = o { i)

where L, 8, and 7 are real and positive and sgn(z) = 1 if Re(z) > 0 and
-1 if Re(z) < 0.

Use the residue theorem to verify the following integrals:

17.

©  sin(x) T
[ s yarste=F)

o0

*  cos(z) T
SO dr = —
/0 (z2+ 1)? T %

O Reprinted from Int. J. Heat Mass Transfer, 16, Taitel, Y., M.
Bentwich and A. Tamir, Effects of upstream and downstream boundary
conditions on heat (mass) transfer with axial diffusion, 359-369, (©1973,
with kind permission from Elsevier Science Ltd., The Boulevard, Lang-
ford Lane, Kidlington OX5 1GB, UK.

18.
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19. - .
/ x—szn(ﬁ)- = me 20 a>90
—oo Z%4+ 4

20. The concept of forced convection is normally associated with heat
streaming through a duct or past an obstacle. Bentwich!! wanted to
show a similar transport can exist when convection results from a wave
traveling through an essentially stagnant fluid. In the process of com-
puting the amount of heating he had to prove the following identity:

* cosh(hz) — 1 B
/—oo T sinh(hx) cos(a:c) dz = ln[COth(lalﬂ'/h)]) h>0.

Confirm his result.

3.5 CONVOLUTION

The most important property of Fourier transforms is convolution.
We shall use it extensively in the solution of differential equations and
the design of filters because it yields in time or space the effect of mul-
tiplying two transforms together.

The convolution operation is

() xg(t) = /_°° f(x)g(t — x)dz = /—00 f(t—z)g(z)de. (3.5.1)

Then,

o]

U ot = [ e |/ ot = 2)e i

— 00

(3.5.2)
- /_ f(@)G(Ww)e" P dz = FW)C(w).  (3.5.3)

Thus, the Fourier transform of the convolution of two functions equals
the product of the Fourier transforms of each of the functions.

o Example 3.5.1

Verify the convolution theorem using the functions f(t) = H(¢ +
a)— H(t - a) and g(t) = e~*H(t), where a > 0.

"' Reprinted from Int. J. Heat Mass Transfer, 9, Bentwich, M., Con-
vection enforced by surface and tidal waves, 663-670, (©1966, with kind
permission from Elsevier Science Ltd., The Boulevard, Langford Lane,
Kidlington OX5 1GB, UK. :
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The convolution of f(t) with g(t) is

so)= [ PR - ) s+ o) = Hiz - )] de
(3.5.4)

=et /“ e"H(t — z)dr. (3.5.5)

Ift < —a, then the integrand of (3.5.5) is always zero and f(t)+*g(t) = 0.
ift>a,

f(t) xg(t) = 6”] eTdz = e~ (17 — e~ (F0), (3.5.6)

Finally, for —a <t < a,

t
f(t) = g(t) = e‘t/ efde=1— e (149, (3.5.7)
In summary,
0, t< —a
ft) xg(t) = { 1 —e=(t4e), —a<t<a (3.5.8)
e—(t=a) _ g=(t+a) t>a.

The Fourier transform of f(t) * g(t) is

F wov = [ [1-e ] et
/ [e_(t @) _ _(H'a)} e~ dt (3.5.9)

2 sm(wa) 2isin(wa)

- _ (3.5.10)
14w
- 25“3“’“) (1 :m) - F)Gw) (3.5.11)

and the convolution theorem is true for this special case.
o Example 3.5.2

Let us consider the convolution of f(t) = f+(t)H(t) with g(t) =
g4+ H(t). Note that both of the functions are nonzero only for ¢ > 0.



152 Advanced Engineering Mathematics
From the definition of convolution,
0

s0200 = [ fit- B - D0 @HE) (3512
= /Ooo folt = 2)H(t - )9 (2) da. (3.5.13)

For t < 0, the integrand is always zero and f(t) * g(t) = 0. For t > 0,
0500 = [ f-2o@de (3519

Therefore, in general,

$0 o) = [ [ £t - (o) ] 10, (35.15)

This is the definition of convolution that we will use for Laplace trans-
forms where all of the functions equal zero for t < 0.

Problems
1. Show that
eT'H(t)x e H(t) = te ' H(t).
2. Show that
e H(t) x e’ H(—t) = Le 1.
3. Show that

etH(t)x e ®H(t) = (e7' — e~ M) H(2).

4. Show that
el —el72 t<0
eH(~t)x[Ht)~H(t-2)]={ 1-¢'-2 0<t<2
0, t> 2.
5. Show that
0, t<0

t, O<t<?2
4—t, 2<t<4
0, t>4.

(H(t) - H(t - 2)]*[H(t) - H(t - 2)] =
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6. Show that
e~lthx el = (1 4 |t])e .

7. Prove that the convolution of two Dirac delta functions is a Dirac
delta function.

3.6 SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
BY FOURIER TRANSFORMS

As with Laplace transforms, we may use Fourier transforms to solve
ordinary differential equations. However, this method gives only the
particular solution and we must find the complementary solution sepa-
rately.

Consider the differential equations

vy +y=1Le Ml —co<it< oo (3.6.1)

Taking the Fourier transform of both sides of (3.6.1),

1

(3.6.2)

where we have used the derivative rule (3.3.19) to obtain the transform
of ¥ and Y (w) = F[y(t)]. Therefore,

1

YW = i nayen (3.6.3)
Applying the inversion integral to (3.6.3),
1 0 eitw

We evaluate (3.6.4) by contour integration. For ¢ > 0 we close the line
integral with an infinite semicircle in the upper half of the w-plane. The
integration along this arc equals zero by Jordan’s lemma. Within this
closed contour we have a second-order pole at z = 7. Therefore,

eztz

ztz
Res (z2+1)(1+zi)”] B dz[ Fm T parr | NG
_te™? e -t
=t (3.6.6)
and

y(t) = L (27rz) [E + %i] = f;—t(Qt +1). (3.6.7)
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For t < 0, we again close the line integral with an infinite semicircle
but this time it is in the lower half of the w-plane. The contribution
from the line integral along the arc vanishes by Jordan’s lemma. Within

the contour, we have a simple pole at z = —i. Therefore,
eitz eitz et
Res |0— il = 1 N = _
ClE DA+ ) ’] R iy i A
(3.6.8)
and ) , .
e e
= (=2m)(-=) =2, 6.
o) = g (-m) (-5) = 5 (36.9)

The minus sign in front of the 27 results from the contour being taken
in the negative sense. Using the step function, we can combine (3.6.7)
and (3.6.9) into the single expression

y(t) = te7ltl 4 Lte=tH(2). (3.6.10)

Note that we have only found the particular or forced solution to
(3.6.1). The most general solution therefore requires that we add the
complementary solution Ae~!, yielding

y(t) = Ae™! + te~ 1l + Lte " H(2). (3.6.11)
The arbitrary constant A would be determined by the initial condition
which we have not specified.
Consider now a more general problem of

¥ +y=f@), —oco<t<oo, (3.6.12)

where ‘we assume that f(t) has the Fourier transform F(w). Then the
Fourier-transformed solution to (3.6.12) is

Y(w) = 1+1M,F(w) = Gw)F(w) (3.6.13)
y(t) = g(t) * £(2), (3.6.14)

where g(t) = F~{1/(1 + wi)] = e"*H(t). Thus, we can obtain our
solution in one of two ways. First, we can take the Fourier transform of
f(t), multiply this transform by G(w), and finally compute the inverse.
The second method requires a convolution of f(t) with g(t). Which
method is easiest depends upon f(t) and g(%).

The function g(t) may also be viewed as the particular solution of
(3.6.12) resulting from the forcing function 6(t), the Dirac delta function,
because F[6(t)] = 1. Traditionally this forced solution g(t) is called the
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Green’s function and G(w) is called the frequency response or steady-
state transfer function of our system. Engineers often extensively study
the frequency response in their analysis rather than the Green’s function
because the frequency response is easier to obtain experimentally and
the output from a linear system is just the product of two transforms
[see (3.6.13)] rather than an integration.

In summary, we may use Fourier transforms to find particular so-
lutions to differential equations. The complete solution consists of this
particular solution plus any homogeneous solution that we need to sat-
isfy the initial conditions. Convolution of the Green’s function with the
forcing function also gives the particular solution.

o Example 3.6.1: Spectrum of a damped harmonic oscillator

Second-order differential equations are ubiquitous in engineering.
In electrical engineering many electrical circuits are governed by second-
order, linear ordinary differential equations. In mechanical engineering
they arise during the application of Newton’s second law. For exam-
ple, in mechanics the damped oscillations of a mass m attached to a
spring with a spring constant k and damped with a velocity dependent
resistance is govern by the equation

my” +cy + ky = f(t), (3.6.15)

where y(t) denotes the displacement of the oscillator from its equilibrium
position, ¢ denotes the damping coefficient and f(t) denotes the forcing.
Assuming that both f(t) and y(¢) have Fourier transforms, let us
analyze this system by finding its frequency response. We begin our
analysis by solving for the Green’s function g¢(¢) which is given by

mg" + cg’ + kg = 6(t), (3.6.16)

because the Green’s function is the response of a system to a delta
function forcing. Taking the Fourier transform of both sides of (3.6.16),
the frequency response is

1 1/m

= = 3.6.17
Glw) k+icw —mw?  wi+icw/m—w?’ ( )

where wg = k/m is the natural frequency of the system. The most useful
quantity to plot is the frequency response or

_ wg
G = ky/(w? — w?)? + w?wi(c?/km) (3.6.18)
- ! (3.6.19)

kv/[(w/wo)? = 1% + (c2/km)(w/wo)?
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Figure 3.6.1: The variation of the frequency response for a damped
harmonic oscillator as a function of driving frequency w. See the text
for the definition of the parameters.

In Figure 3.6.1 we have plotted with frequence response for different
c?/km’s. Note that as the damping becomes larger, the sharp peak at
w = wp essentially vanishes. As c?/km — 0, we obtain a very finely
tuned response curve.

Let us now find the Green’s function. From the definition of the
inverse Fourier transform,

.

—0o0

1 [e9) ez’wt
= - /_oo e P (3.6.21)

o .
ezwt

di 3.6.20
w? —idew/m — w} v (3.6.20)

where

wig =\ Jwi—v:+7i (3.6.22)

and ¥ = ¢/2m > 0. We can evaluate (3.6.21) by residues. Clearly
the poles always lie in the upper half of the w-plane. Thus, if ¢ < 0
in (3.6.21) we can close the line integration along the real axis with a
semicircle of infinite radius in the lower half of the w-plane by Jordan’s
lemma. Because the integrand is analytic within the closed contour,
g(t) = 0 for t < 0. This is simply the causality condition,'? the impulse

12 The principle stating that an event cannot precede its cause.
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t<0

Figure 3.6.2: The migration of the poles of the frequency response of
a damped harmonic oscillator as a function of =.

forcing being the cause of the excitation. Clearly, causality is closely
connected with the analyticity of the frequency response in the lower
half of the w-plane.

If t > 0, we close the line integration along the real axis with a
semicircle of infinite radius in the upper half of the w-plane and obtain

= (1) o[y
+ Res [(_z-———@%%tz_:m;wz]} (3.6.23)
= WI__iwz (efrt — giwet) (3.6.24)
= el E; _wi— 72) H(t). (3.6.25)

Let us now examine the damped harmonic oscillator by describing
the migration of the poles w; » in the complex w-plane as v increase



158 Advanced Engineering Mathematics

from 0 to co. See Figure 3.6.2. For v <« wq (weak damping), the poles
w12 are very near to the real axis, above the points twy, respectively.
This corresponds to the narrow resonance band discussed earlier and
we have an underdamped harmonic oscillator. As 7 increases from 0
to wp, the poles approach the positive imaginary axis, moving along
a semicircle of radius wg centered at the origin. They coalesce at the
point iwy for ¥ = wy, yielding repeated roots, and we have a critically
damped oscillator. For v > wg, the poles move in opposite directions
along the positive imaginary axis; one of them approaches the origin,
while the other tends to ico as ¥ — oo. The solution then has two
purely decaying, overdamped solutions.

During the early 1950s, a similar diagram was invented by Evans!
where the movement of closed-loop poles is plotted for all values of
a system parameter, usually the gain. This root-locus method is very
popular in system control theory for two reasons. First, the investigator
can easily determine the contribution of a particular closed-loop pole
to the transient response. Second, he may determine the manner in
which open-loop poles or zeros should be introduced or their location
modified so that he will achieve a desired performance characteristic for
his system.

3

o Example 3.6.2: Low frequency filter

Consider the ordinary differential equation

1
Ry + cv= f(@), (3.6.26)
where R and C are real, positive constants. If y(¢) denotes current, then
(3.6.26) would be the equation that gives the voltage across a capacitor
in a RC circuit. Let us find the frequency response and Green’s function
for this system.

We begin by writing (3.6.26) as
, 1
Rg' + roid 8(t), (3.6.27)

where g(t) denotes the Green’s function. If the Fourier transform of g(t)
1s G(w), the frequency response G(w) is given by

iWwRC(W) + 9% -1 (3.6.28)

13 Evans, W. R., 1948: Graphical analysis of control systems. Trans.
AIEE, 67, 547-551; Evans, W. R., 1954: Control-System Dynamaics,
McGraw-Hill, New York.
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Figure 3.6.3: The variation of the frequency response (3.6.30) as a
function of driving frequency w. See the text for the definition of the
parameters.

or

1 C
CWw)= ZRT1/C = TvwRC

(3.6.29)

and

C C
IG(w)] = - , (3.6.30)
V1+w2R2C? \/1 +w?fuwl

where w, = 1/(RC') is an intrinsic constant of the system. In Figure
3.6.3 we have plotted |G(w)| as a function of w. From this figure, we see
that the response is largest for small w and decreases as w increases.

This is an example of a low frequency filter because relatively more
signal passes through at lower frequencies than at higher frequencies.
To understand this, let us drive the system with a forcing function
that has the Fourier transform F(w). The response of the system will
be G(w)F(w). Thus, that portion of the forcing function’s spectrum
at the lower frequencies will be relatively unaffected because |G(w)] is
near unity. However, at higher frequencies where |G(w)| is smaller, the
magnitude of the output will be greatly reduced.

Problems
Find the particular solutions for the following differential equations:

1.y +3y +2y=e 'H(t) 2.y +4y + 4y = 1M



160 Advanced Engineering Mathematics

3.y —4y +4y=eTH() 4.y — My = §(z),
where A has a positive real part and a negative imaginary part.



Chapter 4
The Laplace Transform

The previous chapter introduced the concept of the Fourier inte-
gral. If the function is nonzero only when ¢ > 0, a similar transform,
the Laplace transform,! exists. It is particularly useful in solving initial-
value problems involving linear, constant coefficient, ordinary and par-
tial differential equations. The present chapter develops the general
properties and techniques of Laplace transforms.

4.1 DEFINITION AND ELEMENTARY PROPERTIES

Consider a function f(t) such that f(¢) = 0 for ¢ < 0. Then the
Laplace integral

LA = F(s) = /o  ft)e-rtdr (4.1.1)

! The standard reference for Laplace transforms is Doetsch, G., 1950:
Handbuch der Laplace-Transformation. Band 1. Theorie der Laplace-
Transformation, Birkhauser Verlag, 581 pp.; Doetsch, G., 1955: Hand-
buch der Laplace-Transformation. Band 2. Anwendungen der Laplace-
Transformation. 1. Abteilung, Birkhduser Verlag, 433 pp.; Doetsch, G.,
1956: Handbuch der Laplace-Transformation. Band 3. Anwendungen
der Laplace-Transformation. 2. Abieilung, Birkhauser Verlag, 298 pp.
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defines the Laplace transform of f(t), which we shall write £[f(¢)] or
F(s). The Laplace transform converts a function of ¢ into a function of
the transform variable s.

Not all functions have a Laplace transform because the integral
(4.1.1) may fail to exist. For example, the function may have infinite
discontinuities. For this reason, f(t) = tan(t) does not have a Laplace
transform. We may avoid this difficulty by requiring that f(¢) be piece-
wise continuous. That is, we can divide a finite range into a finite
number of intervals in such a manner that f(¢) is continuous inside each
interval and approaches finite values as we approach either end of any
interval from the interior.

Another unacceptable function is f(t) = 1/¢ because the integral
(4.1.1) fails to exist. This leads to the requirement that the product
t*|f(t)| is bounded near ¢t = 0 for some number n < 1.

Finally |f(t)| cannot grow too rapidly or it could overwhelm the
e™** term. To express this, we introduce the concept of functions of
exponential order. By exponential order we mean that there exists some
constants, M and k, for which

[f(t)] < Me¥ (4.1.2)

for all £ > 0. Then, the Laplace transform of f(¢) exists if s, or just the
real part of s, is greater than k.

In summary, the Laplace transform of f(t) exists, for sufficiently
large s, provided f(t) satisfies the following conditions:

e f(t)=0fort <0,
e f(t) is continuous or piece-wise continuous in every interval,
o t*|f(t)| < oo as t — 0 for some number n, where n < 1,

e e %9 f(t)] < oo as t — oo, for some number so. The quantity sg
is called the abscissa of convergence.

e Example 4.1.1

Let us find the Laplace transform of 1, e, sin(at), cos(at), and
" from the definition of the Laplace transform. From (4.1.1), direct
integration yields:

o0

o0 c—st 1
L) = / e tdt = — =-, s> 0, (4.1.3)
0 S g )
o0 )
L) = / eetdt = / e~l-atgy (4.1.4)
0 0
—(s—a)t | 1
= — ¢ = , s> a, (415)
§—a 0 s—a
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. Rl s et . °°
L[sin(at)] = /(; sin(at)e™*'dt = — ;2+—a?[s sin(at) + a cos(
(4.1.6)
a
= -82—+a—2-, s> 0, (417)

- o0
est ‘

L{cos(at)] = /000 cos(at)e™*'dt = —2_(15[_3 cos(at) + asin(at)] i

(4.1.8)
S
and
ny _ n —~st — —st _ :
L(lt)_/0 dt = n'e’z(n_ )'sm+1 = o >0,
(4.1.10)

where n is a positive integer.

The Laplace transform inherits two important properties from its
integral definition. First, the transform of a sum equals the sum of the
transforms:

Llc1f(2) + c29(t)] = el LIF(H)] + c2Lg(2)]- (4.1.11)

This linearity property holds with complex numbers and functions as
well.

o Example 4.1.2
Success with Laplace transforms often rests with the ability to ma-
nipulate a given transform into a form which you can invert by inspec-

tion. Consider the following examples.
Given F(s) = 4/s3, then

F(s)=2x 333 and f(t) = 2t° (4.1.12)

from (4.1.10).
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Table 4.1.1: The Laplace Transforms of Some Commonly Encountered
Functions.

f(t), t>0 F(s)
1 1 %
2. e~ . _41_
a
1 —at 1
3. a (1 — € ) m
_ —a 1
4 (e — ) G+aGTh)
Ll (p.—bt _ . _—at s
5. 5= (be ae~ %) GraGTh
. a
6. ) sm(at) m
s
7. cos(at) 824—_(12
8. sinh(at) s_za_a"’
9. cosh(at) sz—ja—z
. 2as
10. tsin(at) m)—z
a2
11. 1-— cos(at) m
. a®
12. at — sm(at) 82(3_2-}-(1_2)-
s2 — a2
13. tcos(at) (—mz—)z
2q3
14. sin(at) — at cos(at) m
a
15. tsinh(at) (s%afzz)?
2 2
16. t cosh(at) (;_+;)7
2a3
17. at cosh(at) — sinh(at)
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Table 4.1.1 (contd.): The Laplace Transforms of Some Commonly
Encountered Functions.

f(t), t>0 F(s)
18. e~" sin(at) G b;lz e
19. e~ cos(at) G +Sb-)}-2b_{_ )
20. (1+ a?t?)sin(at) — cos(at) (328 (_1:222)3

4a3
21. sin(at) cosh(at) — cos(at) sinh(at) Yt dad
2
22. sin(at) sinh(at) sz :a4
23. sinh(at) — sin(at) 92%{
24. cosh(at) — cos(at) ;42_(1_2—23
25. asin(aatg : ::in(bt) ,a’ # b? (s2 + a:;;z(sz +b2)
26. bsinizzl))z—_a;ir)l(bt) ,a’ # b2 (2 + az)l(sz ¥ b2)
27. w—)ﬂz # b2 (s2 + azf(sz +b?)
28. t",n>0 s:-i!-l
n-1,-at

29. t(—njel—)!, n>0 (—s_:—a);
30. ("(—;i—)l_)—,at "% n > 1 (S:a)n
31. the=*,n 20 (;:na')—nﬁ
39, — ;ntn(—;;/i) e n>1 s—n+(1/2)]
33. Jo(at) 1

VTia
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Table 4.1.1 (contd.): The Laplace Transforms of Some Commonly
Encountered Functions.

£(t), t >0 F(s)
1
34. Io(at) 52 — a2
35 L erf(v/al) !
. — erf(Va
Va svVs+a
36. \/—IT_te_‘" + Va erf(Vat) s: ¢
1 " 1
37. T ae® terfc(av/t) T
1
t
38. e®terfc(vat) st Vas
1
39. : bt — et Vs—a—+vs—b
2Vt ( )
1 %t Vs
40. Wi + ae® terf(avt) P
1 s
41. —e®(1 + 2at
\/ﬁe (1 +2at) (s—als—a
1 e, 1
42. pld erf(av?) G=avs
43. [ —ze a>0 e~2v/a
wt
44, Le-“/‘,a >0 L p-ovm
vt - s
45. erfc(\/g) ,a>0 le_2‘/‘H
t s
t a? e~avs
46. Zexp(—-L) -
6 2\/;exp( 4t) aerfc( \/_), a 55
2 be—a s
_ b t+abd a a -
47. e erfc(b\/f+ W?) + erfc(m) ,a>0 BT o)
2 -avs
48. e e’ terfe (b t+ L) ,a>0 _
Vit37) 02 VA
) 2 (% _.2
Notes: Error function: erf(z) = ;/ e ¥ dy
0

Complementary error function: erfc(z) = 1 — erf(z)
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Given 49 5
s+ s
F(s) = = 41.13
= ey T e (4.1.13)
then
f(t) = cos(t) + 2sin(t) (4.1.14)
by (4.1.7), (4.1.9), and (4.1.11).
Because ) ) )
F(s) = = - - .1.15
(s) s(s—1) s—1 s (4.1.15)
by partial fractions, then
fy=¢e" -1 (4.1.16)

by (4.1.3), (4.1.5), and (4.1.11).

The second important property deals with derivatives. Suppose
f(t) is continuous and has a piece-wise continuous derivative f'(¢). Then

LIFf®)] = /Ooo fit)e=tdt = e f(t)|o +s/000 f(t)e™*tdt (4.1.17)

by integration by parts. If f(t) is of exponential order, e *'f(t) tends
to zero as t — oo, for large enough s, so that

LIf' ()] = sF(s) — £(0). (4.1.18)

Similarly, if f(t) and f'(t) are continuous, f”(t) is piece-wise continuous,
and all three functions are of exponential order, then

LIF" (1) = sLIf' ()] = f/(0) = $*F(s) — sf(0) = f(0).  (4.1.19)

In general,

LUFM(@)] = s"F(s) = s 1f(0) =+ = sf*=D(0) = F*~D(0) | (4.1.20)

on the assumption that f(t) and its first n—1 derivatives are continuous,
f(™)(t) is piece-wise continuous, and all are of exponential order so that
the Laplace transform exists.
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The converse of (4.1.20) is also of some importance. If

u(t) = /Otf(r) dr, (4.1.21)

then
Llu®)] = /:o e st [/otf(r) dr] dt (4.1.22)
_— e:t /Ot f(r)dr :o + %/Ow f)e~*dt  (4.1.23)

and
c [ /0 "5 dr] _ I Es), (4.1.24)

where u(0) = 0.
Problems

Using the definition of the Laplace transform, find the Laplace transform
of the following function:

1. f(t) = cosh(at) 2. f(t) = cos?*(at)
3. f(t) = (t+1)? 4 f(t) = (t+ e~

_ [ O<t<?2 _ [ sin(t), O<t<m
5'f(t)_{0, t<>2< 6'f(t)_{ 0, t>mw

Using your knowledge of the transform for 1, e, sin(at), cos(at), and
t”, find the Laplace transform of

7. f(t) = 2sin(t) — cos(2t) + cos(3) — ¢
8. f(t) =t -2+ e~ —sin(5t) + cos(2).
Find the inverse of the following transforms:

9. F(s) = 1/(s + 3) 10. F(s) = 1/s*
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11. F(s) = 1/(s* + 9) 12. F(s) = (25 + 3)/(s2 +9)

13. F(s)=2/(s®+1)—15/s3+2/(s + 1) — 65/(s? + 4)

14. F(s)=3/s+15/s*+ (s +5)/(s2+ 1)~ 6/(s — 2).

15. Verify the derivative rule for Laplace transforms using the function
f(t) = sin(at).

16. Show that L[f(at)] = F (s/a) /a, where F(s) = L[f(t)].

17. Using the trigonometric identity sin?(z) = [1 — cos(2z)]/2, find the
Laplace transform of f(t) = sin®[rt/(2T)].

4.2 THE HEAVISIDE STEP AND DIRAC DELTA FUNCTIONS

Change can occur abruptly. We throw a switch and electricity sud-
denly flows. In this section we introduce two functions, the Heaviside
step and Dirac delta, that will give us the ability to construct compli-
cated discontinuous functions to express these changes.

I Heaviside step function

We define the Heaviside step function as

1, t>a
H(t—a)= {0’ t<a, ‘ (4.2.1)
where a > 0. From this definition,
L[H(t—a)] = / e~tdt = — 5> 0. (4.2.2)

Note that this transform is identical to that for f(¢) = 1 if a = 0. This
should not surprise us. As pointed out earlier, the function f(t) is zero
for all ¢ < 0 by definition. Thus, when dealing with Laplace transforms
f(t) = 1 and H(t) are identical. Generally we will take 1 rather than
H(t) as the inverse of 1/s.

The Heaviside step function is essentially a bookkeeping device that
gives us the ability to “switch on” and “switch off” a given function. For
example, if we want a function f(t) to become nonzero at time ¢t = a, we
represent this process by the product f(t)H(t — a). On the other hand,
if we only want the function to be “turned on” when a < t < b, the
desired expression is then f(¢)[H(t—a)— H(t—b)]. Fort < a, both step
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Figure 4.2.1: Largely a self-educated man, Oliver Heaviside (1850~
1925) lived the life of a recluse. It was during his studies of the im-
plications of Maxwell’s theory of electricity and magnetism that he re-
invented Laplace transforms. Initially rejected, it would require the
work of Bromwich to justify its use. (Portrait courtesy of the Institu-
tion of Electrical Engineers, London.)

functions in the brackets have the value of zero. For a < ¢t < b, the first
step function has the value of unity and the second step function has
the value of zero, so that we have f(t). For ¢t > b, both step functions
equal unity so that their difference is zero.

e Example 4.2.1

Quite often we need to express the graphical representation of a
function by a mathematical equation. We can conveniently do this
through the use of step functions in a two-step procedure. The following
example illustrates this procedure.
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Figure 4.2.2: Graphical representation of (4.2.5).

Consider Figure 4.2.2. We would like to express this graph in terms
of Heaviside step functions. We begin by introducing step functions at
each point where there is a kink (discontinuity in the first derivative)
or jump in the graph — in the present case at t = 0,¢f =1, = 2, and
t = 3. Thus,

F(t) = ao(t)H () +ar () H(t—1)+az(t) H(t—2)+as(t) H(t—3), (4.2.3)

where the coefficients ag(t), a1(t), ... are yet to be determined. Proceed-
ing from left to right in Figure 4.2.2, the coefficient of each step function
equals the mathematical expression that we want after the kink or jump
minus the expression before the kink or jump. Thus, in the present ex-
ample,

f@) = (¢=0)H(t)+(1-t)H (t-1)+[(3—t)—1]H (¢ -2)+[0—(3—t)] H(¢-3)
(4.2.4)

F(t) = tH({t)— (t—1)H(t—1)— (t—2)H(t—2)+(t-3)H(t—3). (4.2.5)

We can easily find the Laplace transform of (4.2.5) by the “second shift-
ing” theorem introduced in the next section.

o Example 4.2.2

Laplace transforms are particularly useful in solving initial-value
problems involving linear, constant coefficient, ordinary differential e-
quations where the nonhomogeneous term is discontinuous. As we shall
show in the next section, we must first rewrite the nonhomogeneous term
using the Heaviside step function before we can use Laplace transforms.
For example, given the nonhomogeneous ordinary differential equation:

t, 0<t<1

" / —_
Y +3+2y= {0’ t> 1, (4.2.6)
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o(?)

1/e

-
t=a g
Figure 4.2.3: The Dirac delta function.
we can rewrite the right side of (4.2.6) as
Y +3y +2y=t—-tH(t-1) (4.2.7)

=t—(-DH({t-1)-Ht-1). (428)

In Section 4.8 we will show how to solve this type of ordinary differential
equation using Laplace transforms.

| Dirac delta function

The second special function is the Dirac delta function or impulse
function. We define it by

00, t=a

(t—a)= {0, t+a, /0°° S(t—a)dt=1, (4.2.9)

where a > 0.
A popular way of visualizing the delta function is as a very narrow
rectangular pulse:

Y 1/e, 0<|t—al<e/2
8(t—a)= 31_1}(1){ 0, t—a| > €/2, (4.2.10)
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where € > 0 is some small number and a > 0. This pulse has a width ¢,
height 1/¢, and centered at ¢t = a so that its area is unity. Now as this
pulse shrinks in width (¢ — 0), its height increases so that it remains
centered at ¢ = a and its area equals unity. If we continue this process,
always keeping the area unity and the pulse symmetric about ¢ = a,
eventually we obtain an extremely narrow, very large amplitude pulse
at t = a. If we proceed to the limit, where the width approaches zero
and the height approaches infinity (but still with unit area), we obtain
the delta function 6(t — a).

The delta function was introduced earlier during our study of Four-
ier transforms. So what is the difference between the delta function
introduced then and the delta function now? Simply put, the delta
function can now only be used on the interval [0, 00). Outside of that,
we shall use it very much as we did with Fourier transforms.

Using (4.2.10), the Laplace transform of the delta function is

o) ate/2
L6t —a)] = / 6(t — a)e™**dt = lim - e *tdt (4.2.11)
0 e—~0¢€ a—¢ef2
—lim + (e'“’+“/2 - e"“-”/?) (4.2.12)
e—0 €S
ctim (14848 e
T 0 es 2 8 2 8
(4.2.13)
=e” %, (4.2.14)

In the special case when a = 0, £[6(¢)] = 1, a property that we will use
in Section 4.9. Note that this is exactly the result that we obtained for
the Fourier transform of the delta function.

If we integrate the impulse function,

t
/0 8(r—a)dr = {(1): i ; Z’ (4.2.15)

according to whether the impulse does or does not come within the
range of integration. This integral gives a result that is precisely the
definition of the Heaviside step function so that we can rewrite (4.2.15)

/1 (v —a)dr = H(t — a). (4.2.186)
0

Consequently the delta function behaves like the derivative of the step
function or

% [H(t - a)] = 6(t - a). (4.2.17)
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Because the conventional derivative does not exist at a point of discon-
tinuity, we can only make sense of (4.2.17) if we extend the definition
of the derivative. Here we have extended the definition formally, but a
richer and deeper understanding arises from the theory of generalized
functions.?

Problems

Sketch the following functions and express them in terms of Heaviside’s
step functions:

0, 0<t<?2
1. f(t)_{t— 2<t<3
0, t>3
0, O<i<a
1, a<t<2a
2. f)=9_1, 2a<t<3a
0, " t>3a

Rewrite the following nonhomogeneous ordinary differential equations
using Heaviside’s step functions.

0 O<t<l
/1 ' _— ]
3.y +3y+2y._{1’ i>1

0 O<t<4
! — )
‘y+4y‘{3, t>4

1N

5. ¢/ +4y +4y =

(=]

Y +3Y + 2y

1l
/—"—\ —~— r—M\
e
o
A
.S
A
e

7.9 -3y +2y=

0 0<txl
"ot = )
8. y 3y + 2y {t2, t>1

2 The generalization of the definition of a function so that it can
express in a mathematically correct form such idealized concepts as the
density of a material point, a point charge or point dipole, the space
charge of a simple or double layer, the intensity of an instantaneous
source, etc.
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" _ J sin(t), 0<t<n
9. y +y-—{ 0, (>

t
7! ! —_ 1 = —_
10. " +3y' + 2y = {ae‘('_a), t>a

4.3 SOME USEFUL THEOREMS

Although at first sight there would appear to be a bewildering num-
ber of transforms to either memorize or tabulate, there are several useful
theorems which can extend the applicability of a given transform.

| First shifting theorem

Consider the transform of the function e~ f(t), where a is any real
number. Then, by definition,

cleat ()] = /000 e=ste=e f(t) dt = / Tty d, (431

4]

or

L [e"‘”f(t)] = F(s+a). (4.3.2)

That is, if F(s) is the transform of f(t) and a is a constant, then F(s+a)
is the transform of e~% f(t).

e Example 4.3.1

Let us find the Laplace transform of f(t) = e~ % sin(bt). Because
the Laplace transform of sin(bt) is b/(s? + b?),

b

L [e= sin(bt)] = Grar e

(4.3.3)

where we have simply replaced s by s + a in the transform for sin(bt).
e Example 4.3.2

Let us find the inverse of the Laplace transform

s+ 2

TGl (#3.9)

F(s) =
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Rearranging terms,

s+2 s+2

F(s)= = 4.3.5
() s2+6s+1 (s+3)2-8 ( )
- %3 1 w2 (4.3.6)
(s+3)2-8 2v2(s+3)2-38
Immediately, from the first shifting theorem,
f(t) = e73 cosh(2v/2t) — -2%6_31 sinh(2v/2t). (4.3.7)

I Second shifting theorem '

The second shifting theorem states that if F(s) is the transform
of f(t), then e F(s) is the transform of f(t — b)H(t — b), where b
is real and positive. To show this, consider the Laplace transform of
f(t —b)H(t — b). Then, from the definition,

Lf(t—b)H(t-b)] = /oo f(t = b)H(t — b)e™*dt (4.3.8)
0
=/b f(t—-b)e"‘dt:/o e e% f(2) dx
(4.3.9)
R e z)dz 3.
—e /0 =% f(z)d (4.3.10)
. LIf(t —b)H(t —b)] = e > F(s), (4.3.11)

where we have set # = ¢t —b. This theorem is of fundamental importance
because it allows us to write down the transforms for “delayed” time
functions. That is, functions which “turn on” b units after the initial
time.

o Example 4.3.3

Let us find the inverse of the transform (1 —e~*)/s. Since

-, (4.3.12)

£ (l - 6_3) e (1> £ <e_’) = H(t)—H(t-1), (4.3.13)
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because £L71(1/s) = f(t) =1l and f(t—1)=1.
o Example 4.3.4

Let us find the Laplace transform of f(t) = (2 — 1)H(t — 1).
We begin by noting that

W -DHE-1)=[t-1+1)>-1H(E-1) (4.3.14)
=[t-1)2+2t-D}H(t-1) (4.3.15)
=(t-1)*Ht-1)+2(t-1)H(t-1). (4.3.16)

A direct application of the second shifting theorem leads then to

2e™* 2e~°

Ll -DHE-1)]= —+ (4.3.17)

52

o Example 4.3.5

In Example 4.2.2 we discussed the use of Laplace transforms in
solving ordinary differential equations. One further step along the road
consists of finding Y (s) = L{y(¢)]. Now that we have the second shifting
theorem, let us do this.

Continuing Example 4.2.2 with y(0) = 0 and y'(0) = 1, let us take
the Laplace transform of (4.2.8). Employing the second shifting theorem
and (4.1.20), we find that

s°Y (s) — sy(0) — ' (0) + 35Y (s) — 3y(0) + 2Y(s)
1 e”® e7*

= = - — = . 4.3.18
52 s2 s ( )

Substituting in the initial conditions and solving for Y (s), we finally
obtain

L 1 1
YO = 539670 T 26126+

+ (4.3.19)

PTG+  sGFGED)
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Laplace transform of t" f(t)

In addition to the shifting theorems, there are two other particularly
useful theorems that involve the derivative and integral of the transform
F(s). For example, if we write

F(s)y=L[f()] = /oo F(t)e*tdt (4.3.20)
0
and differentiate with respect to s, then
F'(s) = /oo —tf(t)e*'dt = —L[tf(2)]. (4.3.21)
0

In general, we have that

FM(s) = (=1)"L[t"f(t)]. (4.3.22)

I Laplace transform of f(t)/t

Consider the following integration of the Laplace transform F(s):

/soo F(z)dz = /Soo [/Ooo f(t)e‘”dt] dz. (4.3.23)

Upon interchanging the order of integration, we find that

/Soo F(z)dz = /Ooo f@) [/Sw e'“dz] dt (4.3.24)

= _/Ow (@) e_t” Tt = /Ooo -f(t—t)e'”dt. (4.3.25)
Therefore, 3
/300 F(z)dz=L [f—gtl] . (4.3.26)

o Example 4.3.6

Let us find the transform of ¢ sin(at). From (4.3.21),

52 +a?

Lftsin(at)] = —dis{ﬁ[sin(at)]} - -% [4‘—] (4.3.27)
2as

= Trap (4.3.28)
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o Example 4.3.7

Let us find the transform of [1 — cos(at)]/t. To solve this problem,

we apply (4.3.26) and find that
L [————1 cos(at)] / L1 - dz —/ (l - z 2) dz
s z z+a
(4.3.29)

[e o]
= In(2) - In(z? + a?)

i°= ()|
n (\/—ﬁ) .(4.3.31)

(4.3.30)

S

= In(1) - In (\/T_J,——af)

L Initial-value theorem

Let f(t) and f’(t) possess Laplace transforms. Then, from the
definition of the Laplace transform,

/Ooo F'()e~*tdt = sF(s) — f(0). (4.3.32)

Because s is a parameter in (4.3.32) and the existence of the integral is
implied by the derivative rule, we can let s — oo before we integrate.
In that case, the left side of (4.3.32) vanishes to zero, which leads to

lim sF(s) = f(0). (4.3.33)
83— 00

This is the initial-value theorem.

e Example 4.3.8

Let us verify the initial-value theorem using f(t) = e3. Because
F(s) =1/(s = 3), ims_.o s/(s — 3) = 1. This agrees with f(0) = 1.

I Final-value theorem l

Let f(t) and f'(t) possess Laplace transforms. Then, in the limit
of s — 0, (4.3.32) becomes

/°° F@)dt = tl_lglo/ f(r)dr = tl_l_glo f@t) = f(0) = }1_{1(1) sF(s) - f(0).
0 0
(4.3.34)
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Because f(0) is not a function of t or s, the quantity f{0) cancels from
the (4.3.34), leaving

tlim f(t) = ]ing sF(s). (4.3.35)
Equation (4.3.35) is the final-value theorem. It should be noted that
this theorem assumes that lim;_.o f(¢) exists. For example, it does
not apply to sinusoidal functions. Thus, we must restrict ourselves to
Laplace transforms that have singularities in the left half of the s-plane
unless they occur at the origin.
e Example 4.3.9
Let us verify the final-value theorem using f(t) = t. Because F(s) =
1/s%, lim,_o sF(s) = lim,_,q1/s = co. The limit of f(t) as t — oo is
also undefined.
Problems
Find the Laplace transform of the following functions:
1. f(t) = e 'sin(2t) 2. f(t) = e~ % cos(2t)
3. f(t) = te' +sin(3t)e! + cos(5t)e?
4. f(t) = t*e~2" + sin(3t)e’ + cos(4t)e?*
5. f(t) =t%e~! +sin(2t)e’ + cos(3t)e=>
6. f()=t*H(t-1)
7. f(t)=e*H(t-3) 8. f)=t*H({t—-1)+¢e'H(t—-2)
9. f)=@2+2)H{t-1)+H(t-2)
10. fO)=(@+1)2H({t—-1)+e'H(t-2)

1 f(t):{si(l)l(t), 0t§>t7r§7r

13.  f(t) = te=3'sin(2t)
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Find the inverse of the following Laplace transforms:

14. F(s)=1/(s+2)* 15. F(s)=s/(s+2)*

16. F(s)=s/(s*+2s+2) 17. F(s)=(s+3)/(s> +25+2)
18. F(s)=s/(s+1)3+(s+1)/(s*+25+2)

19. F(s)=s/(s+2)2+(s+2)/(s* +25+2)

20. F(s)=s/(s+2)>+(s+4)/(s* +4s+5)

21. F(s)=e3/(s-1) 22. F(s)=e % /(s+1)?

23. F(s)=se™*/(s*+25+2) 24. F(s)=e % /(s> +45+5)

25. F(s)=se /(s +4)+ e ¥/(s - 2)*

26. F(s)=e */(s*+4)+ (s — 1)e~3/s*

27. F(s)=(s+1)e*/(s* +4) +e3*/s*

28. Find the Laplace transform of f(t) = te![H(t—1)— H(t—2)] by using
(a) the definition of the Laplace transform, and (b) a joint application

of the first and second shifting theorems.

29. Write the function

t, 0<t<a
f(t):{o, t>a

in terms of Heaviside’s step functions. Then find its transform using
(a) the definition of the Laplace transform, and (b) the second shifting
theorem.

In problems 30-33, write the function f(t) in terms of Heaviside’s step
functions and then find its transform using the second shifting theorem.

30.

f(t) = {téi’ 0t5>’2<2

31.
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32,
¢, 0<t<2
ﬁ0={4—a 9<t<4
0, {>4
33.
0, 0<t<1
t—1, 1<t<?
=9, 9<t<3
0, £>3

Find Y (s) for the following ordinary differential equations:

4.y + 3y +2y=H(t - 1), y(0) =y (0)=0

35. ¢ +4y=3H(t — 4); y(0)=1, y¥(0)=0

36y + 4y +4y =tHt—2);  y(0)=0, ¥(0)=2

3.y + 3y +2y=e'H(t - 1); y(0) =¢'(0) =0

38.y' -3y +2y=e"tH(t — 2); y(0)=2, ¥(0)=0

39.y" =3y + 2y =t?H(t - 1); y(0) =0, ¥(0)=5

0.y +y=sin(t)1-H(t-m); y0)=y(0)=0

41. ¢ + 3y + 2y =t + [ae~(:=%) —t] H(t — a); y(0) = ¥ (0) = 0.

For each of the following functions, find its value at ¢t = 0. Then check
your answer using the initial-value theorem.

42. f(t) =t 43. f(t) = cos(at)
44. f(t) = te~t 45. f(t) = e*sin(3t)
For each of the following Laplace transforms, state whether you can or

cannot apply the final-value theorem. If you can, find the final value.
Check your result by finding the inverse and finding the limit as ¢ — oo.

1 1

46. F(s) = . ==

6. F(s) po 47. F(s) "
1 s
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2 2

s(s? +3s +2) 51. F(s) = s

50. F(s) = P v

4.4 THE LAPLACE TRANSFORM OF A PERIODIC FUNCTION

Periodic functions frequently occur in engineering problems and
we shall now show how to calculate their transform. They possess the
property that f(t + T) = f(t) for t > 0 and equal zero for ¢ < 0, where
T is the period of the function.

For convenience let us define a function z(t) which equals zero ex-
cept over the interval (0,7) where it equals f(t):

2(t) = {féf)’ 0t<>t; T (4.4.1)
By definition
F(s) = / ” F(t)e™tdt (4.4.2)
0
T 2T (k+1)T
=/ f(t)e™*tdt + f(t)e-"dt+---+/ ft)e tdt + -
0 T kT
(4.4.3)

Now let z = t — kT, where k = 0,1,2, ..., in the kth integral and F(s)
becomes

T T
F(s) = -sz g Te *F+ gy 4 ...
()= [ sz [ 41 +
T
+/ fz+ kT)e*GH¥dy 4 ... (4.4.4)
0

However,
a:(z):f(z)=f(z+T):...:f(z+k'T)=..., (4.4.5)

because the range of integration in each integral is from 0 to 7. Thus,
F(s) becomes

T T
F(s)= / z(z)e”*dz + e"’T/ z(2)e”*dz + - -
0 0

T
+ e_’”T/ z(z)e”Pdz+--- (4.4.6)
0
or

Fs)=(Q+eTHe T4 pe™T 4. )X(s).  (447)
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The first term on the right side of (4.4.7) is a geometric series with
common ratio e~*T. If |e=*T| < 1, then the series converges and

(4.4.8)

o Example 4.4.1

Let us find the Laplace transform of the square wave with period

jo-{% BT s

T:

By definition z(t) is

h, 0<t<T/2
z(t) = ¢ —h, T/2<t<T (4.4.10)
0, t>T.
Then
oo T/2 T
X(s)=[ =z(t)etdt= / he~*tdt+ [ (=h)e~*'dt (4.4.11)
0 0 T/2
— h —sT/2 —~sT) _ h -sT/2 2
_;(1—26 +e )—;(l—e ) (4.4.12)
and
h{1~- -sT/2 2 h(1-— —sT/2
F(s) = Qe (= (4.4.13)

s(I1—e3T) — s(l+e-2T/2)"

If we multiply numerator and denominator by exp(s7'/4) and recall that
tanh(u) = (e —e™*)/(e* + e™*), we have that

F(s) = gtanh (%) . (4.4.14)
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e Example 4.4.2

185

Let us find the Laplace transform of the periodic function

sin(27t/T), 0<t<T/2
f(t) = { ( 0 / ) T/2 <t </T. (4.4.15)
By definition z(t) is
sin(2#xt/T), 0<t<T/2
= { ( 0 ) t> T/2./ (4.4.16)
Then
TI2  (omt 21T
= in| = e ¥'dt = ———— —sT/2
X(S)—/O sm( T )e dt_32T2+47r2 (1+e ) (4.4.17)
Hence,
_ X(s) _ 2aT 1 4 e=5T/2
F(S) - 1 -_— e—ST - 32T2 + 47r2 X 1 _ e_sT (4.4.18)
27T 1
= 272 + 42 % 1 — e-sT/2" (4.4.19)
Problems

Find the Laplace transform for the following periodic functions:

1. f(t) =sin(t), 0 <t < m,

f@)y=f(t+m)

_ | sin(2), 0<t<n _
2. f(2) _{ 0, r<i<orm f(t) = f(t + 27)
st0={5 S5 S £ = £(t +2a)
1, O<t<a
0, a<t<Za —
4Lf0=3"  guvt<3a f(t) = f(t + 4a).
0, 3a <t < 4a,
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4.5 INVERSION BY PARTIAL FRACTIONS: HEAVISIDE'S EXPANSION
THEOREM

In the previous sections, we have devoted our efforts to calculating
the Laplace transform of a given function. Obviously we must have a
method for going the other way. Given a transform, we must find the
corresponding function. This is often a very formidable task. In the next
few sections we shall present some general techniques for the inversion
of a Laplace transform.

The first technique involves transforms that we can express as the
ratio of two polynomials: F'(s) = q(s)/p(s). We shall assume that the
order of q(s) is less than p(s) and we have divided out any common
factor between them. In principle we know that p(s) has n zeros, where
n is the order of the p(s) polynomial. Some of the zeros may be complex,
some of them may be real, and some of them may be duplicates of other
zeros. In the case when p(s) has n simple zeros (nonrepeating roots), a
simple method exists for inverting the transform.

We want to rewrite F'(s) in the form:

ay as an q(s)
Fs) = = L3 4.5.1
(s) S—Sl+3—32+ +s—sn p(s)’ ( )
where s1,sy,...,5, are the n simple zeros of p(s). We now multiply
both sides of (4.5.1) by s — 51 so that
(s — s1)q(s) —a (s — s1)as - (s— sl)an' (4.5.2)
p(s) §— 82 § — Sn

If we set s = s1, the right side of (4.5.2) becomes simply a;. The left side
takes the form 0/0 and there are two cases. If p(s) = (s — s1)g(s), then
a1 = q(s1)/g(s1). If we cannot explicitly factor out s — s;, ’Hospital’s
rule gives

e (ms0ae) L (5= s)d(9) +a(s) _ als)
al_sl—gl1 p(s) _sl—-sl p’(s) p’(sl)' (453)

In a similar manner, we can compute all of the ap’s, where k = 1,2/ ...,
n. Therefore,

LF(s)) = £ [Q(S)] c-l(—“1—+ e PN )

(s) s—81 S—5g §— Sy
(4.5.4)
= a1 + age®?t + -t ane’nt. (4.5.5)

This is Heaviside’s expansion theorem, applicable when p(s) has only
simple poles.
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e Example 4.5.1

Let us invert the transform s/[(s 4+ 2)(s* + 1)]. It has three simple

poles at s = —~2 and s = +i. From our earlier discussion, ¢(s) = s,

p(s) = (s +2)(s? + 1), and p'(s) = 3s? + 4s + 1. Therefore,

- [(s + 2)zs2 n 1)] =12 ——82+ et meh
b _‘42'2_ e (4.5.6)
= _ge_% + -214;“"” - —2i—4ie_it (4.5.7)
= —%e_m + i;2+_1éie“ - i%e‘“ (4.5.8)
= —%e_m + %sin(t) + %cos(t), (4.5.9)

where we have used sin(t) = (e’ — e~%*) and cos(t) = 3(e'* + e™*).
e Example 4.5.2
Let us invert the transform 1/{(s—1)(s—2)(s—3)]. There are three

simple poles at sy = 1, s = 2, and s3 = 3. In this case, the easiest
method for computing a1, a2, and as is

. s—1 1
R L P § P Py Sl (4.5.10)
. s—2
o= lm o6 ! (4.5.11)
and 3 )
. s —
as = i N T =3 2 (4.5.12)
Therefore,
1 a a a
-1 -1 1 2 3
£ (s—l)(.~;—-2)(s—3)]_-£ [s—1+s—2+s—3
= Let — e 4+ L&, (4.5.13)

Note that for inverting transforms of the form F(s)e=** witha > 0,
you should use Heaviside’s expansion theorem to first invert F'(s) and
then apply the second shifting theorem.
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Let us now find the expansion when we have multiple roots, namely

q(s) q(s)
F(s)= —=% = , 4.5.14
P R P LI e P
where the order of the denominator, my +ms +- - -+ m,, is greater than
that for the numerator. Once again we have eliminated any common
factor between the numerator and denominator. Now we can write F(s)

as
n myg

Fis)=Y_ Z = S:)’i;k —— (4.5.15)

k=1j=1
Multiplying (4.5.15) by (s — s¢)™*,

s —sg)"*q(s
%ﬂ—l = agy + ar2(s — sk) + -+ -+ k(5 — )™ 7!

ey %t Onma 4516
O (A
where we have grouped together into the square-bracketed term all of
the terms except for those with ay; coefficients. Taking the limit as
§ — Sk,
—_ mk
ar = lim —(s se)™"4(s)
=k p(s)

Let us now take the derivative of (4.5.16),

a4 [(3 - Sk)'""q(s)]
ds p(s)
= apy + 2ak3(s — sp) + - + (Mg — 1)@gm, (s — s)™ =2

+ df; {(s_ sx)™ [(_s_“L T a"—"‘] } . (4.5.18)

s1)™ S—8p

(4.5.17)

Taking the limit as s — s,

aky = lim dis [(s_—sg();;k—q(s—)] : (4.5.19)
In general,
and by direct inversion,
n ms _
OEDIDY (m—:k_]—j—)!t'”“‘je”‘t. (4.5.21)
k=1j=1
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e Example 4.5.3

Let us find the inverse of

8

FO= roera

(4.5.22)

We first note that the denominator has simple zeros at s = +¢ and

a repeated root at s = —2. Therefore,
A B o D
PO =5+t sis T oo (4.5.23)
where
A= lim (s —)F(s) = g_'}—&.-, (4.5.24)
B = llm (s +i)F(s) = g2g, (4.5.25)
Y d 2 _ d s 3
C= 8&1112 I [(s +2) F(s)] E 2 Ts [32 n 1] -5z (4.5.26)
and
D= lim (s+ 2)2F(s) = 2. (4.5.27)
Thus,
f@) = 6+8¢ e + glge T — e — fte™ (4.5.28)

= & cos(t) + 5 sin(t) — Ze2 — Lte~.  (4.5.29)

In Section 4.10 we shall see that we can invert transforms just as
easily with the residue theorem.
Let us now find the inverse of

F(s) = es + (ca — wd) _ cs+('ca - wd) ' (4.5.30)
(s+a)?+w? (s+a—wi)(s+atwi)
by Heaviside’s expansion theorem. Then
c+di c—di

F(s) = .5.31
(s) 2(s+a—wi)+2(s+a+wi) (4.5.31)

T 200 72 4 d2e—bi
Ve? + de c? 4 d% (4.5.32)

= 2As+a—wi) 2s+a+wi)

where § = tan~!(d/c). Note that we must choose 6 so that it gives the
correct sign for ¢ and d.
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Taking the inverse of (4.5.32),

fit) = %, /c2 ¥ d2e—ottwtitoi 4 _21_ /c2 + d2e—0t—wti=6i (4.5.33)
= V2 + d2e~* cos(wt + 6). (4.5.34)

Equation (4.5.34) is the amplitude/phase form of the inverse of (4.5.30).
It is particularly popular with electrical engineers.

e Example 4.5.4

Let us express the inverse of

8s—3
in the amplitude/phase form.
Starting with
8s—3
F(s) = 4.5.36
)= G e 239 ( )
_ 4419i/6 4-19i/6
T s4+2-3i s+2+3 (4.5.37)
38.3675% —38.3675°%
_ 5.1017¢ 5.1017e (4.5.38)

s+2—-3 + s+2+4+ 3¢

or

f(t) - 5'10176—2t+3it+3843675°i 4 5.10176_21_3“—38'3675% (4539)
= 10.2034e ™% cos(3t + 38.3675°). (4.5.40)

o Example 4.5.5: The design of film projectors

For our final example we anticipate future work. The primary use
of Laplace transforms is the solution of differential equations. In this
example we illustrate this technique that includes Heaviside’s expansion
theorem in the form of amplitude and phase.

This problem? arose in the design of projectors for motion pictures.
An early problem was ensuring that the speed at which the film passed
the electric eye remained essentially constant; otherwise, a frequency
modulation of the reproduced sound resulted. Figure 4.5.1(A) shows a
diagram of the projector. Many will remember this design from their

3 Cook, E. D., 1935: The technical aspects of the high-fidelity repro-
ducer. J. Soc. Motion Pict. Eng., 25, 289-312.
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Film drum
head

Winding
sprocket

[ 4

A B

Figure 4.5.1: (A) The schematic for the scanning light in a motion-
picture projector and (B) interior of the film drum head.

days as a school projectist. In this section we shall show that this partic-
ular design filters out variations in the film speed caused by irregularities
either in the driving-gear trains or in the engagement of the sprocket
teeth with the holes in the film.

Let us now focus on the film head — a hollow drum of small moment
of inertia J;,. See Figure 4.5.1(B). Within it there is a concentric inner
flywheel of moment of inertia Jy, where J > J;. The remainder of the
space within the drum is filled with oil. The inner flywheel rotates on
precision ball bearings on the drum shaft. The only coupling between
the drum and flywheel is through fluid friction and the very small friction
in the ball bearings. The flection of the film loops between the drum
head and idler pulleys provides the spring restoring force for the system
as the film runs rapidly through the system.

From Figure 4.5.1 the dynamical equations governing the outer case
and inner flywheel are (1) the rate of change of the outer casing of the
film head equals the frictional torque given to the casing from the inner
flywheel plus the restoring torque due to the flection of the film, and
(2) the rate of change of the inner flywheel equals the negative of the
frictional torque given to the outer casing by the inner flywheel.

Assuming that the frictional torque between the two flywheels is
proportional to the difference in their angular velocities, the frictional
torque given to the casing from the inner flywheel is B(ws —w, ), where
B is the frictional resistance, w; and w, are the deviations of the drum
and inner flywheel from their normal angular velocities, respectively. If
r is the ratio of the diameter of the winding sprocket to the diameter
of the drum, the restoring torque due to the flection of the film and
its corresponding angular twist equals K fot (rwo — wi) dr, where K is
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the rotational stiffness and wp is the deviation of the winding sprocket
from its normal angular velocity. The quantity rwo gives the angular
velocity at which the film is running through the projector because the
winding sprocket is the mechanism that pulls the film. Consequently
the equations governing this mechanical system are

¢
Jldd% = I\/ (rwo — w1 ) dr + B{ws — w1) (4.5.41)
0
and J
Jg% = ~B(ws —wy). (4.5.42)

With the winding sprocket, the drum, and the flywheel running at
their normal uniform angular velocities, let us assume that the wind-
ing sprocket introduces a disturbance equivalent to an unit increase in
its angular velocity for 0.15 seconds, followed by the resumption of its
normal velocity. It is assumed that the film in contact with the drum
cannot slip. The initial conditions are w(0) = w2(0) = 0.

Taking the Laplace transform of (4.5.41)-(4.5.42) using (4.1.18),

(Jls +B+ I:‘) Q1(s) — B (s) = ’"sﬁgo(s) =rKL [/Otwo(r) dr]

(4.5.43)
and
—BQl(S) + (st + B)Qz(s) =0. (4544)
The solution of (4.5.43)~(4.5.44) for 4(s) is
_rK (s + a0)0(s)
D) =T A b (4.5.45)
where typical values? are
rK B BK
‘I = 908, apg = -:]—2' = 147, bo = J1J2 = 231, (4546)
K B(Jl + Jz)
bh=—=1 d by = ———u-"t =8.20. 4.5.47
1= 7 57 an 2 T 8.20 ( )
The transform €;(s) has three simple poles located at s; = —1.58, 52 =

—3.32+ 11.67, and s3 = —3.32 — 11.6¢.

4 J, = 1.84 x 10* dyne cm sec? per radian, J, = 8.43 x 10* dyne cm
sec? per radian, B = 12.4 x 10 dyne cm sec per radian, K = 2.89 x 10°
dyne c¢m per radian, and r = 0.578
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Figure 4.5.2: The deviation w; of a film drum head from its uniform
angular velocity when the sprocket angular velocity is perturbed by a
unit amount for the duration of 0.15 seconds.

Because the sprocket angular velocity deviation wo(t) is a pulse of
unit amplitude and 0.15 second duration, we express it as the difference
of two Heaviside step functions:

wolt) = H(t) — H(t — 0.15). (4.5.48)
Its Laplace transform is
1 1 _g1s,
Q(s) =~ = e (4.5.49)
s

so that (4.5.45) becomes

s) = rK (s + a0) _ —0.15s
uls) = J1 s(s — s1)(s — s2)(s — 53) (1 ) : (4.5.50)

The inversion of (4.5.50) follows directly from the second shifting
theorem and Heaviside’s expansion theorem:
wl(t) =Ko+ 1{16“1 + Ifzeht + K3€"3t
_ [.K’() + 1(1831(1—0.15) + I{zesg(t—ﬂ.lS) + 1{3633(1—0.15)]H(t _ 015)’
(4.5.51)

where

Romth st

Ji o (s=s1)(s—s2)(s —s3) |,

= 0.578, (4.5.52)
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. rK s+ ap

K== = 0.046, 4.5.53
1= s(s — s2)(s — s3) S ( )

, _rK s+ ag 165°%
Ko = — = 0.326¢ ! 4.5.54
2 Ji s(s—s1)(s — s3) s=32 ( )

and

R rK s+ ag —165%
K3 = — = 0.326¢ . 4.5.55
8 J1 s(s—s1)(s — s2) U ( )

Using Euler’s identity cos(t) = (e’* + e~")/2, we can write (4.5.51) as

w1 (t) = 0.578 + 0.046e =138 4 0.652¢ 7332 cos(11.6¢ + 165°)
~ {0.578 4 0.046¢ 13301 =01%) 1. 0 652~ 332(:-0-15)
x cos[11.6(¢ — 0.15) + 165°]} H(t — 0.15). (4.5.56)

Equation (4.5.56) is plotted in Figure 4.5.2. Note that fluctuations in
w1(t) are damped out by the particular design of this film projector. Be-
cause this mechanical device dampens unwanted fluctuations (or noise)
in the motion-picture projector, this particular device is an example of
a mechanical filter.

Problems

Use Heaviside’s expansion theorem to find the inverse of the following
Laplace transforms:

1 s+3
l.F(s):m 2.F(s):m
s—4 s—3
3P = e nesy YO T Eraeen

Find the inverse of the following transforms and express them in ampli-
tude/phase form:

1 1
5 FO) = o5 - F6) = 2613
25 -5 1
T F) = 7 8. F0) = e
9. F(s) = 12

s(s2 +4)
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4.6 CONVOLUTION

In this section we turn to a fundamental concept in Laplace trans-
forms: convolution. We shall restrict ourselves to its use in finding the
inverse of a transform when that transform consists of the product of
two simpler transforms. In subsequent sections we will use it to solve
ordinary differential equations.

We begin by formally introducing the mathematical operation of
the convolution product:

t t
£t) *g(t) = / f(t = 2)g(z) dz = / f@)g(t —z)dz.  (4.6.1)
0 0
In most cases the operations required by (4.6.1) are straightforward.

e Example 4.6.1

Let us find the convolution between cos(t) and sin(t).

cos(t) *sin(t) = /Ot sin(t — z) cos(z) dz (4.6.2)
= %/Ot[sin(t) + sin(t — 2z)] dz (4.6.3)
= -;-/Ot sin(t) dz + %/t sin(t — 2z) dx (4.6.4)

0

= Lsin(t) 2|, + L cos(t — 22)|, = Ltsin(t).  (4.6.5)

o Example 4.6.2
Similarly, the convolution between t? and sin(t) is
t
£2 % sin(t) = / (t — z)?sin(z) dx (4.6.6)
0

= —(t — z)2 cos(z)|. — t —z)cos(z)dx .6.
= —(t - 2) cos(a)], 2/0(t Jeos(z)dz  (4.6.7)

=t -2(t—=z) sin(x)|:) - 2/0 sin(z) dx (4.6.8)
=124 2cos(t) — 2 (4.6.9)

by integration by parts.
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e Example 4.6.3

Consider now the convolution between e! and the discontinuous
function H(t — 1) — H(t — 2):

et x[H(t—1)— H(t—2)] = /Ot e=*[H(z — 1) — H(z — 2)]dz (4.6.10)

=et/0 e °[H(z—1)— H(z — 2)]d=.

(4.6.11)

In order to evaluate the integral (4.6.11) we must examine various cases.
If t < 1, then both of the step functions equal zero and the convolution
equals zero. However, when 1 < ¢ < 2, the first step function equals one
while the second equals zero. Therefore,

et x [H(t—1) - H(t -2))=¢ /lte_”dx =e~l -1, (4.6.12)

because the portion of the integral from zero to one equals zero. Fi-
nally, when ¢t > 2, the integrand is only nonzero for that portion of the
integration when 1 < ¢ < 2. Consequently,

2
ex[H(t-1)~H(t-2)]= e'/ e "de=¢""! —¢'"2.  (4.6.13)
1

Thus, the convolution of e* with the pulse H(t — 1) — H(t — 2) is

0, 0<tkl
e'*[H(t—l)—H(t—2)]:{ et~ —1, 1<t<2 (4.6.14)
el —et=2 t>2.

The reason why we have introduced convolution follows from the
following fundamental theorem (often called Borel’s theorem®). If

w(t) = u(t) * v(t) (4.6.15)

then
W(s) = U(s)V (s). (4.6.16)

5 Borel, E., 1901: Legons sur les séries divergentes. Gauthier-Villars,
Paris, p. 104.
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In other words, we can invert a complicated transform by convoluting
the inverses to two simpler functions. The proof is as follows:

W(s) = /ooo [/Ot u(z)v(t — z) dx] e *tdt (4.6.17)
_ /Ooo [/:o u(z)o(t - z)e‘”dt] dz (4.6.18)
- /0 " (@) [ /0 ” v(r)e-’<'+f>dr] dz (4.6.19)

= [/Ooo u(z)e"”d:c] [/Ooo v(r)e‘"dr] =U(s)V(s), (4.6.20)
where t =r + . O
e Example 4.6.4

Let us find the inverse of the transform

(s? -18- 1)2 - 32: e 52{'_ 1= L[cos(t)]L[sin(?)] (4.6.21)
= Llcos(t) +sin(t)] = L[5t sin(?)] (4.6.22)

from Example 4.6.1.
o Example 4.6.5

Let us find the inverse of the transform

1 ] a "
(s +a2)2  aZ \s?+a? 2t al (4.6.23)
= 2 Clsin(at))lsin(a)]. (4.6.24)

Therefore,
(e _i/ts. [a(t — 2)]sin(az) d 4.6.25
Zradz]| @), in z)]sin(az) dz (4.6.25)

1 1 1 1
=32 J, cos{a(t — 2z)] dz — %7/0 cos(at) dx

(4.6.26)

1. b ‘
=-13 sinfa(t — 2z)] ~5.2 cos(at) z X (4.6.27)
= 2—(113-[sin(at) — at cos(at)]. (4.6.28)
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e Example 4.6.6

Let us use the results from Example 4.6.3 to verify the convolution
theorem.

We begin by rewriting (4.6.14) in terms of Heaviside’s step func-
tions. Using the method outline in Example 4.2.1,

fO) xg@t)= ("' =) HE -1+ (1—€"?)H({t-2). (4.6.29)
Employing the second shifting theorem,

—s —2s —2s

e”?* e e e

L(f *g] (4.6.30)

s—1 s s s—1

e~s 6—23 1 e~* e—Zs
=s(s—1)_s(s—1):s—1(T_ s ) (4.6.31)
=LEL[H(E-1) - H(t —2)] (4.6.32)

and the convolution theorem holds true. If we had not rewritten (4.6.14)
in terms of step functions, we could still have found L[f * g] from the
definition of the Laplace transform.

Problems

Verify the following convolutions and then show that the convolu-
tion theorem is true.

1.1x1=t 2. 1 % cos(at) = sin(at)/a
3.1xet=et -1 4.txt=1t3/6
5.t *sin(t) =t — sin(t) 6.txet =et—t—1
7. 2
2 ysin(at) = = — 2 sin? (&
t” xsin(at) = ~ ~ g3 sin (2)
8.
txH(t—1)=1(0t-1)2H({t-1)
9.
Ht—a)*Hit—-b)=(t—a—-b)H(t—a—-1b)
10 2 2
t*[H(t)—H(t—2)]:t——(t—2) H(t-2)

2 2



The Laplace Transform 199

Use the convolution theorem to invert the following functions:

11. )
F(s)= m

12. )
FO=aGTay

13. Prove that the convolution of two Dirac delta functions is a Dirac
delta function.

4.7 INTEGRAL EQUATIONS

An integral equation contains the dependent variable under an inte-
gral sign. The convolution theorem provides an excellent tool for solving
a very special class of these equations, Vollerra equation of the second
kind :®

£(t) —/0 K[t,z, f(z)]dz = g(t), O0<t<T (4.7.1)

These equations appear in history-dependent problems, such as epi-
demics,” vibration problems,® and viscoelasticity.®

e Example 4.7.1

Let us find f(t) from the integral equation

f(t) =4t — 3/0 f(z)sin(t — z) dz. (4.7.2)

8 Fock, V., 1924: Uber eine Klasse von Integralgleichungen. Math.
Z., 21, 161-173; Koizumi, S., 1931: On Heaviside’s operational solution
of a Volterra’s integral equation when its nucleus is a function of (z —¢).
Philos. Mag., Ser. 7, 11, 432-441.

7 Wang, F. J. S., 1978: Asymptotic behavior of some deterministic
epidemic models. SIAM J. Math. Anal., 9, 529-534.

& Lin, S. P., 1975: Damped vibration of a string. J. Fluid Mech., 72,
787-797.

9 Rogers, T. G. and Lee, E. H., 1964: The cylinder problem in
viscoelastic stress analysis. Q. Appl. Math., 22, 117-131.
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The integral in (4.7.2) is such that we can use the convolution
theorem to find its Laplace transform. Then, because L[sin(t)] = 1/(s?+
1), the convolution theorem yields

t
. F(s)
— = . 7.
L [/0 f(z)sin(t — 2) da:] T (4.7.3)
Therefore, the Laplace transform converts (4.7.2) into
4 3F(s)
F(s) = iy (4.7.4)
Solving for F(s),
4(s® +1)
= - —=. 7.5
F(s) s2(s% +4) (275)
By partial fractions, or by inspection,
1 3
F(s)= =+ ——. 4.7.
()= %+ o (4.7.6)
Therefore, inverting term by term,
f(t) =t + 2sin(2t). (4.7.7)
Note that the integral equation
t
fit) =4t - 3/ f(t — z)sin(z) dz (4.7.8)
0
also has the same solution.
o Example 4.7.2
Let us solve the equation
t2 !
o) =" - / (t - 2)g(z) da. (4.7.9)
0

Again the integral is one of the convolution type. Taking the
Laplace transform of (4.7.9),

G(s) = 313 _ Gl

(4.7.10)

which yields
(1 + i) Gls) = L (4.7.11)
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or
1 1 s
G(s) = EID s TET (4.7.12)
Then
g(t) = 1 — cos(t). (4.7.13)

Problems

Solve the following integral equations:

1.
fy=1+2 /Ot f(t —z)e~** dz
2.
f&) =1+ /Ot f(z)sin(t — z) dz
3.
f&)=t+ /Ot f(t —z)e~* de
4,
f(t) = 4% - /Ot f(t —z)e " dx
5.
f) =3+ /Ot f(z)sin(t — ) dz
6.
f(t) =8t> -3 /0 t f(z)sin(t — z)dz
7.
f)y=t*-2 /0 t f(t — z)sinh(2z) dz
8.
fA)=1+ 2/(: f(t — z) cos(z) de
9.
ft)=e* -2 /Ot ft — ) cos(z) dz
10.

f(@) =t2-+-/0 F(z)sin(t — z) dz



202 Advanced Engineering Mathematics

11.
f)=et-2 /Ot f(z)cos(t — z)dzx
12. .
f(t) =6t + 4/0 f(x)(z —t)* de
13. Solve the following equation for f(¢) with the condition that f(0) =
4:
flit)y=t +/Ot f(t — z) cos(z) dz.
14. Solve the following equation for f(t) with the condition that f(0) =
0:
f/(t) =sin(t) + /ot f(t —z)cos(z) dz.
15. During a study of nucleation involving idealized active sites along a

boiling surface, Marto and Rohsenow!® had to solve the integral equa-
tion

* ()
A=Bvi+C d
Vt+ /0 N T
to find the position z(t) of the liquid/vapor interface. If A, B, and C
are constants and z(0) = 0, find the solution for them.

16. Solve the following equation for z(¢) with the condition that z(0) =
0:
t /

evm Jo VI=T
where ¢ is constant.

17. During a study of the temperature f(¢) of a heat reservoir attached
to a semi-infinite heat-conducting rod, Huber!! had to solve the integral
equation

) =a- %/ﬂ f_tl I)T dr,

where a and § are constants and f(0) = 0. Find f(¢) for him. Hint:

a « aff

s32(st2 4+ B) T s(s— %) s32(s—p%)

10 From Marto, P.J. and Rohsenow, W. M., 1966: Nucleate boiling in-
stability of alkali metals. J. Heat Transfer, 88, 183-193 with permission.

11 From Huber, A., 1934: Eine Methode zur Bestimmung der Warme-
und Temperaturleitfahigkeit. Monatsh. Math. Phys., 41, 35-42.
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18. During the solution of a diffusion problem, Zhdanov, Chikhachev,
and Yavlinskiil? solved an integral equation similar to

/Ot f(r) [t —erf (avt —7)] dr = at,

where erf(z) = 2 / %" dy is the error function. What should have
T

0
they found? Hint: You will need to prove that

4.8 SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

For the engineer, as it was for Oliver Heaviside, the primary use
of Laplace transforms is the solution of ordinary, constant coefficient,
linear differential equations. These equations are important not only
because they appear in many engineering problems but also because
they may serve as approximations, even if locally, to ordinary differ-
ential equations with nonconstant coefficients or to nonlinear ordinary
differential equations.

For all of these reasons, we wish to solve the initial-value problem

dny dn—ly dy
dt_n'l'alzﬁn—_—l--{'-*'an_la"l'any:f(t), t>0 (481)
by Laplace transforms, where a;, as, ... are constants and we know the

value of 4,9/, ..., 4"~ 1 at t = 0. The procedure is as follows. Applying
the derivative rule (4.1.20) to (4.8.1), we reduce the differentialequation
to an algebraic one involving the constants a;, as, ..., a,, the parameter
s, the Laplace transform of f(t), and the values of the initial conditions.
We then solve for the Laplace transform of y(t), Y(s). Finally, we apply
one of the many techniques of inverting a Laplace transform to find y(¢).

Similar considerations hold with systems of ordinary differential
equations. The Laplace transform of the system of ordinary differential
equations results in an algebraic set of equations containing Y1 (s), Ya(s),
..., Ya(s). By some method we solve this set of equations and in-
vert each transform Yi(s), Y2(s),...,Ya(s) in turn to give y1(t), y2(t),

e Yn(t).

12 7Zhdanov, S. K., Chikhachev, A. S., and Yavlinskii, Yu. N., 1976:
Diffusion boundary-value problem for regions with moving boundaries
and conservation of particles. Sov. Phys. Tech. Phys., 21, 883-884.
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The following examples will illustrate the details of the process.
e Example 4.8.1

Let us solve the ordinary differential equation
y' + 2y =8t (4.8.2)
subject to the initial conditions that y'(0) = y(0) = 0. Taking the
Laplace transform of both sides of (4.8.2),
L(y")+2L(y) = 8L() (4.8.3)
or

s%Y (s) — sy(0) — ¢/ (0) + 25Y (s) — 2y(0) = s%’ (4.8.4)

where Y(s) = L[y(t)]. Substituting the initial conditions into (4.8.4)
and solving for Y (s),

8 A B C D
YO =gy =stets tigz (485)
8 (s+2)A+s(s+2)B+s*(s+2)C+s°D
_ _ . (4.8.6)
s3(s+2) s3(s +2)

Matching powers of s in the numerators of (4.8.6), C+D = 0, B+2C =
0, A+2B=0,and2A=80or A=4, B=-2,C=1,and D = —1.

Therefore,
4 2 1 1
Y$)=—5——=+-— .
(s) s3  s? + s s+2
Finally, performing term-by-term inversion of (4.8.7), the final solution
18

(4.8.7)

y(t) =202 — 2t + 1 — e 2, (4.8.8)
o Example 4.8.2

Let us solve the ordinary differential equation
V' +y=H@l)-H(t-1) (4.8.9)
with the initial conditions that y’(0) = y(0) = 0. Taking the Laplace
transform of both sides of (4.8.9),
1 e*

s2Y (s) — sy(0) =/ (0) + Y (s) = Pl (4.8.10)

where Y (s) = L{y(t)]. Substituting the initial conditions into (4.8.10)
and solving for Y (s),

Y(s) = (% - ﬁ) - (é - ﬁ) e (4.8.11)

Using the second shifting theorem, the final soluiion is
y(t) = 1=cos(t) — [1 — cos(t — D) H(t - 1). (4.8.12)
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e Example 4.8.3
Let us solve the ordinary differential equation
v +2¢ +y=f(t) (4.8.13)

with the initial conditions that y’(0) = y(0) = 0, where f(t) is an
unknown function whose Laplace transform exists. Taking the Laplace
transform of both sides of (4.8.13),

s2Y (5) — sy(0) — ¥/ (0) + 25Y (s) — 2y(0) + Y(s) = F(s), (4.8.14)

where Y (s) = L[y(¢)]. Substituting the initial conditions into (4.8.14)
and solving for Y(s),

1

G 1)21:‘(3), (4.8.15)

Y(s) =

We have written (4.8.15) in this form because the transform Y (s) equals
the product of two transforms 1/(s + 1) and F(s). Therefore, by the
convolution theorem we can immediately write

y(t) =te™t x f(t) = /0 ze T f(t — z)dx. (4.8.16)

Without knowing f(t), this is as far as we can go.
o Example 4.8.4: Forced harmonic oscillator

Let us solve the simple harmonic oscillator forced by a harmonic
forcing:
v’ +wly = cos(wt) (4.8.17)

subject to the initial conditions that 3’ (0) = y(0) = 0. Although the
complete solution could be found by summing the complementary so-
lution and a particular solution obtained, say, from the method of un-
determined coefficients, we will now illustrate how we can use Laplace
transforms to solve this problem.

Taking the Laplace transform of both sides of (4.8.17), substituting
in the initial conditions, and solving for Y (s),

Y(s) = (sTfF)—? (4.8.18)

and

y(t) = %sin(wt) * cos(wt) = -;:sin(wt). (4.8.19)
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Equation (4.8.19) gives an oscillation that grows linearly with time al-
though the forcing function is simply periodic. Why does this occur?
Recall that our simple harmonic oscillator has the natural frequency w.
But that is exactly the frequency at which we drive the system. Con-
sequently, our choice of forcing has resulted in resonance where energy
continuously feeds into the oscillator.

o Example 4.8.5
Let us solve the system of ordinary differential equations:
2z’ + y = cos(t) (4.8.20)

and
Y — 2z = sin(t) (4.8.21)

subject to the initial conditions that £(0) = 0 and y(0) = 1. Taking the
Laplace transform of (4.8.20) and (4.8.21),

s
2sX(s)+Y(s) = o) (4.8.22)
and ]
—2X(S) + SY(S) =1+ m, (4823)

after introducing the initial conditions. Solving for X (s) and Y (s),

1
X(S) - _m (4.8.24)
and 5
s s
= . 4.8.25
YO = 7t oy ( )
Taking the inverse of (4.8.24)—(4.8.25) term by term,
2(t) = 1[t cos(t) — sin(t)] (4.8.26)
and
y(t) = tsin(t) + cos(?). (4.8.27)

o Example 4.8.6

Let us determine the displacement of a mass m attached to a spring
and excited by the driving force:

F(t)=mA (1 - %) e T, (4.8.28)
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Figure 4.8.1: Displacement of a simple harmonic oscillator with nondi-
mensional frequency wT as a function of time ¢/T. The top frame shows
the forcing function.

The dynamical equation governing this system is
t
Y +ly=A (1 — T) e T, (4.8.29)

where w? = k/m and k is the spring constant. Assuming that the system
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is initially at rest, the Laplace transform of the dynamical system is

A A

2 Hy(s) = - 4.8.
&+ WY = 07 ~ Ter Ty (4.8.30)
or
A A
. .8.31
i Ea Py R T e e Vi A
Partial fractions yield
Yio) = A 1 s=UT\ A
T TE\s+1/T 2+w?) T(W?+1/T2)2
2 _ 2 2 2
[1/? c: 3 22.<>‘/T w?+1/T 2/T ] (4.8.32)
s 4w s24+w?  (s+1/T)?  s+1/T
Inverting (4.8.32) term by term,
AT? —T sin(wt)
y(t) = 1307 [e — cos(wt) + T
AT? S2T? sin(wt) —T
bt m{(l bt T ) T + 2 [6 et cos(wt)]
+(1+ w2T2)(t/T)e-’/T}. (4.8.33)

The solution to this problem consists of two parts. The exponential
terms result from the forcing and will die away with time. This is the
transient portion of the solution. The sinusoidal terms are those natural
oscillations that are necessary so that the solution satisfies the initial
conditions. They are the steady-state portion of the solution. They
endure forever. Figure 4.8.1 illustrates the solution when w7 = 0.1,
1, and 2. Note that the displacement decreases in magnitude as the
nondimensional frequency of the oscillator increases.

o Example 4.8.7
Let us solve the equation
y' + 16y = 6(t — = /4) (4.8.34)
with the initial conditions that y(0) =1 and ¥’(0) = 0.
Taking the Laplace transform of (4.8.34) and inserting the initial

conditions,
(s +16)Y(s) = s+ e*"/* (4.8.35)
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or
s 6—3#/4

32+16+s2+16'
Applying the second shifting theorem,

Y(s) = (4.8.36)

y(t) = cos(4t) + Lsin[4(t — 7/4)|H(t — 7/4) (4.8.37)
= cos(4t) — sin(4t)H (t —7/4). (4.8.38)

o Example 4.8.8: Oscillations in electric circuits

During the middle of the nineteenth century, Lord Kelvin'® ana-
lyzed the LCR electrical circuit shown in Figure 4.8.2 which contains
resistance R, capacitance C, and inductance L. For reasons that we
shall shortly show, this LCR circuit has become one of the quintessen-
tial circuits for electrical engineers. In this example, we shall solve the
problem by Laplace transforms.

Because we can add the potential differences across the elements,
the equation governing the LCR circuit is

Ld—I+RI+l/tIdr—E(t) (4.8.39)
dt C Jo - ’ e

where I denotes the current in the circuit. Let us solve (4.8.39) when we
close the circuit and the initial conditions are I(0) = 0 and Q(0) = ~Qo.
Taking the Laplace transform of (4.8.39),

1) 0
(Ls +R+ @) T(s) = LI(0) — 9(% (4.8.40)
Solving for I(s),
I(s) = Qo - wiQo
I(s) = Cs(Ls + R+1/Cs)  s2 +2as+w} (4.8.41)
ek (4.8.42)

= (s + a)? + wi — a?’

where @ = R/2L and w2 = 1/(LC). From the first shifting theorem,

I(t) = ‘ﬂ%—Q—"e-a‘ sin(wt), (4.8.43)

13 Thomson, W., 1853: On transient electric currents. Philos. Mag.,
Ser. 4,5, 393-405.
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L
Figure 4.8.2: Schematic of a LCR circuit.

where w? = w? —a? > 0. The quantity w is the natural frequency of the
circuit, which is lower than the free frequency wp of a circuit formed by a
condenser and coil. Most importantly, the solution decays in amplitude
with time. ’

Although Kelvin’s solution was of academic interest when he origi-
nally published it, this radically changed with the advent of radio teleg-
raphy!? because the LCR circuit described the fundamental physical
properties of wireless transmitters and receivers.!® The inescapable con-
clusion from this analysis was that no matter how clever the receiver was
designed, eventually the resistance in the circuit would rapidly dampen
the electrical oscillations and thus limit the strength of the received
signal.

This technical problem was overcome by Armstrong!® who invented
an electrical circuit that used De Forest’s audion (the first vacuum tube)
for generating electrical oscillations and for amplifying externally im-
pressed oscillations by “regenerative action”. The effect of adding the
“thermionic amplifier” is seen by again considering the LRC circuit as
shown in Figure 4.8.3 with the modification suggested by Armstrong.!”

The governing equations of this new circuit are

dI 1

d,

2 =0 (4.8.44)

14 Gtone, J S., 1914: The resistance of the spark and its effect on the
oscillations of electrical oscillators. Proc. IRE, 2, 307-324.

15 See Hogan, J. L., 1916: Physical aspects of radio telegraphy. Proc.
IRE, 4, 397-420.

16 Armstrong, E. H., 1915: Some recent developments in the audion
receiver. Proc. IRE, 3, 215-247.

17 From Ballantine, S., 1919: The operational characteristics of therm-
ionic amplifiers. Proc. IRE, 7,129-161. ©IRE (now IEEE).
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> M

\

Figure 4.8.3: Schematic of a LCR circuit with the addition of a therm-
ionic amplifier. [From Ballantine, S., 1919: The operational character-
istics of thermionic amplifiers. Proc. IRE, 7, 155. ©IRE (now IEEE).]

and
del” + Rol, +M + C/ Idr=0 (4.8.45)

where the plate circuit has the current I, the resistance Rp, the induc-

tance Lo, and the electromotive force (emf) of p fot Idr/C. The mutual
inductance between the two circuits is given by M. Taking the Laplace
transform of (4.8.44)—(4.8.45),

Qo

el (4.8.46)

LisI(s) + RI(s) + (C) + MsI,(s) =

and

LasT,(s) + RoI,(s) + MsI(s) + %T(s) =0. (4.8.47)

Eliminating 7,(s) between (4.8.46)—(4.8.47) and solving for I(s),

_ (Las + Ro)Qo
(s) = (LiL2—M?)Cs3+(RL2+RoL1)Cs?
+(L24+CRRo—uM)s+Ro

~l

(4.8.48)

For high-frequency radio circuits, we can approximate the roots of the
denominator of (4.8.48) as

Ry
Ly +CRRy - uM

51 A — (4.8.49)

and

Ry RoLy + RL, .
7 — . 4.8.50
528~ o CRRo— pM)  2(Lily —M?) = ( )
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In the limit of M and Ry vanishing, we recover our previous result for
the LRC circuit. However, in reality, Ry is very large and our solution
has three terms. The term associated with s; is a rapidly decaying
transient while the s, and s3 roots yield oscillatory solutions with a slight
amount of damping. Thus, our analysis has shown that in the ordinary
regenerative circuit, the tube effectively introduces sufficient “negative”
resistance so that the resultant positive resistance of the equivalent LCR
circuit is relatively low, and the response of an applied signal voltage
at the resonant frequency of the circuit is therefore relatively great.
Later, Armstrong'® extended his work on regeneration by introducing an
electrical circuit — the superregenerative circuit — where the regeneration
is made large enough so that the resultant resistance is negative, and
self-sustained oscillations can occur.'® It was this circuit?® which led to
the explosive development of radio in the 1920s and 1930s.

o Example 4.8.9: Resonance transformer circuit

One of the fundamental electrical circuits of early radio telegra-
phy?! is the resonance transformer circuit shown in Figure 4.8.4. Its
development gave transmitters and receivers the ability to tune to each
other.

The governing equations follow from Kirchhoff’s law and are

an, o dL, 1 f*
and .
dl, dl, 1
M—+4 Ly— — Idr=0. .8.52
T 2dt+RIZ+Cz/O 2dr =10 (4.8.52)

Let us examine the oscillations generated if initially the system has no
currents or charges and the forcing function is E{t) = 6(t).
Taking the Laplace transform of (4.8.51)-(4.8.52),

- - T
LisIi+ MsT,+ — =1 (4.8.53)
.S‘Cl

18 Armstrong, E. H., 1922: Some recent developments of regenerative
circuits. Proc. IRE, 10, 244-260.

19 Gee Frink, F. W., 1938: The basic principles of superregenerative
reception. Proc. IRE, 26, 76-106.

20 Lewis, T., 1991: Empire of the Air: The Men Who Made Radio,
HarperCollins Publishers, New York.

21 Fleming, J. A., 1919: The Principles of Electric Wave Telegraphy
and Telephony, Longmans, Green, Chicago.
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Figure 4.8.4: Schematic of a resonance transformer circuit.

and

- - — 1
Msli+ LosIo + RIy + ;Ci =0. (4854)
2

Because the current in the second circuit is of greater interest, we solve
for I, and find that

Ms®
L1 Lo[(1 — k2)s* 4 20w?s3 + (w} + w3)s? + 2awis + wiwj]’
(4.8.55)

72(8) = —

where & = R/2Ls, w} = 1/L,C1, w3 = 1/L,C3, and k? = M?/LiLo,
the so-called coefficient of coupling.
We can obtain analytic solutions if we assume that the coupling is
weak (k? < 1). Equation (4.8.55) becomes
Ms?

Iy =— . 4.8.56
? LyLa(s? 4+ w?)(s? + 2as + w3) ( )

Using partial fractions and inverting term by term, we find that
M 20w? sin(w;t) w?(w? — w?) cos(wt)
LiLy [(w? —w})? + 402w} (wi—-w?)? +40%w]
awd — 3awiw? + 403w? _,,sin(wt)
(w3 — w?)? + da?w? w
_ wi(wi ~wi) +da’w] ot
(w2 —~ w?)? + da%w?

Iz(t) =

cos(wt)|,

(4.8.57)
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Figure 4.8.5: The resonance curve 1/,/(r? — 1)2 + 0.01 for a resonance
transformer circuit with r = ws fw;.
where w? = w? — o2

The exponentially damped solutions will eventually disappear, leav-
ing only the steady-state oscillations which vibrate with the angular fre-
quency wi, the natural frequency of the primary circuit. If we rewrite
this steady-state solution in amplitude/phase form, the amplitude is

M
L1L2\/(7'2 — 1)2 + 4(12/(#%,

(4.8.58)

where r = wa/w;. As Figure 4.8.5 shows, as r increases from zero to two,
the amplitude rises until a very sharp peak occurs at » = 1 and then
decreases just as rapidly as we approach r» = 2. Thus, the resonance
transformer circuit provides a convenient way to tune a transmitter or
receiver to the frequency wi.

Problems

Solve the following ordinary differential equations by Laplace trans-
forms:

1. y¥-2y=1-¢t;, y0)=1

2. ¥y —-4y+3y=e y0)=0,¥(0)=0
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3. Y —4y +3y=e€"; y(0)=0,y(0)=1

4. y' -6y +8y=¢e y(0)=3,y(0)=9

5. ¢ +4y +3y=e€" y(0)=1y(0)=1

6. ¥ +y=t y0)=1y(0)=0

7. ' +4y +3y=¢€'; y(0)=0,4(0)=2

8. y' —4y +5y=0; y(0)=2,9(0)=4

9. Y +y=tHt-1); y(0)=0

10. ' +3y+2y=H(t-1); y0)=0y(0)=1

1. ¢ -3y +2y=H(t-1); y0)=0,y(0)=1

12. ¢y’ +4y=3H(t—-4); y(0)=1¢4(0)=0

13. Y’ +4y +4y=4H(t-2); y(0)=0,9(0)=0

14, y' 43¢ +2y=e" H(E—1); y(0)=0,4(0)=1

15, ' =3y +2u=e"DH(E-2); y(0)=0,y(0)=0

16. ¥ -3y +2=H(t-1)-H(t-2); y0)=0,y(0)=0

17. Y +y=1-Ht-T); v0)=0,4(0)=0

5 yay= {50 OSET w0 =0w@=0

0, 1>
t, 0<t<a
19. ¥y +3W+2y= {ae—(t—a) > ar y(0) =0,y'(0) =0
t/a, 0<t<a
20. y'+uwly=<{1-(t-a)/(b-a), a<t<b
0, t > b;

¥(0)=0,y(0) =0
21. ¢/ -2/ +y=36(t—2); y(0)=0,y(0)=1

22. ' -5y +4y=6(t—-1); 0)=0,4(0)=0
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23. Y’ 45y +6y=36(t—2)—46(t-5); y(0)=y'(0)=0
24, 2 -2x+y=0,yY—-32—-4y=0; =z(0)=1,90)=0
25, 2’ -2y=12"4y—-2z=0; z(0)=y(0)=0

2. o +2-y =0, +y+z=1% =z(0)=y(0)=0

21, @ +3z—y=1L2'+y +32=0; =z(0)=2,50)=0

28.  Forster, Escobal, and Lieske?? used Laplace transforms to solve
the linearized equations of motion of a vehicle in a gravitational field
created by two other bodies. A simplified form of this problem involves
solving the following system of ordinary differential equations:

' =2y = Fi + z + 2, 2 +y' = Fo+ 22+ 3y

subject to the initial conditions that z(0) = y(0) = 2’(0) = ¥’(0) = 0.
Find the solution to this system.

4.9 TRANSFER FUNCTIONS, GREEN’S FUNCTION, AND
INDICIAL ADMITTANCE

One of the drawbacks of using Laplace transforms to solve ordinary
differential equations with a forcing term is its lack of generality. Each
new forcing function requires a repetition of the entire process. In this
section we give some methods for finding the solution in a somewhat
more general manner for stationary systems where the forcing, not any
initially stored energy (i.e., nonzero initial conditions), produces the
total output. Unfortunately, the solution must be written as an integral.

In Example 4.8.3 we solved the linear differential equation

v'+2y +y=f(t) (4.9.1)

subject to the initial conditions y(0) = y'(0) = 0. At that time we
wrote the Laplace transform of y(t), Y (s), as the product of two Laplace

transforms:
1

22 Reprinted from Astronaut. Acta, 14, Forster, K., P. R. Escobal
and H. A. Lieske, Motion of a vehicle in the transition region of the
three-body problem, 1-10, (©/1968, with kind permission from Elsevier
Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.
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One drawback in using (4.9.2) is its dependence upon an unspecified
Laplace transform F(s). Is there a way to eliminate this dependence
and yet retain the essence of the solution?

One way of obtaining a quantity that is independent of the forcing
is to consider the ratio:

b<

=G(s) = (S+;1)2 (4.9.3)

(s
F(s)

This ratio is called the transfer function because we can transfer the
input F(s) into the output Y (s) by multiplying F(s) by G(s). It depends
only upon the properties of the system.

Let us now consider a related problem to (4.9.1), namely

9" +29' +9=46(), t>0 (4.9.4)

with g(0) = ¢/(0) = 0. Because the forcing equals the Dirac delta func-
tion, g(t) is called the impulse response or Green’s function.?® Comput-
ing G(s), .

G(s) = GIE (4.9.5)
From (4.9.3) we see that G(s) is also the transfer function. Thus, an
alternative method for computing the transfer function is to subject the
system to impulse forcing and the Laplace transform of the response is
the transfer function.

From (4.9.3),
Y (s) = G(s)F(s) (4.9.6)

y(t) = 9(t) = £(1). (4.9.7)

That is, the convolution of the impulse response with the particular
forcing gives the response of the system. Thus, we may describe a
stationary system in one of two ways: (1) in the transform domain
we have the transfer function, and (2) in the time domain there is the
impulse response.

Despite the fundamental importance of the impulse response or
Green’s function for a given linear system, it is often quite difficult to
determine, especially experimentally, and a more convenient practice is
to deal with the response to the unit step H(t). This response is called
the indicial admittance or step response, which we shall denote by a(t).

23 For the origin of the Green’s function, see Farina, J. E. G., 1976:
The work and significance of George Green, the miller mathematician,
1793-1841. Bull. Inst. Math. Appl., 12, 98-105.
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Because L[{H(t)] = 1/s, we can determine the transfer function from
the indicial admittance because L[a(t)] = G(s)L[H(t)] or sA(s) = G(s).
Furthermore, because

£lo() = 6(6) = g, (498)
then dalt
9(t) = (;(t) (4.9.9)

from (4.1.18).
o Example 4.9.1

Let us find the transfer function, impulse response, and step re-
sponse for the system

¥y =3y +2y = f(t) (4.9.10)
with y(0) = y/(0) = 0. To find the impulse response, we solve
g’ -3¢ +29 =6(t) (4.9.11)

with g(0) = ¢’(0) = 0. Taking the Laplace transform of (4.9.11), we

find that )

G(s) = s2—-3s+2’

(4.9.12)

which is the transfer function for this system. The impulse response
equals the inverse of G(s) or

g(t) = e* — €. (4.9.13)
To find the step response, we solve
a” —3d’ +2a = H(t) (4.9.14)

with a(0) = a/(0) = 0. Taking the Laplace transform of (4.9.14),

Als) = - i 1; ) (4.9.15)
a(t) = 3 + 3 — €. (4.9.16)

Note that a'(t) = g(t).
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e Example 4.9.2

There is an old joke about a man who took his car into a garage
because of a terrible knocking sound. Upon his arrival the mechanic took
one look at it and gave it a hefty kick.2* Then, without a moment’s
hesitation he opened the hood, bent over, and tightened up a loose
bolt. Turning to the owner, he said, “Your car is fine. That’ll be $50.”
The owner felt that the charge was somewhat excessive, and demanded
an itemized account. The mechanic said, “The kicking of the car and
tightening one bolt, cost you a buck. The remaining $49 comes from
knowing where to kick the car and finding the loose bolt.”

Although the moral of the story may be about expertise as a mar-
ketable commodity, it also illustrates the concept of transfer function.?
Let us model the car as a linear system where the equation

dny dn—ly dy _
n—(-i-tT-}-an_l(—itn__l‘F"'+ald—t+aoy—f(t) (4'9'17)

a

governs the response y(¢) to a forcing f(t). Assuming that the car
has been sitting still, the initial conditions are zero and the Laplace
transform of (4.9.17) is

K(s)Y(s) = F(s), (4.9.18)

where
K(s) =a,s” +an_18"" 4+ +ays+ ao. (4.9.19)

Hence
Y(s) = i ((Z)) = G(s)F(s), (4.9.20)

where the transfer function G(s) clearly depends only on the internal
workings of the car. So if we know the transfer function, we understand
how the car vibrates because

y(t) = /Ot g(t —z)f(x)de. (4.9.21)

But what does this have to do with our mechanic? He realized
that a short sharp kick mimics an impulse forcing with f(t) = é(t) and

24 This is obviously a very old joke.

%5 QOriginally suggested by Stern, M. D., 1987: Why the mechanic
kicked the car — A teaching aid for transfer functions. Math. Gaz., 71,
62-64.
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Figure 4.9.1: Diagram used in the derivation of Duhamel’s integral.

y(t) = g(t). Therefore, by observing the response of the car to his kick,
he diagnosed the loose bolt and fixed the car.

In this section we have shown how the response of any system may
be expressed in terms of its Green’s function and the arbitrary forcing.
Can we also determine the response using the indicial admittance a(t)?

Consider first a system that is dormant until a certain time ¢t = .
At that instant we subject the system to a forcing H (¢ — 71). Then the
response will be zero if ¢ < 7 and will equal the indicial admittance
a(t — ) when t > 7 because the indicial admittance is the response of
a system to the step function. Here ¢t — 7 is the time measured from
the instant of change.

Next, suppose that we now force the system with the value f(0)
when ¢ = 0 and hold that value until ¢t = 7;. We then abruptly change
the forcing by an amount f(1) — f(0) to the value f(7) at the time n,
and hold it at that value until t = 7,. Then we again abruptly change
the forcing by an amount f(73) — f(71) at the time 7, and so forth (see
Figure 4.9.1). From the linearity of the problem the response after the
instant ¢ = 7, equals the sum

y(t) = f(0)a(t) + [f(r1) = f(O)]a(t ~ 1) + [f(r2) = f(r1)]a(t — 72)
+ o+ [f(7n) = f(ra-1)]a(t — 7). (4.9.22)

If we write f(7)— f(me-1) = Afi and 7, —7k—1 = A7y, (4.9.22) becomes

y(t) = £(0)a(t) + ) _a(t - rk)i—’;: ATy (4.9.23)
k=1
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Finally, proceeding to the limit as the number n of jumps becomes
infinite, in such a manner that all jumps and intervals between successive
jumps tend to zero, this sum has the limit

y(t) = f(0)a(?) +/0 f(r)a(t —7) dr. (4.9.24)

Because the total response of the system equals the weighted sum [the
weights being a(t)] of the forcing from the initial moment up to the
time t, we refer to (4.9.24) as the superposition integral, or Duhamel’s
integral 28

We can also express (4.9.24) in several different forms. Integration
by parts yields

y(t) = f(t)a(0) +‘/0 f(r)d(t—r)dr (4.9.25)
_ % [ /0 f(r)a(t — 1) dr] . (4.9.26)

e Example 4.9.3

Suppose that a system has the step response of a(t) = A[1— e~t/T],
where A and T are positive constants. Let us find the response if we
force this system by f(¢) = kt, where k is a constant.

From the superposition integral (4.9.24),

t
y(t) = 0+/ kA[l — e~/ dr (4.9.27)
Q
= kAt — T(1 —e~t/T)]. (4.9.28)
Problems

For the following nonhomogeneous differential equations, find the trans-
fer function, impulse response, and step response. Assume that all of
the necessary initial conditions are zero.

Ly +ky=f(t) 2. ¥ =2y -3y=f(t)

26 Duhamel, J.-M .-C., 1833: Mémoire sur la méthode générale relative
au mouvement de la chaleur dans les corps solides plongeés dans des
milieux dont la température varie avec le temps, J. Ecole Polytech., 22,
20-77.



222 Advanced Engineering Mathematics

3.9 +4y + 3y = f(1) 4.y -2y + 5y = f(2)
5. 9" =3y +2y = f(t) 6.y +4y +4y = f(?)
7.y -9y = f(t) 8.y +y=f(t)

9.¢v" -y = f(t)
4.10 INVERSION BY CONTOUR INTEGRATION

In Sections 4.5 and 4.6 we showed how we may use partial fractions
and convolution to find the inverse of the Laplace transform F'(s). In
many instances these methods fail simply because of the complexity of
the transform to be inverted. In this section we shall show how we may
invert transforms through the powerful method of contour integration.
Of course, the student must be proficient in the use of complex variables.

Consider the piece-wise differentiable function f(z) which vanishes
for £ < 0. We can express the function e~ f(z) by the complex Fourier
representation of

f(x)e=* = % /_0:0 elvs [/000 e'“f(t)e"""tdt] dw, (4.10.1)

for any value of the real constant ¢, where the integral

I:/O =t f(1)| dt (4.10.2)

exists. By multiplying both sides of (4.10.1) by €°* and bringing it inside
the first integral,

fle)= o= /_ " elerwire [ /0 ” f(t)e-<c+w">’dt] do.  (4.10.3)

With the substitution z = ¢+ wi, where z is a new, complex variable of
integration,

flz) = — Wm [ / f@) ‘“dt] dz. (4.10.4)

27rz —o0i

The quantity inside the square brackets is the Laplace transform F(z).
Therefore, we can express f(t) in terms of its transform by the complex
contour integral:

1 c+oot
ft)y= %/  F(z)edz. (4.10.5)

— 001
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Figure 4.10.1: An outstanding mathematician at Cambridge Uni-
versity at the turn of the twentieth century, Thomas John I’Anson
Bromwich (1875-1929) came to Heaviside’s operational calculus through
his interest in divergent series. Beginning a correspondence with Heavi-
side, Bromwich was able to justify operational calculus through the use
of contour integrals by 1915. After his premature death, individuals
such as J. R. Carson and Sir H. Jeffreys brought Laplace transforms to
the increasing attention of scientists and engineers. (Portrait courtesy
of the Royal Society of London.)

This line -integral, Bromwich’s integral,?” runs along the line z = ¢
parallel to the imaginary axis and ¢ units to the right of it, the so-called
Bromuwich contour. We select the value of ¢ sufficiently large so that
the integral (4.10.2) exists; subsequent analysis shows that this occurs
when c¢ is larger than the real part of any of the singularities of F(z).

27 Bromwich, T. J. I’A., 1916: Normal coordinates in dynamical sys-
tems. Proc. London Math. Soc., Ser. 2, 15, 401-448.
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We must now evaluate the contour integral. Because of the power of
the residue theorem in complex variables, the contour integral is usually
transformed into a closed contour through the use of Jordan’s lemma.
See Section 3.4, Equations (3.4.12) and (3.4.13). The following examples
will illustrate the proper use of (4.10.5).

e Example 4.10.1

Let us invert
—3s

F(s) = s,_,e (4.10.6)

(s—1)

From Bromwich’s integral,

1 c+001 e(t—3)z

1 e(t—3)z J 1 e(t—3)z 4 410.8
‘%}izz(z—n Z‘Er?/cnzZ(z—l) 2 (4108)

where Cr is a semicircle of infinite radius in either the right or left
half of the z-plane and C is the closed contour that includes Cg and
Bromwich’s contour. See Figure 4.10.2.

Our first task is to choose an appropriate contour so that the in-
tegral along Cg vanishes. By Jordan’s lemma this requires a semicircle
in the right half-plane if { — 3 < 0 and a semicircle in the left half-plane
if t —3 > 0. Consequently, by considering these two separate cases,
we have forced the second integral in (4.10.8) to zero and the inversion
simply equals the closed contour.

Consider the case t < 3 first. Because Bromwich’s contour lies to
the right of any singularities, there are no singularities within the closed
contour and f(¢) = 0.

Consider now the case t > 3. Within the closed contour in the left
half-plane, there is a second-order pole at z = 0 and a simple pole at
z = 1. Therefore,

Res [ 0] 4 Res [ 1 410.9
) = Res | f—i0] +Res [ £t (4109)
where
6(1—3)2 ) d ) e(t—S)z
. (t _ 3)€(t—3)z e(1=3)2
= lim [ P e PN (4.10.11)

=2—1 (4.10.12)
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t>3 r<3

(c.,0)

Figure 4.10.2: Contours used in the inversion of {4.10.6).

and

e(t=3)2

1 6(t—3)z
22(z - 1)’

Res [ } = lim (2 - 1)m =e'3 (4.10.13)

Taking our earlier results into account, the inverse equals
f@)=[e2=(t-3)~1] H(-3) (4.10.14)

which we would have obtained from the second shifting theorem and
tables.

o Example 4.10.2

For our second example of the inversion of Laplace transforms by
complex integration, let us find the inverse of

1

F(S): m,

(4.10.15)
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where a is real. From Bromwich’s integral,

() = - /cm{ _ g (4.10.16)

= — : z.
271 Jo—oo; 2sinh(az)

Here c is greater than the real part of any of the singularities in (4.10.15).

Using the infinite product for the hyperbolic sine,?®
etz etz
zsinh(az) = az?[1 + a?22/7w?][1 + a222/(472)][1 + a%22/(972)] - - -

(4.10.17)
Thus, we have a second-order pole at z = 0 and simple poles at z, =
*nri/a, where n=1,2,3,...

We may convert the line integral (4.10.16), with the Bromwich con-
tour lying parallel and slightly to the right of the imaginary axis, into a
closed contour using Jordan’s lemma through the addition of an infinite
semicircle joining 100 to —ioo as shown in Figure 4.10.3. We now apply
the residue theorem. For the second-order pole at 2 = 0,

e 1 1 . d[(z=0)%"
Res [z sinh(az)’o] - th_r.% dz [m (4.10.18)
. d zet?
= lim - [—Sinh(az)] (4.10.19)
=i et N zte'? az cosh(az)e'*
= =0 [sinh(az) " sinh(az) " sinh?(az)
(4.10.20)
t
=7 (4.10.21)

after using sinh(az) = az + O(z3). For the simple poles z, = +nri/a,

etz . (Z — zn)etz
_ =1 — .10.
es [z sinh(az)’ zn] 2ot zsinh(az) (4.10.22)
y etz
= sinh(az) + az cosh(az) (4.10.23)

_ exp(xnmit/a)

T (-D)r(Enm) (4.10.24)

28 Gradshteyn, I. S. and Ryzhik, I. M., 1965: Table of Integrals, Series
and Products, Academic Press, New York. See Section 1.431, formula 2.
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Figure 4.10.3: Contours used in the inversion of (4.10.15).

because cosh(£nwi) = cos(nw) = (—1)". Thus, summing up all of the
residues gives

e e

ft) = %_{_ E (-n» ezp(.nrit/a) _ Z (=" ex:(fmrit/a)

(4.10.25)

Q| =~

.2 i (D" sin(nwt/a) (4.10.26)
2 . .10.

In addition to computing the inverse of Laplace transforms, Brom-
wich’s integral places certain restrictions on F'(s) in order that an inverse
exists. If o denotes the minimum value that ¢ may possess, the restric-
tions are threefold.?® First, F(z) must be analytic in the half-plane
r > a, where z = z +14y. Second, in the same half-plane it must behave
as z~%, where k > 1. Finally, F(z) must be real when z > a.

29 For the proof, see Churchill, R. V., 1972: Operational Mathematics,
McGraw-Hill, New York, Section 67.
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Figure 4.10.4: The correspondence between the location of the simple
poles of the Laplace transform F(s) and the behavior of f(¢).
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e Example 4.10.3

Is the function sin(s)/(s? + 4) a proper Laplace transform? Al-
though the function satisfies the first and third criteria listed in the
previous paragraph on the half-plane x > 2, the function becomes un-
bounded as y — +oo for any fixed z > 2. Thus, sin(s)/(s* + 4) cannot
be a Laplace transform.

o Example 4.10.4

An additional benefit of understanding inversion by the residue
method is the ability to qualitatively anticipate the inverse by knowing
the location of the poles of F(s). This intuition is important because
many engineering analyses discuss stability and performance entirely in
terms of the properties of the system’s Laplace transform. In Figure
4.10.4 we have graphed the location of the poles of F(s) and the cor-
responding f(t). The student should go through the mental exercise of
connecting the two pictures.

Problems

Use Bromwich’s integral to invert the following Laplace transform:

_ s+1 ) — 1
LEO) = a1 ) 2F06)= aivap
1 1
3.F(s) = oo 4 F0) = R r e 10
e i
5F(8)2m 6.F(S):m
1 1

9. Consider a function f(t) which has the Laplace transform F'(z) which
is analytic in the half-plane Re(z) > so. Can we use this knowledge to
find g(t) whose Laplace transform G(z) equals F[p(z)], where ¢(z) is
also analytic for Re(z) > so?7 The answer to this question leads to the
Schouten3® — Van der Pol3! theorem.

30 Schouten, J. P., 1935: A new theorem in operational calculus to-
gether with an application of it. Physica, 2, 75-80.

31 Van der Pol, B., 1934: A theorem on electrical networks with ap-
plications to filters. Physica, 1, 521-530.
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Step 1: Show that the following relationships hold true:

G(2) = Flp(2)] = / " fr)e e dr

and

c4o00t
o) = 5 / Flp(=))e” dz.

c—o0i

Step 2: Using the results from Step 1, show that

s = [ 10 [ eeretai] ar

2mi ¢—o001
This is the Schouten-Van der Pol theorem.

Step 3: If G(z) = F(y/z) show that

g(t) = 2\;@ /000 Tf(7) exp (—Z—j) dr.

Hint: Do not evaluate the contour integral. Instead, ask yourself: What
function of time has a Laplace transform that equals e=%()" where T
is a parameter? Then use tables.




Chapter 5
The Z-Transform

Since the Second World War, the rise of digital technology has
resulted in a corresponding demand for designing and understanding
discrete-time (data sampled) systems. These systems are governed by
difference equations in which members of the sequence y, are coupled
to each other.

One source of difference equations is the numerical evaluation of
integrals on a digital computer. Because we can only have values at
discrete time points ty = kT for k = 0,1, 2,. .., the value of the integral

y(t) = [ f(r)dris

kT (k=1)T kT
y(kT) = f(r)dr= / f(rydr + / f(r)ydr  (5.0.1)
0 0 (k-1)T
kT
=y[(k - 1T+ / f(r)dr (5.0.2)
(k=1)T
= yl(k - )T+ Tf(kT), (5.0.3)

because f(’;il)T f(r)dr = Tf(kT). Equation (5.0.3) is an example of a
first-order difference equation because the numerical scheme couples the
sequence value y(kT') directly to the previous sequence value y[(k—1)T].
If (5.0.3) had contained y[(k — 2)T], then it would have been a second-
order difference equation, and so forth.
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Although we could use the conventional Laplace transform to solve
these difference equations, the use of z-transforms can greatly facilitate
the analysis, especially when we only desire responses at the sampling
instants. Often the entire analysis can be done using only the transforms
and the analyst does not actually find the sequence y(kT).

In this chapter we shall first define the z-transform and discuss its
properties. Then we will show how to find its inverse. Finally we shall
use them to solve difference equations.

5.1 THE RELATIONSHIP OF THE Z-TRANSFORM TO THE LAPLACE
TRANSFORM

Let f(t) be a continuous function that an instrument samples every
T units of time. We denote this data-sampled function by f§(¢). See
Figure 5.1.1. Taking ¢, the duration of an individual sampling event, to
be small, we may approximate the narrow-width pulse in Figure 5.1.1
by flat-topped pulses. Then f%(t) approximately equals

£1t) ~ % S F(nT)(H(t = nT +¢/2) — H(t —nT — ¢/2)]  (5.1.1)

ife<T.

Clearly the presence of € is troublesome in (5.1.1); it adds one more
parameter to our problem. For this reason we introduce the concept
of the ideal sampler, where the sampling time becomes infinitesimally
small so that

fs(t) = lim f(nT) [H(t -l +¢/2) ; H{t —nT - 6/2)] (5.1.2)
=" f(nT)é(t — nT). (5.1.3)

Let us now find the Laplace transform of this data-sampled func-
tion. We find from the linearity property of Laplace transforms that

Fs(s) = L{fs@t)] = £ [ 2 F(nT)é(t — nT) (5.1.4)
= 2 F(nT)L[8(t — nT)). (5.1.5)

Because L[§(t — nT))] :_e‘"’T, (5.1.5) simplifies to
Fs(s) = i f(nT)e ™7, (5.1.6)

n=0
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Figure 5.1.1: Schematic of how a continuous function f(¢) is sampled
by a narrow-width pulse sampler f5(t) and an ideal sampler fs(t).

If we now make the substitution that z = e*T, then Fs(s) becomes

F(z)=Z(fa) =Y faz ™", (5.1.7)

where F'(z) is the one-sided z-transform! of the sequence f(nT), which
we shall denote from now on by f,,. Here Z denotes the operation of tak-
ing the z-transform while Z~! represents the inverse z-transformation.
We will consider methods for finding the inverse z-transform in Section
5.3.

! The standard reference is Jury, E. L., 1964: Theory and Application
of the z-Transform Method, John Wiley & Sons, New York.
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Just as the Laplace transform was defined by an integration in
t, the z-transform is defined by a power series (Laurent series) in z.
Consequently, every z-transform has a region of convergence which must
be implicitly understood if not explicitly stated. Furthermore, just as
the Laplace integral diverged for certain functions, there are sequences
where the associated power series will diverge and its z-transform does
not exist.

Consider now the following examples of how to find the z-transform.

e Example 5.1.1

Given the unit sequence f, = 1, n > 0, let us find F(z). Substi-
tuting f, into the definition of the z-transform leads to

F(z)=Y "= ﬁ (5.1.8)

because Y oo, 2z~ " is a complex-valued geometric series with common

ratio z~!. This series converges if |z7!| < 1 or |z| > 1, which gives the
region of convergence of F(z).

e Example 5.1.2
Let us find the z-transform of the sequence
fn=e"T, n>0, (5.1.9)
for a real and a imaginary.

For a real, substitution of the sequence into the definition of the
z-transform yields

F(z)= Z e—anT,-n

n=0

i —aT, (5.1.10)

If u=e"9T2z"1 then (5.1.10) is a geometric series so that

[e¢]
1
F(z)= "= . 5.1.11
()= Y "= 1= (5.111)
n=0
Because |u| = ¢=%T|z7!|, the condition for convergence is that |z| >
e=9T Thus,

z

— —aT
F(z) = p— |z} >e™%". (5.1.12)
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For imaginary a, the infinite series in (5.1.10) converges if |z| > 1,

because |u| = |2~ !| when a is imaginary. Thus,
z
F(z) = T ea Jz| > L. (5.1.13)

Although the z-transforms in (5.1.12) and (5.1.13) are the same in these
two cases, the corresponding regions of convergence are different. If ¢ is
a complex number, then

z ~aT
F(z) = P |z] > [e7*"]. (5.1.14)

o Example 5.1.3
Let us find the z-transform of the sinusoidal sequence
fn = cos(nwT), n>0. (5.1.15)

Substituting (5.1.15) into the definition of the z-transform results

[ee]
= Z cos(nwT)z"". (5.1.16)
From Euler’s formula,

cos(nwT) = §(e"™T 4 e~ineT), (5.1.17)

so that (5.1.16) becomes

— %i( mwT -msz—n) (5.1.18)

or
F(z) = 2[Z(e™T) 4 Z(e~imT))]. (5.1.19)
From (5.1.13),
inw z

Substituting (5.1.20) into (5.1.19) and simplifying yields

z[z — cos(wT)]

1. 5.1.21
22 =2z cos(wT) + 1’ 21> ( )

F(z) =
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Table 5.1.1: Z-Transforms of Some Commonly Used Sequences.

fo, n>0 F(z) Region of
convergence
1.  fo=k = const. k . |2{ >0
fa=0,n2>1
2. fm = k = const. kz—™ |z| >0
fa =0, all other n’s
3. k = constant kz/(z—1) |z} > 1
4. kn kz/(z — 1)? Jz| > 1
5. kn? kz(z +1)/(z - 1)3 |z| > 1
6. ke=2"T g complex kz/ (z—e™°T) |z > |e=°T|
7. kne~*"T  a complex (7'“_5:_;::—)-; |z] > |e~ 97|
. zsin(woT)
8. sm(wonT) 22-22 cos(w’fT)+l |z| >1

- T
9. cos(wonT) %)ﬂﬁ lz] > 1

—anT ; 2e 77 sin(woT) —aT
10. e sin(wonT)  ;3-g7, =T cos(uoT) Fo=5T |z] > e

11 =7 cos(wonT)  srigmetrosrecelly 2| > =T
12. a" , « constant z/(z — a) |2] > o

13. na™ az/(z — a)? |z] > o

14. nZa™ az(z 4+ a)/(z — a)® |z| > &

15.  sinh(wonT) s |z| > cosh(woT)
16. cosh(wonT) % |z} > sinh(woT')
17. a/n! et/ |z} >0

18. [In(a)]?/n! al/? lz] >0
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e Example 5.1.4

Let us find the z-transform for the sequence

1, 0<n<5
fn= {(%)n, n> 6. (5.1.22)
From the definition of the z-transform,
5 (o 1 n
Z(fn)=F(z) = ~n — 5.1.23
= =3+ 3 (5) (5.1.29)
Because
N 1— qN+1
gt =—, (5.1.24)
1-¢
n=0
1— 26 1\ & 71\
F(z) = — — 5.1.25
(2) 1-2-1 (2z) 7nZ=:0 (2z> ( )
25— 1 1\° 1
== 4 (=) — 5.1.26
26 — ;5 + (2z> -z ( )
6 _
_z2 =1l ! (5.1.27)

26— 25 (22)8 - (22)%

if n = m+6 and |2] > 1/2. We summarize some of the more commonly
encountered sequences and their transforms in Table 5.1.1 along with
their regions of convergence.

o Example 5.1.5

In many engineering studies, the analysis is done entirely using
transforms without actually finding any inverses. Consequently, it is
useful to compare and contrast how various transforms behave in very
simple test problems.

Consider the simple time function f(t) = ae~**H(t), a > 0. Its
Laplace and Fourier transform are identical, namely a/(a + iw), if we
set s = iw. In Figure 5.1.2 we have illustrated its behavior as a function
of positive w.

Let us now generate the sequence of observations that we would
measure if we sampled f(t) every T units of time apart: f, = ae~*"7.
Taking the z-transform of this sequence, it equals az/ (z — e7°T). Re-
calling that z = ¢*T = ¢“T | we can also plot this transform as a function
of positive w. For small w, the transforms agree, but as w becomes larger
they diverge markedly. Why does this occur?
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Figure 5.1.2: The amplitude of the Laplace or Fourier transform (solid
line) for ae~**H(t) and the z-transform (dashed line) for f, = ae="T
as a function of frequency w for various positive a’s and T' = 1.

Recall that the z-transform is computed from a sequence comprised
of samples from a continuous signal. One very important flaw in sam-
pled data is the possible misrepresentation of high-frequency effects as
lower-frequency phenomena. It is this aliasing or folding effect that
we are observing here. Consequently, the z-transform of a sampled
record can differ markedly from the corresponding Laplace or Fourier
transforms of the continuous record at frequencies above one half of the
sampling frequency. This also suggests that care should be exercised in
interpolating between sampling instants. Indeed, in those applications
where the output between sampling instants is very important, such as
in a hybrid mixture of digital and analog systems, we must apply the
so-called “modified z-transform”.

Problems

From the fundamental definition of the z-transform, find the transform
of the following sequences, where n > 0:

L fa=(3)" 2. fn = ein?
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0, n=20
5.fn={—1, n=1

a”, n>2

6.2 SOME USEFUL PROPERTIES
In principle we could construct any desired transform from the def-

inition of the z-transform. However, there are several general theorems
that are much more effective in finding new transforms.

I Linearity 1

From the definition of the z-transform, it immediately follows that

if hp=ci1fa+c2g9n, then H(z)=c1F(z)+c2G(2), (5.2.1)

where F(z) = Z(fs), G(2) = Z(gn), H(z) = Z(ha), and c;, c3 are
arbitrary constants.

Multiplication by an expo-
nential sequence

If g,=eTf,,n>0, then G(z)=F(ze°T). (5.2.2)

This follows from

G(z)=2(gn) =Y _gnz " =D e T fiz™™  (523)
=0 n=0

Fa(2e*T)™" = F(ze®T). (5.2.4)

WK

n=0

This is the z-transform analog to the first shifting theorem in Laplace
transforms.
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Table 5.2.1: Examples of Shifting Involving Sequences.

n fn fn—Z fn+2
0 1 0 4

1 2 0 8

2 4 1 16
3 8 2 64
4 16 4

128

I Shifting

The effect of shifting depends upon whether it is to the right or
to the left, as Table 5.2.1 illustrates. For the sequence f,_2, no values
from the sequence f, are lost; thus, we anticipate that the z-transform
of fn—2 only involves F(z). However, in forming the sequence f, 42, the
first two values of f,, are lost, and we anticipate that the z-transform
of fn4+2 cannot be expressed solely in terms of F(z) but must include
those two lost pieces of information.

Let us now confirm these conjectures by finding the z-transform of
fn+1 which is a sequence that has been shifted one step to the left. From
the definition of the z-transform, it follows that

Z(fn+1) = Z fn_Hz_" =2z Z fn+12—(n+1) (525)
n=0 n=0
:szkz_k—zfo+zfo, (5.2.6)
k=1

where we have added zero in (5.2.6). This algebraic trick allows us to
collapse the first two terms on the right side of (5.2.6) to

Z(fn+1) = ,‘:F(Z) - Zf(). (527)
In a similar manner, repeated applications of (5.2.7) yield
Z(fagm)=2"F(2) = 2" fo =27 L — o= 2fmon, (5.2.8)

where m > 0. This shifting operation transforms f,4, into an alge-
braic expression involving m. Furthermore, we have introduced initial
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sequence values, just as we introduced initial conditions when we took
the Laplace transform of the nth derivative of f(t). We will make fre-
quent use of this property in solving difference equations in Section 5.4.

Consider now shifting to the right by the positive integer k,
gn = fa—kHnzgp, n2> 0, (5.2.9)

where H,_; = 0 for n < k and 1 for n > k. Then the z-transform of
(5.2.9) is

G(z) = z7%F(2), (5.2.10)

where G(z) = Z(gn) and F(z) = Z(fn). This follows from

o0 [e]
G(z)=Y gnz™" =Y fa-kHapz™" (5.2.11)
n=0 n=0
[e ] o
=Y fagr O =R Y e (5.2.12)
=k m=0
=z"%F(2). (5.2.13)

This result is the z-transform analog to the second shifting theorem in
Laplace transforms.

I Initial-value theorem

The initial value of the sequence f,, fo, can be computed from F(z)
using the initial-value theorem:

fo = lim F(z). (5.2.14)

=00

From the definition of the z-transform,
o0
F(2)= faz " =fo+ izt + for P4 (5.2.15)

n=0

In the limit of z — oo, we obtain the desired result.
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I Final-value theorem I

The value of f,, as n — o0, is given by the final-value theorem:

foo = lin} (z = 1)F(z), (5.2.16)
where F(z) is the z-transform of f,.

We begin by noting that
Z(far1 = fa) = lim > (o1 — fr)z7E (5.2.17)
k=0
Using the shifting theorem on the left side of (5.2.17),
) n
2F(2) = 2fo = F(2) = lim kz(fk_,_l = fr)z7k. (5.2.18)
=0
Applying the limit as z approaches 1 to both sides of (5.2.18):

lim (z = 1)F(z) - fo = lim > (fes1 — fr) (5.2.19)
k=0

= lim [(i—fo)+ (o= F)+...
+(fn - fn—1)+(fn+1 —fn)+ ]

. (5.2.20)
= lim (—fo + fa+1) (5.2.21)
= —fo+t fo. (5.2.22)
Consequently,
foo = zll_I;I} (z = DF(2). (5.2.23)

Note that this limit has meaning only if f., exists. This occurs if F(z)
has no second-order or higher poles on the unit circle and no poles
outside the unit circle.

I Multiplication by n

Given
gn=nfa, n2>0, (5.2.24)
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this theorem states that

dF(z)
dz ’

where G(z) = Z(g,) and F(z) = Z(fa).

G(z) = —z (5.2.25)

This follows from

G(2)=) gnz ™" =3 nfaz"=2) nfaz "l = _z_df;iz_).
n=0 n=0

n=0
(5.2.26)
I Periodic sequence theorem l
Consider the N-periodic sequence:
fo=Afofife.. . fn-1fofr...} (5.2.27)
——
first period
and the related sequence:
_ffa, 0<n<N-1
Tn = { o WS N, (5.2.28)

This theorem allows us to find the z-transform of f, if we can find the
z-transform of z,, via the relationship

X(2)
1—2-N°

F(z) = 12N > 1, (5.2.29)

where X(z) = Z(z,).

This follows from

F(z)=)_ faz™" (5.2.30)

N-1 2N -1 3N-1

= Z Tpz "+ Z Tnonz "+ Z Tp_oNz 4.
n=N

n=2N
(5.2.31)
Application of the shifting theorem in (5.2.31) leads to

F(z)=X(2)+zVX@) + 27V X(2)+... (5.2.32)
=X(2)[1+ TN 474 ) (5.2.33)
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Equation (5.2.33) contains an infinite geometric series with common
ratio 2=, which converges if |2~V | < 1. Thus,

X(z)
1—2z-N

| Convolution ’

Given the sequences f, and g,, the convolution product of these
two sequences is

F(z) = 12N > 1. (5.2.34)

Wn = fo % gn = Z Fegn-r = Z ke (5.2.35)

k=0
Given F(z) and G(z); we then have that W(z) = F(2)G(z).
This follows from
W(z) = Z [kagn k} z7" Z Z kIn—k2 ", (5.2.36)
=0 n=0k=0

because g,_r = 0 for £ > n. Reversing the order of summation and
letting m = n — k,

W(z) = i i frgmz™(mFR) (5.2.37)
k=0m=—k
= [kaz_k] [ Z gmz~ ™| = F(2)G(2). (5.2.38)
k=0 m=0

Consider now the following examples of the properties discussed in
this section.

e Example 5.2.1

From ]
Z@") = —— 5.2.39
(a ) l_az_l ( )
for n > 0 and |2| < a , we have that
Z () = 1 (5.2.40)
1—eirz—1
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and
1

1 —e—tvgyg—1’

Z(e7"7) = (5.2.41)

if n > 0 and |z| < 1. Therefore, the sequence f, = cos(nz) has the
z-transform

F(z) = Z[cos(nz)] = L Z (7)) + 1 Z (e7"7) (5.2.42)
1 1 1 1 1 — cos(z)z7!
= - - - - = .(5.2.43
21— eivz1 +21—e‘”¢z‘1 1— 2cos(x)z~1 + 272 (5.2.43)
e Example 5.2.2
Using the z-transform,
1
"= — > 2.
Z(a") Ty n >0, (5.2.44)
we find that
ny — d —1\—1
Z(na™) = —z [(1 —az™h) ] (5.2.45)

= (—=2)(=1) (1 —az7Y) " (=a)(-1)z"2  (5.2.46)

az"t az
= (1 — az‘1)2 = (z — a)2' (5.2.47)

o Example 5.2.3

Consider F(z) = 2az~*/(1 — az™!)3, where |a| < |z} and Ja| < 1.
Here we have that

. . 2az!
fo= lim F(z)= lim (_1%_1)3 =0 (5.2.48)

from the initial-value theorem. This agrees with the inverse of X (z):

F(2) = Z[n(n+ 1)a"], n > 0. (5.2.49)

o Example 5.2.4

Given the z-transform F(z) = (1 — a)z/[(z — 1)(z — a)], where
|z} > 1> a > 0, then from the final-value theorem we have that
a

. . . 1-
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This is consistent with the inverse transform f, = 1 — a” with n > 0.
o Example 5.2.5
Using the sequences f, = 1 and g, = a®, where a is real, verify the

convolution theorem.
We first compute the convolution of f,, with g,, namely

n 1 antl
_ — k_ _

Wn=forgn=) a* = ——1—. (5.2.51)

k=0

Taking the z-transform of w,,
W) = —— o F()G()

T (I-a)(z-1) (1-a)z—a) (z=1)(z-a)

(5.2.52)

and convolution theorem holds true for this special case.
Problems

Use the properties and Table 5.1.1 to find the z-transform of the follow-
ing sequences:

— —anT _ 0, n=20
1. fn =nTe 2. fn = {nan—l’ n 2 1

0, n=0
3. fn={ 271 > 1 4. fn = a" cos(n)

[Use cos(n) = %(ei" + 7))

5. fn = cos(n — 2)Hy,_» 6. fn=3+e T
0, n=20
7. fn = sin(nwoT + 6 8. fa=d b =l =
. fn = sin(nweT + 6) Jn = 2. n=29 fava=fa
1, n =3,
9. fo = (=1)"

(Hint: It's periodic.)

10. Using the property stated in (5.2.24)-(5.2.25) twice, find the z-
transform of n? = n[n(1)"].

11. Verify the convolution theorem using the sequences f, = g, = 1.
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12. Verify the convolution theorem using the sequences f;, = 1 and
gn = 1.

13. Verify the convolution theorem using the sequences f, = gn =
1/(n!). [Hint: Use the binomial theorem with £ = 1 to evaluate the
summation.]

14. If a is a real, show that Z(a"f,) = F(z/a), where Z(f,) = F(2).
5.3 INVERSE Z-TRANSFORMS

In the previous two sections we have dealt with finding the z-
transform. In this section we find f, by inverting the z-transform F(z).
There are four methods for finding the inverse: (1) power series, (2)
recursion, (3) partial fractions, and (4) the residue method. We will
discuss each technique individually. The first three apply only to those
F(z)’s that are rational functions while the residue method is more gen-
eral.

[ Power series

By means of the long-division process, we can always rewrite F'(z)
as the Laurent expansion:

F(z)= ao+arz " taz"i4... (5.3.1)

From the definition of the z-transform
0
F(2)=Y faz " =fot+t iz 7t 4 foz 2+, (5.3.2)
n=0

the desired sequence f, is given by a,.
e Example 5.3.1

Let

F(z) = % = 11\;23 (5.3.3)
Using long division, N(z) is divided by D(z) and we obtain
Fz)=t+4zt4272423 42744+, (5.3.4)
Therefore,
ap=3%a1=1a=1,a3=1, as=1, etc. (5.3.5)
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which suggests that fo = 1 and f, = 1 for n > 1 is the inverse of F(z).
e Example 5.3.2

Let us find the inverse of the z-transform:

222 - 1.5z

F(z) = 22 —=152+0.5

(5.3.6)

By the long-division process, we have that

2 + 15271 4125272 41125273 + ...

22-15z405 |222 - 1.5z
222 - 32 + 1

152 — 1
152 =225 4+ 0.75z!
1.25  —0.75z"!
125 —1.87271 + ...

1125271 4 ...

Thus, fo =2, fi = 1.5, fo = 1.25, fz = 1.125, and so forth, or f, =
1+ (-21-)" In general, this technique only produces numerical values for
some of the elements of the sequence. Note also that our long division
must always yield the power series (5.3.1) in order for this method to
be of any use.

I Recursive method
_

An alternative to long division was suggested? several years ago. It
obtains the inverse recursively.
We begin by assuming that the z-transform is of the form

aoz™ +a12™  +axz™ 24 a1z + an
boz™ 4+ b12m=l 4 boz™ 2+ -+ b1z + by

F(z)= (5.3.7)

where some of the coefficients a; and b; may be zero and by # 0. Ap-
plying the final-value theorem,

fo= zliTo F(z) = ap/bo. (5.3.8)

2 Jury, E. 1., 1964: Theory and Application of the z- Transform Meth-
od, John Wiley & Sons, New York, p. 41; Pierre, D. A., 1963: A tabular
algorithm for z-transform inversion. Control Eng., 10(9), 110-111. The
present derivation is by Jenkins, L. B., 1967: A useful recursive form
for obtaining inverse z-transforms. Proc. IEEE, 55, 574-575. ©OIEEE.
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Next, we apply the final-value theorem to z[F(z) — fo] and find that

f1 = zll-rglo Z[F(Z) b fo] (539)
— lim 290 bofo)z™ + (a1 — b1fo)z™ t + -+ 4 (am — bm fo)
2—00 boz™ +b1zm L 4 by2™ 2+ -+ b1z + by
(5.3.10)
= (a1 — b1 fo)/bo- (5.3.11)

Note that the coefficient ag — bofo = 0 from (5.3.8). Similarly,

f2= le'rgo 2[2F(2) — 2fo — fi] (5.3.12)

(ao—bofo)z™ ¥ +(a1—b1fo—bof1)z™
+(az—=bafo~bif1)z™ 14+ =bmfa

- 211’120 zbozm 4 bzl fbozm=2 4 b2+ by
(5.3.13)
= (a2 — bafo — b1f1)/bo (5.3.14)

because ag — bofo = a1 — b1 fo — fibo = 0. Continuing this process, we
finally have that

fn=(an —bofo—bn-1fr — - = b1fa-1) /bo, (5.3.15)
where a, = b, =0 for n > m.
o Example 5.3.3
Let us redo Example 5.3.2 using the recursive method. Comparing

(537) to (536), ag=2,a,==15a,=0,bp=1,b =—L15, ba =105
and a, = b, = 0 if n > 3. From (5.3.15),

fo=ao/bo =2/1=2, (5.3.16)
fr = (a1 —b1fo)/bo =[-1.56— (-1.5)(2)]/1 = 1.5, (5.3.17)
fo = (az — bafo — b1 f1)/bo (5.3.18)

=[0—(0.5)(2) — (-=1.5)(1.5)]/1 = 1.25 (5.3.19)
and

f3=(az —bsfo—bafi — b1f2)/bo (5.3.20)
= [0— (0)(2) = (0.5)(1.5) — (~1.5)(1.25)]/1 = 1.125. (5.3.21)
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I Partial fraction expansion

One of the popular methods for inverting Laplace transforms is
partial fractions. A similar, but slightly different scheme works here.

o Example 5.3.4

Given F(z) = z/ (22 — 1), let us find f,. The first step is to obtain
the partial fraction expansion of F(z)/z. Why we want F(z)/z rather
than F(z) will be made clear in a moment. Thus,

F(z) 1 A B
e sV EE ) Rl e & (5.3.22)
where P )
A=(z-1) (Z) =_ (5.3.23)
. z=1 2
and . )
B=(:+1) 2 - (5.3.24)
z |-, 2
Multiplying (5.3.22) by z,
1 z z
= - - — . 5.3.25
F(2) 2(;:—1 z+1) (5.3.25)

Next, we find the inverse z-transform of each of the terms z/(z — 1)
and z/(z + 1) in Table 5.1.1. This yields

z-1 <Zj 1) =1 and Z-! (Zil) = (=1)". (5.3.26)

Thus, the inverse is
fa= 30— (=17, n20. (53.27)

From this example it is clear that there are two steps involved:
(1) obtain the partial fraction expansion of F(z)/z, and (2) finding the
inverse z-transform by referring to Table 5.1.1.

e Example 5.3.5
Given F(z) = 222/[(z + 2)(z + 1)?], let us find f,. We begin by
expanding F(z)/z as

F(z) 2z A B o
= = .3.28
z (z4+2)(z+1)2 z+2+z+1+(z+1)2’ (5.3.28)
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where
A=+ L8 g (5.3.29)
z z2=-2
a1, 2 F(2) _
B=- [( +1) ]z_—l 4 (5.3.30)
and
=(z+1)° (Z) = -2 (5.3.31)
z=—1
so that 4 5
F(z) = z i (5.3.32)

z+1 T z42 (z+1)2
or

fa=271 [%] -zt [;:2] -z [(z_fji)_?] . (5.3.33)

From Table 5.1.1,

z-1 <zi 1) = (=1)", (5.3.34)
z-1 (Zj_?) = (-2)" (5.3.35)

and

-1 Z — -1 z = —n(— n = (= n+1'
2 () = - 2 [eEm) = e =
(5.3.36)
Applying (5.3.34)-(5.3.36) to (5.3.33),

fa = 4(=1)" — 4(=2)" + 2n(—=1)", n > 0. (5.3.37)

o Example 5.3.6

Given F(z) = (22 + 2)/(z — 2)?, let us determine f,. Because

F(z)  z+1 1 + 3
2 (z2=22 z-2 (z-2%

(5.3.38)

fo=27" [z - 2] +27! [(—zi—z?)—z] . (5.3.39)

Referring to Table 5.1.1,

z! (Z z 2) =9" and 2! [ & ] =3n2".  (5.340)
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Substituting (5.3.40) into (5.3.39) yields

fa=(GBr+1)2" n>0. (5.3.41)

[ Residue method

The power series, recursive, and partial fraction expansion methods
are rather limited. We will now prove that f, may be computed from
the following inverse integral formula:

1 1
n=— n- , >0, 3.
f i b, "7 F(2)dz, n>0 (5.3.42)

where C is any simple curve, taken in the positive sense, that encloses
all of the singularities of F(2). It is readily shown that the power series
and partial fraction methods are special cases of the residue method.

Proof: Starting with the definition of the z-transform
F(z)=) faz™,  |z|> Ry, (5.3.43)
n=0

we multiply (5.3.43) by z"~! and integrating both sides around any
contour C' which includes all of the singularities,

1 n-—1 _ S 1 n—mdz
i f F(z)dz _mzz:ofm 27rif£~z —~. (5.3.44)

271

Let C be a circle of radius R, where R > R;. Then, changing variables
to z = Re® and dz = iz d#,

_1_ zn-—mk — R ™ o ei(n—m)ﬂdg _ 17 m=n
2ri Jo z 2 J, ~ 10, otherwise.

(5.3.45)
Substituting (5.3.45) into (5.3.44) yields the desired result that

— n-l = fa. 3.
57 Cz F(z)dz = f, (5.3.46)

O

We can easily evaluate the inversion integral (5.3.42) using Cauchy’s
residue theorem.
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o Example 5.3.7

Let us find the inverse z-transform of

1
Fiz)= —————. 5.3.47
From the inversion integral,
1 Pl
NP S A—. P 5.3.48
f 27ri_7€;(z—1)(z—2) ¢ ( )

Clearly the integral has simple poles at z = 1 and z = 2. However,
when n = 0 we also have a simple pole at z = 0. Thus the cases n =0
and n > 0 must be considered separately.

Case 1: n = 0. The residue theorem yields

Jo = Res [m;o] * Res [m”]

1
* s [;'(2_—1)(“;—_2)2] ~ (5.3.49)
Evaluating these residues,
1 1 1
fres [m;o] TESDE-Dl, 2 (5.3.50)
1 1
fies [Z(Z —1)(z - 2)’1] T 2(z-2,., -1 (5.3.51)
and
1 ] .
fles [Z(z - 1)(z - 2)’2] T z-0|,., 2 (5.3.52)

Substituting (5.3.50)~(5.3.52) into (5.3.49) yields fo = 0.

Case 2: n > 0. Here we only have contributions from z =1 and z = 2.

e e e ve=r DR
" (5.3.53)
Res [(Z _zlr;(_:_ 5 ] = jn__; = -1 (5.3.54)
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and
R [ ik 1 2] Zn—l 271—1 > 0 (5 3 55)
- i =2""%, n>0. 3.
(z=1)(z~2) 2-1],_,
Thus,
fa=2" 21 n>0. (5.3.56)
Combining our results,
0) n=>0
Jn= { 5(2°-2), n>o0. (5.3.57)

o Example 5.3.8

Let us use the inversion integral to find the inverse of

22422
F(z)= . 5.3.58
()= g (5.3.58)
The inversion theorem gives
1 2Pl 42 2+l 4 2.n
- = dr = A S | 5.3.59
I 27ri,é; (z=1)2 ‘ Res[ (z—1)2 ’]’ (5.3.59)

where the pole at z = 1 is second order. Consequently, the correspond-
ing residue is

n+1
Res [—”z 1] d ( ntl L g.n )

T = =3n+1. (5.3.60)

z=1

Thus, the inverse z-transform of (5.3.58) is

fa=3n+1, n>0. (5.3.61)

e Example 5.3.9

Let F(z) be a z-transform whose poles lie within the unit circle
|z] = 1. Then

F(z)= i faz™?, 2] > 1 (5.3.62)
n=0
and
F()F(z71) = Zf"’ + Z Z Fnfa2™ . (5.3.63)
n=0m=0

ngEm
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Figure 5.3.1: The correspondence between the location of the simple
poles of the z-transform F(z) and the behavior of f,.
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We now multiply both sides of (5.3.63) by z~! and integrate around the
unit circle C. Therefore,

1,14, _ = 2,-14
fi;|=1F(Z)F(Z )z~ dz Zfiz|=1fnz z

n=0
©
+y 3 fmf,,}{ 2™ "1z (5.3.64)
n=0m=0 lz]=1
n#EmM

after interchanging the order of integration and summation. Performing
the integration,

oo
1
o= F(2)F(z~Y)z7 1 dz, (5.3.65)
2w -
n=0 [z]=1
which is Parseval’s theorem for one-sided z-transforms. Recall that there
are similar theorems for Fourier series and transforms.

e Example 5.3.10

An additional benefit of understanding inversion by the residue
method is the ability to qualitatively anticipate the inverse by knowing
the location of the poles of F(z). This intuition is important because
many engineering analyses discuss stability and performance entirely in
terms of the properties of the system’s z-transform. In Figure 5.3.1 we
have graphed the location of the poles of F(z) and the corresponding
fn. The student should go through the mental exercise of connecting
the two pictures.

Problems

Use the power series or recursive method to compute the first few fa's
of the following z-transforms:

0.0922 4+ 0.9z + 0.09 z+1
. = 2. F =
L F(z) 12,622 — 242+ 11.4 (2) 224 - 2234222
1.5224+ 1.5z _ 622 + 62
3. F(z)= (2)= om a2 ors =7

15.2522 - 36.752 + 30.75

Use partial fractions to find the inverse of the following z-transforms:

- z(z+1) _ (1—eoT);
Rl ey yr s sy 7y SR A Ol o b ppme
7. F(z) = al 8. F(z)= {22=a=b)z

(z=1)(z~a) (z—a)(z—b)
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9. Using the property that the z-transform of g, = fr-xHp_y ifn >0
is G(z) = z7%F(z), find the inverse of

z+4+1

F(z)= m.

Use the residue method to find the inverse z-transform of the following
z-transforms:

243 A z
T (2 —-1/2)8 1. Fz) = (z+1)2%(z-2)

12. F(z) = 13. F(z) = e°/*

10. F(z)

(z+1)?*(z—1)
5.4 SOLUTION OF DIFFERENCE EQUATIONS

Having reached the point where we can take a z-transform and
then find its inverse, we are ready to use it to solve difference equations.
The procedure parallels that of solving ordinary differential equations
by Laplace transforms. Essentially we reduce the difference equation to
an algebraic problem. We then find the solution by inverting Y (z).

o Example 5.4.1
Let us solve the second-order difference equation
2Unt2 —3Yn+1 +Un=53", n >0, (5.4.1)

where yo =0 and y1 = 1.
Taking the z-transform of both sides of (5.4.1), we obtain

2Z(Yn+2) — 3Z(yn+1) + Z(yn) = 5 Z2(3"). (5.4.2)
From the shifting theorem and Table 5.1.1,

222Y (2) — 22%yo — 2211 — 3[2Y(2) — zyo] + Y (2) = zf)_z .

(5.4.3)

Substituting yo = 0 and y; = 1 into (5.4.3) and simplifying yields

(22-1)

(2z=1)(z - )Y (2) = = e (5.4.4)

or
z

Y(z) = (Z—_3)—(-;_—1)

(5.4.5)
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To obtain y, from Y (z) we can employ partial fractions or the residue
method. Applying partial fractions yields

Y (2) A B
z —z—1+z—3’ (5.4.6)
where Y(2) )
z
A= (Z - 1) —z— - = —5 (547)
and v )
B=(z-3) Y@ L (5.4.8)
2=3 2
Thus,
1 =z 1 =z
= —= = 5.4.9
Y@ =571 9773 (54.9)
or ) )
1 z 1 z
=L 2 , 5.4.10
Y 3% (z—l)+2z (z—3) ( )
From (5.4.10) and Table 5.1.1,
¥ =3(3" - 1), n>0. (5.4.11)

Two checks confirm that we have the correct solution. First, our
solution must satisfy the initial values of the sequence. Computing yo
and yi,

Yo=338"-1)=3(1-1)=0 (5.4.12)

and
w=13-1)=13-1)=1 (5.4.13)

Thus, our solution gives the correct initial values.
Our sequence y, must also satisfy the difference equation. Now

Yng2 = 3(3"F2 1) =1(93" - 1) (5.4.14)

and
Ynp1 = 53" —1)=1(33" - 1). (5.4.15)

Therefore,
242 —=3Ynt1+Un=(9-2+1)3"-1+3-1=53" (5.4.16)

and our solution is correct.
Finally, we note that the term 3"/2 is necessary to give the right
side of (5.4.1); it is the particular solution. The —1/2 term is necessary
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so that the sequence satisfies the initial values; it is the complementary
solution.

o Example 5.4.2
Let us find the y, in the difference equation
Ynt2 — 2Unt1+Yn =1, n2>0 (5.4.17)

with the initial conditions yo = 0 and y; = 3/2.
From (5.4.17),

Z(Yn+2) — 2Z2(Yn+1) + Z2(yn) = Z2(1). (5.4.18)

The z-transform of the left side of (5.4.18) is obtained from the shifting
theorem and Table 5.1.1 yields Z(1). Thus,

22Y(2) — 22yp — zyy — 22Y(2) + 220 + Y (2) = Ll (5.4.19)
z —_—

Substituting yo = 0 and y; = 3/2 in (5.4.19) and simplifying yields

22 - Z
Y(z) = h (5.4.20)
or )
Yo = 271 [23;%1;3] : (5.4.21)

We find the inverse z-transform of (5.4.21) by the residue method or

1 32nHl pn 1 d% [3n+1 .7
SR O bk A P N AR | BT PN
Y 21rif;~ W1 -7 a2 [ ) ) ] z:l( )
= %nz + n. (5'4'23)
Thus,
Yo = in?4n, n20. (5.4.24)

Note that n?/2 gives the particular solution to (5.4.17), while n is there
so that y, satisfies the initial conditions. This problem is particularly
interesting because our constant forcing produces a response that grows
as n?, just as in the case of resonance in a time-continuous system when
a finite forcing such as sin(wpt) results in a response whose amplitude
grows as t™.
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e Example 5.4.3
Let us solve the difference equation

5*Yn + Ynt2 = 0, (5.4.25)

where |b] < 1 and the initial conditions are yy = 2 and y; = 0.
We begin by taking the z-transform of each term in (5.4.25). This
vields
b2 Z(yn) 4+ Z(Yng2) = 0. (5.4.26)

From the shifting theorem, it follows that
b2Y (2) + 22V (2) — 2%yo — zy1 = 0. (5.4.27)

Substituting yo = b2 and y; = 0 into (5.4.27),

VY (2) +22Y(2) —b%22 = 0 (5.4.28)
or p2,2
z
To find y, we employ the residue method or
1 b2+l
n = —— — < dz. 4.
Y= om c (z—1ib)(z +4b) dz (5.4.30)
Thus,
b2zn+1 b2zn+1 bn+2,in b"+2(—i)n
n = - - = 4.31
¥ z+1b z=ib z—1b z=—4b 2 * 2 (5 )
bn+2ein7r/2 bn+2e—in7r/2 nm
— — pn+2 nr
5 + 5 =b cos( 5 ) , (5.4.32)

because cos(z) = %(e"’ + e'i’). Consequently, we obtain the desired
result that nr
Yo = 0”12 cos (?) for n > 0. (5.4.33)

o Example 5.4.4: Compound interest

Finite difference equations arise in finance because the increase or
decrease in an account occurs in discrete steps. For example, the amount
of money in a compound interest saving account after n + 1 conversion
periods (the time period between interest payments) is

Yn+1 = Yn + TYn, (5.4.34)
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Figure 5.4.1: The amount in a saving account as a function of an
annual conversion period when interest is compounded at the annual
rate of 12% and a $1000 is taken from the account every period starting
with period 10.

where r is the interest rate per conversion period. The second term on
the right side of (5.4.34) is the amount of interest paid at the end of
each period.

Let us ask a somewhat more difficult question of how much money
we will have if we withdraw the amount A at the end of every period
starting after the period £. Now the difference equation becomes

Yntl =Yn +7Yn — AHpp1. (5.4.35)
Taking the z-transform of (5.4.35),

Az2—£

2Y(2)—zyo = (1 + 7)Y (2) — 1

(5.4.36)

after using (5.2.10) or

Yoz B Azt
z=(1+7) (-Dz-(1+7)]

Taking the inverse of (5.4.37),

Y(z) = (5.4.37)

A
yn = yo(l+ )" = — (147~ 1] Hao (5.4.38)
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The first term in (5.4.38) represents the growth of money by compound
interest while the second term gives the depletion of the account by
withdrawals. Figure 5.4.1 gives the values of y, for various starting
amounts assuming an annual conversion period with » = 0.12, £ = 10
years, and A = $1000. It shows that if an investor places an initial
amount of $3000 in an account bearing 12% annually, after 10 years he
can withdraw $1000 annually, essentially forever. This is because the
amount that he removes every year is replaced by the interest on the
funds that remain in the account.

o Example 5.4.5
Let us solve the following system of difference equations:
Tny1 = 4z, + 2y, (5.4.39)

and
Ynt1 = 31'71 + 3yn (5440)

with the initial values of zo = 0 and yp = 5.
Taking the z-transform of (5.4.39)-(5.4.40),

2X(2) —xoz =4X(2) +2Y(2) (5.4.41)
2Y(z) —yoz = 3X(2) + 3Y (2) (5.4.42)
(z—-4)X(2)—2Y(2)=0 (5.4.43)
3X(z) — (2= 3)Y(2) = —5z. (5.4.44)

Solving for X(z) and Y (z),

10z 2z 2z
X(Z):‘(z—6)(z—1):z—1_z—6 (5.4.45)
and
Y= o=t _ 2 | 3 (5.4.46)

T (z=6)(z=1) " z-6 " z-1
Taking the inverse of (5.4.45)—(5.4.46) term by term,

2,=2-26" and  y,=3+26". (5.4.47)
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Problems
Solve the following difference equations using z-transforms, where n > 0.
L yngy1 —vn=n% yo=1
2. Ynt2 = 2Unt1+ Y0 =0, Y=y =1
3 Yz =21+ =1 w=p=0
4. Ynt1+3yn =n, Y =0.
5. Yn41 — ByYn = cos(nm), yo =0.
6. Yny2 —4yn =1, yo =11 =0.
T Ynt2— 50 =(3)", Y=y1=0.
8. Yn+2 —OUn+1+6yn =0, Y=y =1.
9. Ynt2 = 3Ynt1+2Un =1, o=y =0.
10. Ynt2 = 2Yn41+¥n =2, % =0, y1=2.
11, zpg1 = 32n — 4Yn, Ynt1 =22, —3Yn, 20 =3, Yo = 2.
12. 2441 =22, — 10Yn, Yn41 = —2Tn —Yn, 20 =3, Yo = —2.
13. znt1 = 2n — 2Yn, Yny1 = —6yn, xo=-1, yo=-T.
14. 241 = 42, — SYn, Yn41 = Tn —2Yn, o =6, yo=2.
5.5 STABILITY OF DISCRETE-TIME SYSTEMS
When we discussed the solution of ordinary differential equations
by Laplace transforms, we introduced the concept of transfer function
and impulse response. In the case of discrete-time systems, similar con-
siderations come into play.
Consider the recursive system
Yn = alyn—-len-—l + aayn_2Hp 2+ 2,, n>0, (5.5.1)
where H,,_} is the unit step function. It equals 0 for n < k and 1 for n >
k. Equation (5.5.1) is called a recursive system because future values of

the sequence depend upon all of the previous values. At present, a; and
as are free parameters which we shall vary.
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Using (5.2.10),
22Y(2) — a;2Y(2) — aaY (2) = 22X (2) (5.5.2)

or
_Y(2) 22

T X(2)  22-aiz—as
As in the case of Laplace transforms, the ratio Y(z)/X(z) is the transfer
function. The inverse of the transfer function gives the impulse response
for our discrete-time system. This particular transfer function has two

poles, namely
2
L RN it
212 = 2 + 1 + as. (554)

At this point, we consider three cases.

G(z) (5.5.3)

Case 1: a2/4+ as < 0. In this case z; and z, are complex conjugates.
Let us write them as z; o = re¥iwol  Then

z? 22
G(z) = : — = . (5.5.5
(=) (z —reiwoT)(z — re=#woT) — 22 — 2pcos(woT)z + 12 ( )
where r2 = —ay and woT = cos~!(a;/2r). From the inversion integral,

zn+1 ]

gn = Res [22 — 2rcos(woT)z + r? ¥

zn+1
; 5.5.6
+ Res [22 — 2r cos(woT)z +r?’ zz] ’ ( )

where ¢, denotes the impulse response. Now

zn+1 i (z _ 21)2n+1

; = —_ 5.5.7

Res 22 = 2rcos(woT)z + r?’ Zl] zl-l-.Tl (z— 21 )(z — 22) ( )
nexpli(n + VwoT

= EM; - e—)ion] (5.5.8)

_ r?expli(n + 1)woT)

2isin(woT) (5.5.9)
Similarly,
z" ¥ r™ exp[—i(n + 1)woT)
: = - 5.5.10
Res [ZZ — 2rcos(woT)z + r?’ 22] 2isin(woT') ( )
and i
_ rsin[(n 4 DwoT] (5.5.11)

In = sin(woT)
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A graph of sin[(n + 1)woT]/ sin(weT’) with respect to n gives a si-
nusoidal envelope. More importantly, if |r] < 1 these oscillations will
vanish as n — 0o and the system is stable. On the other hand, if |r| > 1
the oscillation will grow without bound as n — oo and the system is
unstable.

Recall that |r| > 1 corresponds to poles that lie outside the unit
circle while |r| < 1 is exactly the opposite. Our example suggests that
for discrete-time systems to be stable, all of the poles of the transfer
function must lie within the unit circle while an unstable system has at
least one pole that lies outside of this circle.

Case 2: a3/4+ as > 0. This case leads to two real roots, 2; and z,.
From the inversion integral, the sum of the residues gives the impulse
response

n+1l _ _n+l
gn = % (5.5.12)

Once again, if the poles lie within the unit circle, |2;] < 1 and |z2] < 1,
the system is stable.

Case 3: a?/4 + a; = 0. This case yields z; = 2,

22
and ) il
_ V4 A n

This system is obviously stable if |a; /2| < 1 and the pole of the transfer
function lies within the unit circle.

In summary, finding the transfer function of a discrete-time system
is important in determining its stability. Because the location of the
poles of G(z) determines the response of the system, a stable system
will have all of its poles within the unit circle. Conversely, if any of
the poles of G(z) lie outside of the unit circle, the system is unstable.
Finally, if lim,, .o gn = ¢, the system is marginally stable. For example,
if G(z) has simple poles, some of the poles must lie on the unit circle.

e Example 5.5.1

Numerical methods of integration provide some of the simplest, yet
most important, difference equations in the literature. In this example,3

3 From Salzer, J. M., 1954: Frequency analysis of digital computers
operating in real time. Proc. IRE, 42, 457-466. (©OIRE (now IEEE).
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we show how z-transforms can be used to highlight the strengths and
weaknesses of such schemes.

Consider the trapezoidal integration rule in numerical analysis. The
integral y, is updated by adding the latest trapezoidal approximation
of the continuous curve. Thus, the integral is computed by

Yo = $T(@n + Tao1Hn1) + Yn-1Hn_1, (5.5.15)
where T is the interval between evaluations of the integrand.

We first determine the stability of this rule because it is of little
value if it is not stable. Using (5.2.10), the transfer function is

G(z) = ;8 = % (j’: i) . (5.5.16)

To find the impulse response, we use the inversion integral and find that

T no1 2+ 1
= T 5.5.17
=g b % (5.5.17)

At this point, we must consider two cases: n =0 and n > 0. For n = 0,

T r+1 T 241 T
= “Res | ————;0| + =Res | —— 1| = = 5.18
g0 2Res[z(z—1)’0]+QReS[z(z—n’ ] 2 (5.5.18)
For n > 0,
n—1
go = %Res [z—z(_z—;’—l) 1] =T (5.5.19)

w3

Therefore, the impulse response for this numerical scheme is go =
and g, =T for n > 0. Note that this is a marginally stable system (the
solution neither grows nor decays with n) because the pole associated
with the transfer function lies on the unit circle.

Having discovered that the system is not unstable, let us continue
and explore some of its properties. Recall now that z = e*7 = 7T if
s = iw. Then the transfer function becomes

T1+4e T iT wT

On the other hand, the transfer function of an ideal integrator is 1/s or
—i/w. Thus, the trapezoidal rule has ideal phase but its shortcoming
lies in its amplitude characteristic; it lies below the ideal integrator for
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Figure 5.5.1: Comparison of various quadrature formulas by ratios of
their amplitudes to that of an ideal integrator. [From Salzer, J. M.,
1954: Frequency analysis of digital computers operating in real time.
Proc. IRE, 42, p. 463. ©IRE (now IEEE) ]

0 < wT < w. We show this behavior, along with that for Simpson’s
%rd-rule and Simpson’s %th—rule, in Figure 5.5.1.

Figure 5.5.1 confirms the superiority of Simpson’s %rd rule over
his gth rule. The figure also shows that certain schemes are better at
suppressing noise at higher frequencies; an effect not generally empha-
sized in numerical calculus but often important in system design. For
example, the trapezoidal rule is inferior to all others at low frequen-
cies but only to Simpson’s %rd rule at higher frequencies. Furthermore,
the trapezoidal rule might actually be preferred not only because of its
simplicity but also because it attenuates at higher frequencies, thereby
counteracting the effect of noise.

e Example 5.5.2

Given the transfer function
2

- D(z-1/2)

is this discrete-time system stable or marginally stable?
This transfer function has two simple poles. The pole at z = 1/2
gives rise to a term that varies as ()" in the impulse response while

G(z) = (5.5.21)
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the z = 1 pole will give a constant. Because this constant will neither
grow nor decay with n, the system is marginally stable.

Problems
For the following time-discrete systems, find the transfer function and
determine whether the systems are unstable, marginally stable, or sta-
ble.
Lyn =yn_1Hn1+ 2, 2. Yn =2yn—1Hn—1"yn—2Hn—2+1'n

3. yn = 3yn—1Hn 1+ 2, 4. y, = %yn—2Hn—2 + zn



Chapter 6

The Sturm-Liouville Problem

In the next three chapters we shall be solving partial differential
equations using the technique of separation of variables. This technique
requires that we expand a piece-wise continuous function f(z) as alinear
sum of eigenfunctions, much as we used sines and cosines to reexpress
f(z) in a Fourier series. The purpose of this chapter is to explain and
illustrate these eigenfunction expansions.

6.1 EIGENVALUES AND EIGENFUNCTIONS

Repeatedly, in the next three chapters on partial differential equa-
tions, we will solve the following second-order linear differential equa-
tion:

4 [p(x -d—Z] +g(z)+Ar(z)]ly=0, a<z<h, (6.1.1)
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together with the boundary conditions:

ay(a) +By'(a) =0  and  yy(b) + 6/ (b) = 0. (6.1.2)

In (6.1.1), p(z), q(x) and r(z) are real functions of z; X is a parameter;
and p(z) and r(z) are functions that are continuous and positive on the
interval @ < z < b. Taken together, (6.1.1) and (6.1.2) constitute a
regular Sturm-Liouville problem. This name honors the French mathe-
maticians Sturm and Liouville! who first studied these equations in the
1830s. In the case when p(z) or r(z) vanishes at one of the endpoints of
the interval [a, 8] or when the interval is of infinite length, the problem
is a singular Sturm-Liouville problem.

Consider now the solutions of the Sturm-Liouville problem. Clearly
there is the trivial solution y = 0 for all A\. However, nontrivial solutions
will exist only if A takes on specific values; these values are called char-
acteristic values or eigenvalues. The corresponding nontrivial solutions
are called the characteristic functions or eigenfunctions. In particular,
we have the following theorems.

Theorem: For a regular Sturm-Liouville problem with p(z) > 0, all of
the eigenvalues are real if p(z), q(z), and r(z) are real functions and
the eigenfunclions are differentiable and continuous.

Proof: Let y(z) = u(z)+iv(z) be an eigenfunction corresponding to an
eigenvalue A = A, + i);, where X, \; are real numbers and u(z), v(z)
are real functions of z. Substituting into the Sturm-Liouville equation
yields

{p(@)[W'(z)+iv' (@)} +[g(2) + (Ar +iXi)r(2)][w(z) +iv(z)] = 0. (6.1.3)
Separating the real and imaginary parts yields
[p(z)u' ()] + [g(=) + ArJu(z) — Nir(2)v(z) = 0 (6.1.4)

and
[p(z)v'(2)l + [g() + A Jv(z) + Air(z)u(z) = 0. (6.1.5)

! For the complete history as well as the relevant papers, see Liitzen,
J., 1984: Sturm and Liouville’s work on ordinary linear differential equa-
tions. The emergence of Sturm-Liouville theory. Arch. Hist. Ezact Set.,
29, 309-376.
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Figure 6.1.1: By the time that Charles-Frangois Sturm (1803-1855)
met Joseph Liouville in the early 1830s, he had already gained fame
for his work on the compression of fluids and his celebrated theorem on
the number of real roots of a polynomial. An eminent teacher, Sturm
spent most of his career teaching at various Parisian colleges. (Portrait
courtesy of the Archives de I’Académie des sciences, Paris.)

If we multiply (6.1.4) by v and (6.1.5) by u and subtract the results, we
find that

u(z)[p(z)v'(2)) - v(@)[p(2)e' (2)) + Nir(2)[u’(z) + v*(2)] = 0. (6.1.6)

The derivative terms in (6.1.6) can be rewritten in such a manner that
it becomes

% {lp(2)v'(2)Ju(z) - [p(2)w' (2)]v(2)} + Xir(2)[u’(z) + v* ()] = 0.
(6.1.7)



272 Advanced Engineering Mathematics

Figure 6.1.2: Although educated as an engineer, Joseph Liouville
(1809-1882) would devote his life to teaching pure and applied mathe-
matics in the leading Parisian institutions of higher education. Today
he is most famous for founding and editing for almost 40 years the Jour-
nal de Liouville. (Portrait courtesy of the Archives de I’Académie des
sciences, Paris.)

Integrating from a to b, we find that

b
X [ @) + @) dr = ple)u(a @) - o @
’ (6.1.8)
From the boundary conditions (6.1.2),

alu(a) + iv(a)] + Blu'(a) + iv'(a)] = 0 (6.1.9)

and
7[u(b) + fv(b)] + 6[u’(b) + iv/(b)] = 0. (6.1.10)
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Separating the real and imaginary parts yields
cu(a)+ Bu'(a) =0 and av(a)+ Bv'(a) =0 (6.1.11)

and
yu(b) + 6u'(b) =0 and ~yuv(b) + 6v'(b) = 0. (6.1.12)

Both @ and 8 cannot be zero; otherwise, there would be no boundary
condition at z = a. Similar considerations hold for ¥ and é. Therefore,

u(a)v'(a) — v/(a)v(a) =0 and u(b)v'(b) — u'(b)v(b) =0, (6.1.13)

if we treat a, 3, ¥, and é as unknowns in a system of homogeneous equa-
tions (6.1.11)-(6.1.12) and require that the corresponding determinants
equal zero. Applying (6.1.13) to the right side of (6.1.8), we obtain

)
Ai / r(z)[u®(z) + v (z)]dz = 0. (6.1.14)

Because r(z) > 0, the integral is positive and A; = 0. Since A; =0, A is
purely real. This implies that the eigenvalues are real. .0

If there is only one independent eigenfunction for each eigenvalue,
that eigenvalue is simple. When more than one eigenfunction belongs
to a single eigenvalue, the problem is degenerate.

Theorem: The regular Sturm-Liouville problem has infinitely many
real and simple eigenvalues A\,, n = 0,1,2,..., which can be arranged
in a monotonically increasing sequence Ag < Ay < Az < --- such that
lim, —oo Ay = c0. Every eigenfunction y,(x) associated with the corre-
sponding eigenvalue A, has ezactly n zeros in the interval (a,b). For
each eigenvalue there exists only one eigenfunction (up to a multiplica-
tive constant).

The proof is beyond the scope of this book but may be found in more
advanced treatises.?

In the following examples we will illustrate how to find these real
eigenvalues and their corresponding eigenfunctions.

2 See, for example, Birkhoff, G. and Rota, G.-C., 1989: Ordinary
Differential Equations, John Wiley & Sons, New York, chaps. 10 and 11;
Sagan, H., 1961: Boundary and Eigenvalue Problems in Mathematical
Physics, John Wiley & Sons, New York, chap. 5.
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e Example 6.1.1
Let us find the eigenvalues and eigenfunctions of
Yy +Ay=0 (6.1.15)
subject to the boundary conditions
y(0) =0  and y(r) —y'(7) = 0. (6.1.16)

Our first task is to check to see whether the problem is indeed
a regular Sturm-Liouville problem. A comparison between (6.1.1) and
(6.1.15) shows that they are the sameif p(z) = 1, ¢(z) = 0, and r(z) = 1.
Similarly, the boundary conditions (6.1.16) are identical to (6.1.2) if
a=y=1,6=-1,8=0,a=0,and b = 7.

Because the form of the solution to (6.1.15) depends on A, we con-
sider three cases: A negative, positive, or equal to zero. The general
solution of the differential equation is

y(z) = Acosh(mz) + Bsinh(mz) if X <0, (6.1.17)
y(z)=C+Dz if A=0 (6.1.18)

-and
y(z) = E cos(kz) + Fsin(kz) if A >0, (6.1.19)
where for convenience A = —m? < 0 in (6.1.17) and A = k2 > 0 in

(6.1.19). Both k and m are real and positive by these definitions.3

3 In many differential equations courses, the solution to
Yy —mly=0, m >0

is written
y(x) = c1e™* + coe™ ™%,

However, we can rewrite this solution as

y(®) = (c1 +c2)5(e™ +e7™) + (c1 — c2) L (e™® — e=m7)

= Acosh(mz) + Bsinh(mz),

where cosh(mz) = (e™* + ¢~™7)/2 and sinh(mz) = (™% — e~™*)/2.
The advantage of using these hyperbolic functions over exponentials is
the simplification that occurs when we substitute the hyperbolic func-
tions into the boundary conditions.
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Figure 6.1.3: Graphical solution of tan(rz) = z.

Turning to the condition that y(0) = 0, we find that A=C=FE =
0. The other boundary condition y(x) — y(7) = 0 gives

B(sinh(m7) — mcosh(mm)] = 0, (6.1.20)
D=0 (6.1.21)

and
F[sin(km) — kcos(km)] = 0. (6.1.22)

If we graph sinh(m=) — m cosh(mm) for all positive m, this quan-
tity is always negative. Consequently, B = 0. However, in (6.1.22), a
nontrivial solution (i.e., F' # 0) occurs if

Fcos(km)[tan(kn) — k] =0 or tan(km)==k. (6.1.23)

In summary, we have found nontrivial solutions only when A, =
k% > 0, where ky, is the nth root of the transcendental Equation (6.1.23).
We may find the roots either graphically or through the use of a numer-
ical algorithm. Figure 6.1.3 illustrates the graphical solution to the
problem. We exclude the root £ = 0 because A must be greater than
Zero.

Let us now find the corresponding eigenfunctions. Because A =
B=C=D=E =0, we are left with y(z) = Fsin(kz). Consequently,
the eigenfunction, traditionally written without the arbitrary amplitude
constant, 1is

yn(z) = sin(kn ), (6.1.24)
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Figure 6.1.4: The first four eigenfunctions sin(k, ) corresponding to
the eigenvalue problem tan(kr) = k.

because k must equal k,. Figure 6.1.4 shows the first four eigenfunc-
tions.

e Example 6.1.2
For our second example let us solve the Sturm-Liouville problem,
y'+Ay=0 (6.1.25)
with the boundary conditions
¥(0) = y'(0) =0 and y(r) -y (7)=0. (6.1.26)
Once again the three possible solutions to (6.1.25) are
y(z) = Acosh(mz) + Bsinh(mz) if A= -m? <0, (6.1.27)

yz)=C+Dz if A=0 (6.1.28)
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and
y(z) = E cos(kz) + Fsin(kz) if A=k*>0. (6.1.29)

Let us first check and see if there are any nontrivial solutions for

A < 0. Two simultaneous equations result from the substitution of
(6.1.27) into (6.1.26):

A—mB=0 (6.1.30)

[cosh(mm) — msinh(mm)]A + [sinh(m7) — m cosh(m)]B = 0. (6.1.31)
The elimination of A between the two equations yields
sinh(mn)(1 — m*)B = 0. (6.1.32)
If (6.1.27) is a nontrivial solution, then B # 0 and
sinh(mn) =0 (6.1.33)

or
m? = 1. (6.1.34)

Equation (6.1.33) cannot hold because it implies m = A = 0 which
contradicts the assumption used in deriving (6.1.27) that A < 0. On the
other hand, (6.1.34) is quite acceptable. It corresponds to the eigenvalue
A = ~1 and the eigenfunction is

yo = cosh(z) + sinh(z) = €, (6.1.35)
because it satisfies the differential equation
Yo —Y =0 (6.1.36)
and the boundary conditions
¥0(0) — y6(0) =0 (6.1.37)

and
yo(7) — yo(m) = 0. (6.1.38)

An alternative method of finding m, which is quite popular because
of its use in more difficult problems, follows from viewing (6.1.30) and
(6.1.31) as a system of homogeneous linear equations, where A and B
are the unknowns. It is well known* that in order for (6.1.30)-(6.1.31)

4 See Chapter 11.
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Figure 6.1.5: The first four eigenfunctions for the Sturm-Liouville
problem (6.1.25)-(6.1.26).

to have a nontrivial solution (i.e., A # 0 and/or B # 0) the determinant
of the coefficients must vanish:

1 —m
cosh(mm) — msinh(mn) sinh(mm) — mcosh(mn) | ~ 0. (6.1.39)
Expanding the determinant,
sinh(mm)(1 — m?) =0, (6.1.40)

which leads directly to (6.1.33) and (6.1.34).
We consider next the case of A = 0. Substituting (6.1.28) into
(6.1.26), we find that

C-D=0¢0 (6.1.41)

and
C+Dr-D=0. (6.1.42)

This set of simultaneous equations yields C = D = 0 and we have only
trivial solutions for A = 0.
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Finally, we examine the case when A > 0. Substituting (6.1.29)
into (6.1.26), we obtain
E—kF=0 (6.1.43)

and
[cos(km) + ksin(km)]E + [sin(kw) — k cos(km)]F = 0. (6.1.44)
The elimination of E from (6.1.43) and (6.1.44) gives
F(1 + k?)sin(k7) = 0. (6.1.45)
In order that (6.1.29) be nontrivial, F' # 0 and
E*=-1 (6.1.46)
or
sin(kwx) = 0. (6.1.47)

Condition (6.1.46) violates the assumption that k is real, which follows
from the fact that A = k2 > 0. On the other hand, we can satisfy
(6.1.47) if k = 1,2,3,.. ; a negative k yields the same A. Consequently
we have the additional eigenvalues A, = n?.

Let us now find the corresponding eigenfunctions. Because E = kF,
y(z) = Fsin(kz) + Fkcos(kz) from (6.1.29). Thus, the eigenfunctions
for A > 0 are

Yn(z) = sin(nz) + n cos(nz). (6.1.48)

Figure 6.1.4 illustrates some of the eigenfunctions given by (6.1.35) and
(6.1.48).

o Example 6.1.3
Consider now the Sturm-Liouville problem
v +2y=0 (6.1.49)

with

y(r) = y(-r) and (7)) =y'(-m). (6.1.50)
This is not a regular Sturm-Liouville problem because the boundary
conditions are periodic and do not conform to the canonical boundary

condition (6.1.2).
The general solution to (6.1.49) is

y(z) = Acosh(mz) + Bsinh(mz) if A= -m? <0, (6.1.51)

y(2)=C+ Dz if A=0 (6.1.52)
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and
y(z) = Ecos(kz) + Fsin(kz) if A =k%>0. (6.1.53)
Substituting these solutions into the boundary condition (6.1.50),

A cosh(mm) + Bsinh(mm) = A cosh(—mn) 4 Bsinh(—mr), (6.1.54)

C+Dr=C-Dr (6.1.55)

and
E cos(km) + Fsin(kw) = E cos(—km) + Fsin(—kx) (6.1.56)

or

Bsinh(mr) =0, D=0 and Fsin(kn) =0, (6.1.57)
because cosh(—mw) = cosh(mr), sinh(—mn) = —sinh(mr), cos(—kn)
= cos(kw), and sin(—kw) = —sin(kr). Because m must be positive,
sinh(mm) cannot equal zero and B = 0. On the other hand, if sin{kr) =
Oork=mn,n=123, ..., we have a nontrivial solution for positive A

and A, = n?. Note that we still have A, C, E, and F as free constants.
From the boundary condition (6.1.50),

Asinh(mw) = Asinh(—mn) (6.1.58)
and
—Esin(kr) + F cos(kw) = —E sin(—k7) + F cos(—kn). (6.1.59)

The solution yo(z) = C identically satisfies the boundary condition
(6.1.50) for all C. Because m and sinh(mr) must be positive, 4 = 0.
From (6.1.57), we once again have sin(k7) = 0 and k = n. Consequently,
the eigenfunction solutions to (6.1.49)—(6.1.50) are

/\0 = 0, yo(l‘) =1 (6160)

and
sin(nz)

cot(ns) (6.1.61)

An =0, yn(z) = {

and we have a degenerate set of eigenfunctions to the Sturm-Liouville
problem (6.1.49) with the periodic boundary condition (6.1.50).
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Problems
Find the eigenvalues and eigenfunctions for each of the following:
Ly +2y=0, ¥0)=0, y(L)=0
2.y +2y=0, ¥y0)=0, ¥(m)=0
3.y +dy=0, y0)+y'(0)=0, y(m)+y(m)=0
4.y +dy=0, y(0)=0, y(m) -y (r)=0
5.y +dy=0, y0)=y"(0)=0, y(IL)=y"(L)=0

Find an equation from which you could find A and give the form of the
eigenfunction for each of the following:

6.y +Ay=0, y0)+¢'(0)=0, »(1)=0
Ty +2y=0, y0)=0, y(m)+y(m)=0
8.y +Ay=0, ¥(0)=0, y(1)-¢'(1)=0
9. ¥+ 2y =0, y0)+y(0)=0, ¥(m)=0
10. " + Ay =0, y(0)+¢'(0)=0, y(m)-y'(m)=0

11. Find the eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem

d [ dy] A

— |z —y = <z <

dz [mdx]+my 0, lszzse

for each of the following boundary conditions: (a) u(1) = u(e) = 0, (b)
u(l) = u'(e) =0, and (¢) v'(1) = v/(e) = 0.

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville
problems:

12.

2’y + 2y + 2y =0, y(1)=y(e)=0, 1<z<e.
13. J

T [2%y] +Azy =0, y(1)=ye")=0, 1<z<e.
14.

dL ] A
= [5v]+2v=0 s =wa =0 1sexe
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6.2 ORTHOGONALITY OF EIGENFUNCTIONS

In the previous section we saw how nontrivial solutions to the reg-
ular Sturm-Liouville problem consist of eigenvalues and eigenfunctions.
The most important property of eigenfunctions is orthogonality.

Theorem: Let the functions p(z), ¢(z), and r(x) of the regular Sturm-
Liouville problem (6.1.1)-(6.1.2) be real and continuous on the interval
[a,b]. If yo(z) and ym(z) are continuously differentiable eigenfunctions
corresponding to the distinct eigenvalues A, and Ap,, respectively, then
yn () and ym(z) satisfy the orthogonality condition:

b
/ r(2)yn(z)ym(z) dz = 0, (6.2.1)

if \n # M. When (6.2.1) is satisfied, the eigenfunction y, (z) and ym(z)
are said to be orthogonal to each other with respect to the weight func-
tion r(z). The term orthogonality appears to be borrowed from linear
algebra where a similar relationship holds between two perpendicular or
orthogonal vectors.

Proof: Let y, and y,, denote the eigenfunctions associated with two
different eigenvalues A, and A,. Then

% [p(”)%] +[a(2) + Aar(2)]ya(2) = 0, (6.2.2)
% [p(””)?_;n] +[9(2) + Amr(z)]ym () = 0 (6.2.3)

and both solutions satisfy the boundary conditions. Let us multiply the
first differential equation by y,; the second by yn. Next, we subtract
these two equations and move the terms containing y,ym to the right
side. The resulting equation is

o [0 2] = g (o) 22| = O =A@l (620

Integrating (6.2.4) from a to b yields

[z lrorie] iz o] o

= (A —,\m)/ 7(Z)YnyYmdz. (6.2.5)
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We may simplify the left side of (6.2.5) by integrating by parts to give

/ab{yn% [P(x %yf—] - yn% [p(x)cgl—;"] } dz
= [p(2)¥n¥n — P(E)YpYm] - /a"p(z)[y;ly;n — Yytnlde.  (6.2.6)

The second integral equals zero since the integrand vanishes identically.
Because y,(z) and ym,(z) satisfy the boundary condition at z = a,

ayn(a) + By, (a) =0 (6.2.7)

and
aym(a) + By, (a) = 0. (6.2.8)

These two equations are simultaneous equations in & and 3. Hence, the
determinant of the equations must be zero:

Yn(a)ym (@) — ¥m(a)ya(a) = 0. (6.2.9)

Similarly, at the other end,

Yn (b)ym (8) — U (B)yn (b) = 0. (6.2.10)
Consequently, the right side of (6.2.6) vanishes and (6.2.5) reduces to
(6.2.1). o

o Example 6.2.1

Let us verify the orthogonality condition for the eigenfunctions that
we found in Example 6.1.1.
Because r(z) = 1,a =0, b = 7, and yn(z) = sin(k, ), we find that

b T
/ () YnYm dz = / sin(kpz) sin(kme) dz (6.2.11)
a 0

=1 /Ow{cos[(kn — km)z] — cos[(kn + km)x] dz

(6.2.12)
_sin[(kn — km)z] | _ sin[(kn + km)z] i
= =i |, et i) | (6.2.13)
_ sin[(kn — km)m]  sin[(kn + k)] (6.2.14)

2(kn — km) 2kn + km)
sin(kp ) cos(km ) — cos(knm) sin(km )
2kn — km)




284 Advanced Engineering Mathematics

sin(k, ) cos(kmm) + cos(kpm) sin(ky, 7)

_ i) (6.2.15)
b
kp, cos(kn,m) cos(kmm) — kuy, cos(k, ) cos(kp,
/ r(Z)Ynym dz = (kn) cos( 2(k') ) (kn ) cos( )
_ kn cos(knm) cos(km™) 4 km cos(kn7) cos(kp )
2(kn + km)
(6.2.16)
_ (kn — km) cos(kpm) cos(km )
B 2(kn — km)
_ (kn + km) cos(knm) cos(kmm)
T =0. (6.2.17)

We have used the relationships k, = tan(k,) ana km = tan(kn,7) to
simplify (6.2.15). Note, however, that if n = m,

/ sin(knz)sin(kpz) de = %/ [1 — cos(2k,z)] dx (6.2.18)
0 0
7w sin(2k,7)
= - ——— 219
5 e (6.2.19)
= 1[r ~ cos?(kam)] > 0 (6.2.20)

because sin(24) = 2sin(A) cos(A) and k, = tan(k,7). That is, any
eigenfunction cannot be orthogonal to itself.

In closing, we note that had we defined the eigenfunction in our
example as
sin(k,z)

- Vm — cos?(k,m)]/2

rather than y,(z) = sin(k,z), the orthogonality condition would read

yn () (6.2.21)

/ Y (2)ym (2) de = { o m#n (6.2.22)
0 )

m=n.

This process of normalizing an eigenfunction so that the orthogonality
condition becomes

0, m#n

/ab r(@)yn(@)ym (2) do = { 1, m=n (6.2.23)

generates orthonormal eigenfunctions. We will see the convenience of
doing this in the next section.
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Problems

1. The Sturm-Liouville problem 3’ + Ay = 0, y(0) = y(L) = 0 has the
eigenfunction solution y,(z) = sin(nwz/L). By direct integration verify
the orthogonality condition (6.2.1).

2. The Sturm-Liouville problem 3" + Ay = 0, ¥/(0) = ¢/(L) = 0 has the
eigenfunction solutions yo(z) = 1 and yn(z) = cos(nwz/L). By direct
integration verify the orthogonality condition (6.2.1).

3. The Sturm-Liouville problem v” + Ay = 0, y(0) = (L) = 0 has
the eigenfunction solution y,(z) = sin[(2n — 1)7z/(2L)]. By direct
integration verify the orthogonality condition (6.2.1).

4. The Sturm-Liouville problem y” + Ay = 0, ¢/(0) = y(L) = 0 has
the eigenfunction solution y,(z) = cos[(2n — 1)mz/(2L)]. By direct
integration verify the orthogonality condition (6.2.1).

6.3 EXPANSION IN SERIES OF EIGENFUNCTIONS

In calculus we learned that under certain conditions we could repre-
sent a function f(z) by a linear and infinite sum of polynomials (z—zo)".
In this section we show that an analogous procedure exists for represent-
ing a piece-wise continuous function by a linear sum of eigenfunctions.
These eigenfunction expansions will be used in the next three chapters
to solve partial differential equations.

Let the function f(z) be defined in the interval a < = < b. We
wish to reexpress f(z) in terms of the eigenfunctions yn(z) given by a
regular Sturm-Liouville problem. Assuming that the function f(x) can

be represented by a uniformly convergent series,® we write
[ee]
f(:l,‘) = 2 cnyn(x)- (6.3.1)
n=1

The orthogonality relation (6.2.1) gives us the method for computing
the coefficients c,,. First we multiply both sides of (6.3.1) by r(2)ym(z),
where m is a fixed integer, and then integrate from a to b. Because this

S If Sp(z) = Sopoy uk(z), S(x) = limp—co Sn(z) and 0 < |Sp(z) —
S(z)| < e for allm > M > 0, the series Y 7o ; ug(z) is uniformly conver-
gent if M is dependent on ¢ alone and not z.
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series is uniformly convergent and y,(x) is continuous, we can integrate
the series term by term or

b o0 )
/ r(z)f(2)ym(z)dr = Z n / (2)yn(2)ym(z) dz. (6.3.2)
a n=1 a

The orthogonality relationship states that all of the terms on the right
side of (6.3.2) must disappear except the one for which n = m. Thus,
we are left with

b )
/ r(2) f(x)ym(z) dz = ¢y / (2)Ym (2)ym(z) dz (6.3.3)

a

or

b
L@ de (63.4)

[ ()2 (z) dz

if we replace m by n in (6.3.3).

The series (6.3.1) with the coefficients found by (6.3.4) is a general-
1zed Fourier series of the function f(z) with respect to the eigenfunction
Yn(z). It is called a generalized Fourier series because we have general-
ized the procedure of reexpressing a function f(z) by sines and cosines
into one involving solutions to regular Sturm-Liouville problems. Note
that if we had used an orthonormal set of eigenfunctions, then the de-
nominator of (6.3.4) would equal one and we reduce our work by half.
The coefficients ¢, are the Fourier coefficients.

One of the most remarkable facts about generalized Fourier series
is their applicability even when the function has a finite number of
bounded discontinuities in the range [a,b]. We may formally express
this fact by the following theorem:

Theorem: If both f(z) and f'(z) are piece-wise continuous in a <
¢ < b, then f(x) can be expanded in a uniformly convergent Fourier
series (6.3.1), whose coefficients c, are given by (6.3.4). It converges
to [f(z*) + f(27)]/2 at any point = in the open interval a < < b.

The proof is beyond the scope of this book but may be found in more
advanced treatises.® If we are willing to include stronger constraints,

® For example, Titchmarsh, E. C., 1962: FEigenfunction Erpansions
Associated with Second-Order Differential Equations. Part I, Oxford
University Press, Oxford, pp. 12-16.



The Sturm-Liouville Problem 287

we can make even stronger statements about convergence. For exam-
ple,” if we require that f(z) be a continuous function with a piece-wise
continuous first derivative, then the eigenfunction expansion (6.3.1) will
converge to f(x) uniformly and absolutely in {a, b] if f(x) satisfies the
same boundary conditions as does y,(z).

In the case when f(z) is discontinuous, we are not merely rewriting
f(z) in a new form. We are actually choosing the c,’s so that the
eigenfunctions fit f(z) in the “least squares” sense that

/ ()

Consequently we should expect peculiar things, such as spurious oscil-
lations, to occur in the neighborhood of the discontinuity. This is Gibbs
phenomena,® the same phenomena discovered with Fourier series. See
Section 2.2.

2
dz = 0. (6.3.5)

[e ]

f(z) - Z cnYn(T)

n=1

e Example 6.3.1

To illustrate the concept of an eigenfunction expansion, let us find
the expansion for f(z) = z over the interval 0 < # < 7 using the solution
to the regular Sturm-Liouville problem of

y' +dy=0, y(0) = y(7) = 0. (6.3.6)

This problem will arise when we solve the wave or heat equation by
separation of variables in the next two chapters.

Because the eigenfunctions are yn(z) = sin(nz), n = 1,2,3,..,
r(z)=1,a=0,and b = 7, (6.3.4) gives

. Jy @sin(nz)dz  —zcos(nz)/n + sin(nz)/n?|]
"7 [7sin’(nz)dz z/2 —sin(2nz)/(4n)|g (6.3.7)
= —% cos(nw) = %(—1)". (6.3.8)

Equation (6.3.1) then gives

f(z)=-2 Z (_;)n sin(nz). (6.3.9)

7 Tolstov, G. P., 1962: Fourier Series, Dover Publishers, Mineola,
NY, p. 255.

8 Apparently first discussed by Weyl, H., 1910: Die Gibbs’sche Er-
scheinung in der Theorie der Sturm-Liouvilleschen Reihen. Rend. Circ.
Mat. Palermo, 29, 321-323.
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This particular example is in fact an example of a half-range sine ex-
pansion.

Finally we must state the values of & for which (6.3.9) is valid. At
r = m the series converges to zero while f(x) = . At £ = 0 both the
series and the function converge to zero. Hence the series expansion
(6.3.9)is valid for 0 < 2 < .

o Example 6.3.2

For our second example let us find the expansion for f(z) = z over
the Interval 0 < ¢ < 7 using the solution to the regular Sturm-Liouville
problem of

Y +Ady=0,  y0)=y(m) -y (r)=0. (6.3.10)

We will encounter this problem when we solve the heat equation with
radiative boundary conditions by separation of variables.

Because r(z) = 1, a = 0, b = 7 and the eigenfunctions are y,(z) =
sin(kpz), where k, = tan(k, ), (6.3.4) give

_ [y esin(knz)dz [ asin(kaz)de
Ch = j-:]w sinz(knx) dz %fovro[l ~cos(2kna)] dz (6.3.11)
2sin(k,z)/k2 — 2z cos(knz)/ky |7r
_ 2sin(knm)/k2 — 27 cos(kn7)/kn
- 7 — sin(2kn )/ (2kn) (6.3.13)
_ 2cos(knm) — 7 cos(knw)]//cn, (6.3.14)

T — cos?(k, )

where we have used the property that sin(k, 7) = k, cos(kn7). Equation
(6.3.1) then gives

fle) =2(1—7) Z:l c [WC_osc(f:;&nw)] sin(kn ). (6.3.15)
Problems

1. The Sturm-Liouville problem y” + Ay = 0, y(0) = y(L) = 0 has
the eigenfunction solution y,(z) = sin(nmz/L). Find the eigenfunction
expansion for f(z) = z using this eigenfunction.

2. The Sturm-Liouville problem 3’ + Ay = 0, ' (0) = y'(L) = 0 has the
eigenfunction solutions yg(z) = 1 and y,(z) = cos(nwz/L). Find the
eigenfunction expansion for f{x) = z using these eigenfunctions.
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3. The Sturm-Liouville problem 3’ + Ay = 0, y(0) = y'(L) = 0 has the
eigenfunction solution y,(z) = sin[(2n — 1)7z/(2L)]. Find the eigen-
function expansion for f(z) = « using this eigenfunction.

4. The Sturm-Liouville problem y” + Ay = 0, ¥/(0) = y(L) = 0 has the
eigenfunction solution y,(z) = cos[(2n — 1)m2/(2L)]. Find the eigen-
function expansion for f(x) = z using this eigenfunction.

6.4 A SINGULAR STURM-LIOUVILLE PROBLEM:
LEGENDRE’'S EQUATION

In the previous sections we used solutions to a regular Sturm-
Liouville problem in the eigenfunction expansion of the function f(z).
The fundamental reason why we could form such an expansion was the
orthogonality condition (6.2.1). This crucial property allowed us to solve
for the Fourier coefficient ¢, given by (6.3.4).

In the next few chapters, when we solve partial differential equa-
tions in cylindrical and spherical coordinates, we will find that f(z) must
be expanded in terms of eigenfunctions from singular Sturm-Liouville
problems. Is this permissible? How do we compute the Fourier coef-
ficients in this case? The final two sections of this chapter deal with
these questions by examining the two most frequently encountered sin-
gular Sturm-Liouville problems, those involving Legendre’s and Bessel’s
equations.

We begin by determining the orthogonality condition for singular
Sturm-Liouville problems. Returning to the beginning portions of Sec-
tion 6.2, we combine (6.2.5) and (6.2.6) to obtain

b
O =) [ 72100 d2 =000 0) = (B B )

= p(@)¥m (2)yn(a) + p(a)yn(a)ym(a)]-
(6.4.1)

From (6.4.1) the right side vanishes and we preserve orthogonality if
yn(z) is finite and p(z)y,(x) tends to zero at both endpoints. This is
not the only choice but let us see where it leads.

Consider now Legendre’s equation:

d%y dy
—_— 2 — — — —
(1-= )dz'z 2z T +nn+1ljy=0 (6.4.2)
7 d d
P [(1 - wz)—di] +n(n+1)y=0, (6.4.3)

where we set a = =1, b =1, A = n(n+ 1), p(z) = 1 — 22, ¢(z) = 0,
and r(z) = 1. This equation arises in the solution of partial differential
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Figure 6.4.1: Born into an affluent family, Adrien-Marie Legendre’s
(1752-1833) modest family fortune was sufficient to allow him to devote
his life to research in celestial mechanics, number theory, and the theory
of elliptic functions. In July 1784 he read before the Académie des
sctences his Recherches sur la figure des planétes. It is in this paper
that Legendre polynomials first appeared. (Portrait courtesy of the
Archives de I’Académie des sciences, Paris.)

equations involving spherical geometry. Because p(—1) = p(1) = 0, we
are faced with a singular Sturm-Liouville problem. Before we can deter-
mine if any of its solutions can be used in an eigenfunction expansion,
we must find them.

Equation (6.4.2) does not have a simple general solution. [If n = 0,
then y(z) = 1 is a solution.] Consequently we try to solve it with the
power series:

y(z) =) Arz®, (6.4.4)
k=0
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Y(z) =) kApz*! (6.4.5)
k=0
and o
y'(z) = k(k - 1) At 2 (6.4.6)
k=0

Substituting into (6.4.2),

i k(k—1)Apa®=2 + i [n(n + 1) — 2k — k(k — 1)] Axz* = 0, (6.4.7)
k=0 k=0

which equals

oQ

> m(m—1)Anz™" 2 + i [n(n+1) — k(k +1)] Axz* = 0. (6.4.8)

m=2 k=0
If we define £k = m + 2 in the first summation, then

oo

Z(k+2)(lc+ DAgyozF +§: [n(n 4 1) — k(k + 1)] Axz¥ = 0. (6.4.9)
k=0 k=0

Because (6.4.9) must be true for any z, each power of z must vanish
separately. It then follows that

(k+2)(k+ 1)Apyo = [k(k+ 1) — n(n + 1)] Ak (6.4.10)
or
[k(k+ 1) —n(n + 1)]
(k+1)(k+2)
where £ = 0,1,2,... Note that we still have the two arbitrary constants

Ap and A; that are necessary for the general solution of (6.4.2).
The first few terms of the solution associated with Aq are

A, (6.4.11)

Akg2 =

nn+1) , nr-2)n+1)(n+3) ,
TR 4 g
_n(n=2)(n-4)(n+1)(n+3)(n+5) 5

6l v

up(z) =1~

(6.4.12)

while the first few terms associated with the A; coefficient are

(n=Dn+2) 5 (1= Dn=3)n+2n+4)

3! 5!
_(n=1(n-=3)(n—5)(n+2)(n+4)(n+ 6)1‘7 L
7!

vp(z) =z —

(6.4.13)
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If n is an even positive integer (including n = 0), then the series (6.6.12)
terminates with the term involving z™: the solution is a polynomial of
degree n. Similarly, if n is an odd integer, the series (6.4.13) terminates
with the term involving . Otherwise, for n noninteger the expressions
are infinite series.

For reasons that will become apparent, we restrict ourselves to pos-
itive integers n. Actually, this includes all possible integers because the
negative integer —n — 1 has the same Legendre’s equation and solution
as the positive integer n. These polynomials are Legendre polynomials®
and we may compute them by the power series:

S (2n — 2k)! n—2k

Pa(z) = kzzo(‘l)k TH(n -l =20 (6.4.14)

where m = n/2 or m = (n — 1)/2, depending upon which is an inte-
ger. We have chosen to use (6.4.14) over (6.4.12) or (6.4.13) because
(6.4.14) has the advantage that P,(1) = 1. Table 6.4.1 gives the first
ten Legendre polynomials.

The other solution, the infinite series, is the Legendre function of
the second kind, @, (z). Figure 6.4.2 illustrates the first four Legen-
dre polynomials P,(x) while Figure 6.4.3 gives the first four Legendre
functions of the second kind @,. From this figure we see that Q,(z)
becomes infinite at the points ¢ = 1. As shown earlier, this is impor-
tant because we are only interested in solutions to Legendre’s equation
that are finite over the interval [—1, 1]. On the other hand, in problems
where we exclude the points £ = £1, Legendre functions of the second
kind will appear in the general solution.!°

In the case that n is not an integer, we can construct a solution!!
that remains finite at £ = 1 but not at £ = —1. Furthermore, we can

® Legendre, A. M., 1785: Sur ’attraction des sphéroides homogénes.
Mém. math. phys. présentés a I’Acad. sci. pars divers savants, 10,
411-434. The best reference on Legendre polynomials is given by Hob-
son, E. W., 1965:The Theory of Spherical and FEllipsoidal Harmonics,
Chelsea Publishing Co., New York.

10" See Smythe, W. R., 1950: Static and Dynamic Electricity, McGraw-
Hill, New York, Section 5.215 for an example.

11 See Carrier, G. F., Krook, M., and Pearson, C. E., 1966: Functions
of the Complex Variable: Theory and Technigue, McGraw-Hill, New
York, pp. 212-213.
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Table 6.4.1: The First Ten Legendre Polynomials.

Py(z)=1
Pz)y==z

Py(z) = 3(322 —1)

P3(z) = 3(52% — 3z)

Py(z) = 3(35z* — 3022 + 3)
Ps(z) = %(632° — 702° + 15z)
Ps(z) = £(2312° — 3152* + 10522 — 5)
Pr(z) = (42927 — 6932° + 31523 — 35z)
Ps(z) = 135(64352% — 120122° + 69302 — 126022 + 35)
Po(z) = 135(121552° — 2574027 + 180182° — 46202° + 315z)
Pio(z) = 55(46189x1° — 10939528 + 900902° — 30030z* + 346522 — 63)

construct a solution which is finite at £ = —1 but not at x = 1. Because
our solutions must be finite at both endpoints so that we can use them in
an eigenfunction expansion, we must reject these solutions from further
consideration and are left only with Legendre polynomials. From now
on, we will only consider the properties and uses of these polynomials.

Although we have the series (6.4.14) to compute P,(z), there are
several alternative methods. We obtain the first method, known as
Rodrigues’ formula,'? by writing (6.4.14) in the form

Tl! 2n —2k)! . _
Pa 13 Q"Tl' Z( k)l ((Tl _ 2’67))' gn (6.4.15)
Q”n'd:c" Z( k'(n k)' I (6.4.16)

The last summation is the binomial expansion of (2 — 1)” so that

12 Rodriques, O., 1816: Mémoire sur I’attraction des sphéroides. Cor-
respond. ’Ecole Polytech., 3, 361-385.
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Figure 6.4.2: The first four Legendre functions of the first kind.

1 4n
2"n! dzn

P.(z) = (z% - 1) (6.4.17)

Another method for computing Py (z) involves the use of recurrence
formulas. The first step in finding these formulas is to establish the fact
that

(1+h% = 22h)~/2 = Py(z) + hPi(z) + h2Py(z) + - - - (6.4.18)

The function (1 + A% — 2zh)~1/2 is the generating function for P (z).
We obtain the expansion via the formal binomial expansion

(1+h*—2zh)~Y2 = 14 L(2ch — h?) + 355:(2ch—h%)2 +... (6.4.19)

Upon expanding the terms contained in 2z — A2 and grouping like powers

of h,

(1+h% = 22h)" Y2 =1 4 gh+ (322 — Lp24 ... (6.4.20)
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Figure 6.4.3: The first four Legendre functions of the second kind.

A direct comparison between the coefficients of each power of h and the
Legendre polynomial P,(z) completes the demonstration. Note that
these results hold only if |z| and |h| < 1.

Next we define W(z, h) = (1+ k% —2zh)~/2. A quick check shows
that W (z, h) satisfies the first-order partial differential equation

(1 —2zh+h2)%¥ +(h—x)W =0. (6.4.21)
The substitution of (6.4.18) into (6.4.21) yields

(1 —2zh + h?) i nP(z)h" ' + (h —z) i P,(2)h" = 0. (6.4.22)

n=0
Setting the coefficients of ™ equal to zero, we find that
(n+ 1) Pay1(z) — 2nzPy(z) + (n — 1)Pr_1(2) + Paoa(2) —zPa(z) =0
(6.4.23)
or

(n+1)Prsar(z) — (20 + 1)z Pa(2) + nPar(2) =0 (6.4.24)
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withn=1,2,3,...
Similarly, the first-order partial differential equation
(1-2zh+ h%%—f —hW =0 (6.4.25)
leads to
o] (o)
(1-2zh+ k%)Y Pi(z)h™ = Pa(z)h™+' =0, (6.4.26)
n=0 nz=0

which implies
P, 1(x) — 22 P} (x) + P,_1(z) — Pa(2) = 0. (6.4.27)

Differentiating (6.4.24), we first eliminate P,_;(x) and then P, (z)
from the resulting equations and (6.4.27). This gives two further recur-
rence relationships:

Pi(x)—zPy(z2)—(n+ 1)Py(2) =0, n=0,1,2,... (64.28)
and '
zP.(z)— P,_,(z) —nP,(z)=0, n=1,23,... (6.4.29)
Adding (6.4.28) and (6.4.29), we obtain the more symmetric formula

na1(2) = Pr_i(2z) = (2n+1)Py(x), n=1,23,...| (6.4.30)

Given any two of the polynomials P, y1(z), Po(x) and P,_1(z), (6.4.24)
or (6.4.30) yields the third.

Having determined several methods for finding the Legendre poly-
nomial P,(z), we now turn to the actual orthogonality condition.!® Con-
sider the integral

|Al,|tl<1 (6.4.31)

! d
J:/ z
A VIF+RZ = 2zh /14142 — 2zt

= /_ll[Po(z) +hP(z)+ -+ h"Pp(z)+ -]

X [Po(z) +tPi(z)+ - +t"Po(z) + - -] dz (6.4.32)

00 oo 1
= At t™ P, (2)P,,(x)dz. 6.4.33
3P | P@)Puta) (6.4.33)

13 From Symons, B., 1982: Legendre polynomials and their orthogo-
nality. Math. Gaz., 66, 152-154 with permission.
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On the other hand, if a = (1 + h?)/2h and b = (1 + ¢2)/2t, the integral
J is

J_/l dz (6.4.34)
TS VISR Z2zh /1 12— 22t o

2\/_ \/6—_x\/?>——_5 \/_ \/E———:E+\/Tx
(6.4.35)
VatT+vb+1
T . - e ()
(6.4.36)

But ¢+ 1= (14 k% +2h)/2h = (1 + h)?/2h and a — 1 = (1 — h)?/2h.
After a little algebra,

1 1+ Vht 3

J—mln(l_\/h_) \/_(\/—-i— V(Rt)® + = \/(ht )
(6.4.37)

:2<1+%+h;_tz+...+2}::inl+...>, (6.4.38)

As we noted earlier, the coefficients of A”t™ in this series is f_ll Po(z)
Pp(z) de. If we match the powers of A”t™, the orthogonality condition
is

1 m n
[ B@pa@as={ 5 70 (6.439)

2n+41’

With the orthogonality condition (6.4.39) we are ready to show that
we can represent a function f(z), which is piece-wise differentiable in
the interval (=1, 1), by the series:

f(@)=) AmPm(z), -l1<z<l. (6.4.40)




298 Advanced Engineering Mathematics

To find Am we multiply both sides of (6.4.40) by P,(z) and integrate
from —1 to 1:

/_ S@P(e)dz= Y A /_ Pa(@)Pn(z) da. (6.4.41)

All of the terms on the right side vanish except for n = m because of
the orthogonality condition (6.4.39). Consequently, the coefficient A, is

1 1
An/_1 Pi(z)dz :/;lf(:c)P,,(x) dz (6.4.42)

or

2n+1

A, = 5

/_1 f(z)Pa(z)dz. (6.4.43)

In the special case when f(z) and its first n derivatives are continu-
ous throughout the interval (—1,1), we may use Rodrigues’ formula to
evaluate

/_ S@)Pu(s)do = L /_ 1 f@ e =Dy (6a.4a)

2np! dz”

_ =

T 9npl

/1 (2?2 - 1)"f™(z)dz (6.4.45)
-1

by integrating by parts n times. Consequently,

2n+1 f! o ofn
A, = §r1n!/_l(l—ac?) f™(z)dz. (6.4.46)

A particularly useful result follows from (6.4.46) if f(z) is a polynomial
of degree k. Because all derivatives of f(z) of order n vanish identi-
cally when n > k, A, = 0if n > k. Consequently, any polynomial
of degree k can be expressed as a linear combination of the first k + 1
Legendre polynomials [Py(z), ..., Px(z)]. Another way of viewing this
result is to recognize that any polynomial of degree k is an expansion in
powers of z. When we expand in Legendre polynomials we are merely
regrouping these powers of z into new groups that can be identified as
Py(z), Pi(z), Py(z),..., Pi(z).
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e Example 6.4.1

Let us use Rodrigues’ formula to compute Py(z). From (6.4.17)
with n = 2,

2 2
Py(z) = L d {(acz—l)z]:édd—(:c4—2x2—1):—21-(3.1:2—1).

2291 dz? 22
(6.4.47)

o Example 6.4.2
Let us compute P3(z) from a recurrence relation. From (6.4.24)

with n = 2,
3P3((L‘) — 5.’L‘P2(:L') -+ 2P1(.’L‘) =0. (6448)

But Py(z) = (322 — 1)/2 and Pi(z) = z, so that
3P3(z) = 5z Pa(z)—2Pi(x) = 5z[(3z%—1)/2] -2z = L2352 (6.4.49)

or
Ps(z) = (52 — 3z)/2. (6.4.50)

o Example 6.4.3

We want to show that
1
/ Py(z)dz = 0. (6.4.51)

From (6.4.30),

1 1
(2n+1) /_ Pala)ds = /_ [P = PiyE)ds (6.4.52)

= Payi(2) — Paa(2)], (6.4.53)
= n+1(1)'—Pn—1(1)
- n+1(—1)+Pn—1(_1) =0, (6454)

because P,(1) =1 and P,(-1) = (-1)".
o Example 6.4.4

Let us express f(z) = z? in terms of Legendre polynomials. The
results from (6.4.46) mean that we need only worry about Py(z), Pi(z),
and Py(z):

z? = AQPQ(CL') + APy (.’L’) + A2P2(l‘). (6455)
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Figure 6.4.4: Representation of the function f(z) = 1for 0 < z < 1
and 0 for —1 < z < 0 by various partial summations of its Legendre
polynomial expansion. The dashed lines denote the exact function.

Substituting for the Legendre polynomials,
2¥ = Ag+ Az + 1 4,(32% - 1) (6.4.56)

and

Ao = 2 A1 =0 and Ag = % (6457)

W=

o Example 6.4.5

Let us find the expansion in Legendre polynomials of the function:

)= {

We could have done this expansion as a Fourier series but in the solution
of partial differential equations on a sphere we must make the expansion
in Legendre polynomials.

In this problem, we find that

? —~1<z<0 (6.4.58)

, 0<z<l.

_2n+1

1
Ap = 5 /0 Po(z)de. (6.4.59)
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Therefore,

1 1
A0=§/ lde = 1, Alzg-/ zde =%, (6.4.60)
0 0

1 1
Ag:%/o 2(322-1)de =0 and Ag:%/o L(5a® - 3z)de=-%

(6.4.61)
so that

f(z) = 1Po(z) + §Pi(2) — Ps(z) + 73 Ps(z) +---  (6.4.62)

Figure 6.4.4 illustrates the expansion (6.4.62) where we have used only
the first four terms. As we add each additional term in the orthogonal
expansion, the expansion fits f(z) better in the “least squares” sense
of (6.3.5). The spurious oscillations arise from trying to represent a
discontinuous function by four continuous, oscillatory functions. Even
if we add additional terms, the spurious oscillations will persist although
located nearer to the discontinuity. This is another example of Gibbs
phenomena.l* See Section 2.2.

o Example 6.4.6: Iterative solution of the radiative transfer equation

One of the fundamental equations of astrophysics is the integro-
differential equation that describes radiative transfer (the propagation
of energy by radiative, rather than conductive or convective, processes)
in a gas.

Consider a gas which varies in only one spatial direction that we
divide into infinitesimally thin slabs. As radiation enters a slab, it is
absorbed and scattered. If we assume that all of the radiation undergoes
isotropic scattering, the radiative transfer equation is

dI !
po=1- %/_1 Idy, (6.4.63)
where I is the intensity of the radiation, 7 is the optical depth (a measure
of the absorbing power of the gas and related to the distance that you
have traveled within the gas), u = cos(#), and 6 is the angle at which
radiation enters the slab. In this example, we show how the Fourier-
Legendre expansion!®

I(r,0) = 3 In(7)Pa(n) (6.4.64)
n=0

14 Weyl, H., 1910: Die Gibbs’sche Erscheinung in der Theorie der
Kugelfunktionen. Rend. Circ. Mat. Palermo, 29, 308-321.

15 Chandrasekhar, S., 1944: On the radiative equilibrium of a stellar
atmosphere. Astrophys. J., 99, 180-190. Published by University of
Chicago Press, (©1944.
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may be used to solve (6.4.63). Here I,(7) is the Fourier coefficient in the

Fourier-Legendre expansion involving the Legendre polynomial P,(p).
We begin by substituting (6.4.64) into (6.4.63),

o0

X:: [(n+ 1)P,,+2175;2 IL nPn_1(p)] %13 _ ,,2 I, P.(p) - Ip, (6.4.65)

where we have used (6.4.24) to eliminate pP,(u). Note that only the
Io(7) term remains after integrating because of the orthogonality con-
dition:

1 1
[ 1 Pwan= [ A@Pwd=o, (6.4.66)
-1 -1

if n > 0. Equating the coefficients of the various Legendre polynomials,

n dlh_1  n+1dl4
2n—-1 dr n+3 dr

forn:l,?,...andv

=1, (6.4.67)

dIl

dr
Thus, the solution for I; is I; = constant = 3F/4, where F is the net
integrated flux and an observable quantity.

= 0. (6.4.68)

Forn=1,
dIo 2dl, 3F
=1 = —. 6.4.69
5dr 4 ( )
Therefore,

Ip+ 3L =3Fr+A. (6.4.70)

The next differential equation arises from n = 2 and equals

2dl,  3dI3 _

Because [; is a constant and we only retain Iy, I;, and I in the sim-
plest approximation, we neglect dIs/dr and I, = 0. Thus, the simplest
approximate solution is

Iy=%Fr+A, I=32F and L =0. (6.4.72)

To complete our approximate solution, we must evaluate A. If
we are dealing with a stellar atmosphere where we assume no external
radiation incident on the star, I{0, ) = 0 for —1 < p < 0. Therefore,

/ (Tu)P(u)du—ZI () / Po() Palit) dpt = 52 1 (7).
(6.4.73)
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Taking the limit 7 — 0 and using the boundary condition,

9 1 ) 1
571—3;—11”(0)=/0 1(0,11)Pn(u)a’u=r;)1m(0)/0 Po(p) Prm(p) dp.

(6.4.74)
Thus, we must satisfy, in principle, an infinite set of equations. For
example, for n = 0, 1, and 2,

215(0) = Io(0) + 1 1,(0) — 313(0) + $515(0) + - -~ (6.4.75)
$11(0) = 310(0) + 311(0) + §12(0) — 55 14(0) + - - (6.4.76)

and
20,(0) = $11(0) + £ 15(0) + £13(0) — 35 15(0) + - - -. (6.4.77)

Using I;(0) = 3F/4,

%10(0) + -l-lgla(O) - 31—2]5(0) 4= %F, (6.4.78)
$16(0) + §12(0) — 55 14(0) + --- = 3 F (6.4.79)

and
21,(0) - 313(0) + ZI5(0) + - = ZF. (6.4.80)

Of the two possible Equations (6.4.78)—(6.4.79), Chandrasekhar chose
(6.4.79) from physical considerations. Thus, to first approximation, the
solution is

Hp,r)=3F (T+3)+3Fpu+---. (6.4.81)
Better approximations can be obtained by including more terms; the
interested reader is referred to the original article. In the early 1950s,
Wang and Guth!® improved the procedure for finding the successive
approximations and formulating the approximate boundary conditions.

Problems

Find the first three nonvanishing coefficients in the Legendre polynomial
expansion for the following functions:

_J0, -1<z<0 [ 1/(2¢), lz| < €
l'f(x)_{:v, 0<z<1 2.f(x)_{ 0, e<lz| <1

3. f(z) = Jz|, |z <1 4. f(z) =% |z <1

-1, —-1l<z<0 _J-1, -1<z<0
5'f($)_{1, 0<z<l 6.f(x)..{$7 0<z<l

16 Wang, M. C. and Guth, E., 1951: On the theory of multiple scatter-
ing, particularly of charged particles. Phys. Rev., Ser. 2, 84, 1092-1111.
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7. Use Rodrigues’ formula to show that Py(z) = §(35z* — 3022 + 3).

8. Given Ps(z) = 2% — 223+ 132 and Py(z) from problem 7, use the
recurrence formula for Pyyi1(z) to find Ps(z).

9. Show that (a) Pn(1) =1, (b) Pa(=1) = (=1)", (¢) P2n4+1(0) = 0 and
(d) P2n(0) = (=1)*(2n)!/(22"n!n!).

10. Prove that

[ Pyt = g Ps(a) = P

11. Given!”
2 & cos[(n+ 1)z
o /2[cos(z) — cos(8)]
_2 ™ sin[(n + 3)]
o \/2[cos(8) — cos(z')]
show that the following generalized Fourier series hoid:

V2 coii)e:;)cos(g) =Y Pafcos()]cos [(n+1)t], 0<t<b<m,

Pplcos(8)] =

if we use the eigenfunction y,(z) = cos [(n+ }) 2], 0< z < 7, r(z) = 1
and H( ) is Heaviside’s step function, and

V2 COI:((;)_—Z)COS(t) - Z Pafcos(0)]sin [(n +3)t], 0<b<t<m,
n=0

if we use the eigenfunction y,(z) =sin[(n+31)z],0<z <7, r(z)=1
and H( ) is Heaviside’s step function.

12. The series given in problem 11 are also expansions in Legendre
polynomials. In that light, show that

" _Palcos(9)] sin(9) o sin[(n+3)¢]

0 \/2cos(d) — 2cos(t) n+1i
and
T Py[cos(9)] sin(8) gg = &5 [(n+1)¢
/2 cos(t) — 2 cos(8) n+1i ’

where 0 < t < 7.

17 Hobson, E. W., 1965: The Theory of Spherical and Ellipsoidal Har-
monics, Chelsea Publishing Co., New York, pp. 26-27.
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6.5 ANOTHER SINGULAR STURM-LIOUVILLE PROBLEM:
BESSEL’S EQUATION

In the previous section we discussed the solutions to Legendre’s
equation, especially with regard to their use in orthogonal expansions.

In the section we consider another classic equation, Bessel’s equation!®
22y + oy + (Wit —n?)y =0 (6.5.1)
or p J )
y 2 n
— - _— =0. 6.5.2
dz(zdx>+<px z)y ( )

Once again, our ultimate goal is the use of its solutions in orthogonal ex-
pansions. These orthogonal expansions, in turn, are used in the solution
of partial differential equations in cylindrical coordinates.

A quick check of Bessel’s equation shows that it conforms to the
canonical form of the Sturm-Liouville problem: p(z) = z, g(z) = —n?/=,
r(z) = z, and A = p?. Restricting our attention to the interval [0, L], the
Sturm-Liouville problem involving (6.5.2) is singular because p(0) = 0.
From (6.4.1) in the previous section, the eigenfunctions to a singular
Sturm-Liouville problem will still be orthogonal over the interval [0, L]
if (1) y(z) is finite and zy/(x) is zero at = 0, and (2) y(z) satisfies the
homogeneous boundary condition (6.1.2) at z = L. Consequently, we
will only seek solutions that satisfy these conditions.

We cannot write down the solution to Bessel’s equation in a simple
closed form; as in the case with Legendre’s equation, we must find the
solution by power series. Because we intend to make the expansion
about z = 0 and this point is a regular singular point, we must use the
method of Frobenius, where n is an integer.!® Moreover, because the
quantity n? appears in (6.5.2), we may take n to be nonnegative without
any loss of generality.

To simplify matters, we first find the solution when y = 1; the
solution for p # 1 follows by substituting px for . Consequently, we
seek solutions of the form

o0
y(z) = Z ByzZkte, (6.5.3)
k=0

18 Bessel, F. W., 1824: Untersuchung des Teils der planetarischen
Stérungen, welcher aus der Bewegung der Sonne entsteht. Abh. d. K.
Akad. Wiss. Berlin, 1-52. See Dutka, J., 1995: On the early history
of Bessel functions. Arch. Hist. Ezact Sci., 49, 105-134. The classic
reference on Bessel functions is Watson, G. N., 1966: A Treatise on the
Theory of Bessel Functions, Cambridge University Press, Cambridge.

19 This case is much simpler than for arbitrary n. See Hildebrand, F.
B., 1962: Advanced Calculus for Applications. Prentice-Hall, Englewood
Cliffs, NJ, Section 4.8.



306 Advanced Engineering Mathematics

Figure 6.5.1: It was Friedrich William Bessel’s (1784-1846) appren-
ticeship to the famous mercantile firm of Kulenkamp that ignited his
interest in mathematics and astronomy. As the founder of the Ger-
man school of practical astronomy, Bessel discovered his functions while
studying the problem of planetary motion. Bessel functions arose as
coefficients in one of the series that described the gravitational interac-
tion between the sun and two other planets in elliptic orbit. (Portrait
courtesy of Photo AKG, London.)

Y(z) = (2k +5)Bp? ot (6.5.4)
k=0
and -
y'(z) = Z(?k + 5)(2k + 5 — 1)Bpz?k+e-2, (6.5.5)
k=0

where we formally assume that we can interchange the order of differen-
tiation and summation. The substitution of (6.5.3)—-(6.5.5) into (6.5.1)
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with g =1 yields

S "(2k + 5)(2k + s — 1)Bea®™F* + ) "(2k + 5) Bra®*
k=0 k=0
o0 o0
+ Z ka2k+s+2 —n? Z ka2k+s =0 (6.5.6)
k=0 k=0
or
o0 o0
Z[(?k +5)% — n?] By + Z Bra®*t? = 0. (6.5.7)
k=0 k=0

If we explicitly separate the k = 0 term from the other terms in the first
summation in (6.5.7),

o0 o0
(s> =n?)Bo+ >_[(2m+5)? = n?]Bpa®™ + Y _ Bya™*? = 0. (6.5.8)
m=1 k=0

We now change the dummy integer in the first summation of (6.5.8) by
letting m = k + 1 so that

(s> = n®)Bo + Y _{{(2k + 5 +2)* — n’]Byy1 + Br}e**? = 0. (6.5.9)
k=0

Because (6.5.9) must be true for all 2, each power of £ must vanish
identically. This yields s = #n and

[(2k + 5 +2)2 — n?Biy1 + B = 0. (6.5.10)

Since the difference of the larger indicial root from the lower root equals
the integer 2n, we are only guaranteed a power series solution of the
form (6.5.3) for s = n. If we use this indicial root and the recurrence
formula (6.5.10), this solution, known as the Bessel function of the first
kind of order n and denoted by J,(z), is

s -1 k z/2 n+2k
Ja(z) = ;%z)'— (6.5.11)

To find the second general solution to Bessel’s equation, the one
corresponding to s = —n, the most economical method?? is to express
it in terms of partial derivatives of J,(z) with respect to its order n:

Yo(z) = [6‘]55“”) —(—1)"1%”1/(—’”)] R (6.5.12)

20 See Watson, G. N., 1966: A Treatise on the Theory of Bessel
Functions, Cambridge University Press, Cambridge, Section 3.5 for the
derivation.
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Figure 6.5.2: The first four Bessel functions of the first kind over
0<z<8.

Upon substituting the power series representation (6.5.11) into (6.5.12),

2 ln—l(n— k—1)! 2%k—n
o 1S )
z n+2k
Z - k| (n 12,2): [b(k+1)+¢(k+n+1)], (6.5.13)
where
1/)(m+1):—7+1+%+...+%, (6.5.14)

¥(1) = ~v and 7 is Euler’s constant (0.5772157). In the case n = 0,
the first sum in (6.5.13) disappears. This function Y,(z) is Neumann’s
Bessel function of the second kind of order n. Consequently, the general
solution to (6.5.1) is

y(z) = AJn(pz) + BY, (uz). (6.5.15)

Figure 6.5.2 illustrates the functions Jo(z), J1(z), J2(z), and J3(z) while
Figure 6.5.3 gives Yy(x), Yi(z), Y2(z), and Y3(z).
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Figure 6.5.3: The first four Bessel functions of the second kind over
0<z<8.

An equation which is very similar to (6.5.1) is

,d%y dy 2

E—-i-a: -+ 2%y =0. (6.5.16)
It arises in the solution of partial differential equations in cylindrical
coordinates. If we substitute iz = ¢ (where i = v/—1) into (6.5.16), it

becomes Bessel’s equation:

d? dy dy
2 ay 2 _ 2y, 5
s +tdt+(t n“)y=0. (6.5.17)
Consequently, we may immediately write the solution to (6.5.16) as
y(z) = c1Jn(iz) + c2Yn(ix), (6.5.18)

if n is an integer. Traditionally the solution to (6.5.16) has been written
y(z) = c1In(x) + coKn(x) (6.5.19)
rather than in terms of J,(iz) and Yy (iz), where

= (/24
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Figure 6.5.4: The first four modified Bessel functions of the first kind
over 0 <z < 3.

and
Kn(z) = gi"“ [Jn(iz) + iY, (iz)]. (6.5.21)

The function I,(z) is the modified Bessel function of the first kind, of
order n, while K, () is the modified Bessel function of the second kind,
of order n. Figure 6.5.4 illustrates Iy(z), I1(z), I2(z), and I3(z) while in
Figure 6.5.5 Ko(x), Ki(z), K2(z), and K3(z) have been graphed. Note
that K,(z) has no real zeros while I,,(z) equals zero only at z = 0 for
n>1

As our derivation suggests, modified Bessel functions are related to
ordinary Bessel functions via complex variables. In particular, J,(iz) =
i"I,(z) and I, (iz) = " J,(z) for 2 complex.

Although we have found solutions to Bessel’s equation (6.5.1), as
well as (6.5.16), can we use any of them in an eigenfunction expansion?
From Figures 6.5.2-6.5.5 we see that J,(z) and I,(z) remain finite at
z = 0 while Y,,(z) and K,,(z) do not. Furthermore, the products z.J! (z)
and zI},(z) tend to zero at z = 0. Thus, both J,(z) and I,(x) satisfy
the first requirement of an eigenfunction for a Fourier-Bessel expansion.

What about the second condition that the eigenfunction must sat-
isfy the homogeneous boundary condition (6.1.2) at z = L? From Figure
6.5.4 we see that I,(z) can never satisfy this condition while from Fig-
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Figure 6.5.5: The first four modified Bessel functions of the second
kind over 0 <z < 3.

ure 6.5.2 Jn(x) can. For that reason, we discard I,(z) from further
consideration and continue our analysis only with J,(z).

Before we can derive the expressions for a Fourier-Bessel expansion,
we need to find how J,(z) is related to Jp41(x) and J,_1(z). Assuming

that n is a positive integer, we multiply the series (6.5.11) by " and
then differentiate with respect to z. This gives

d ., N (—1)%(2n + 2k)z2nt2k-1
2" ()] = kzzo( )2£+2kk! (n)+ 5 (6.5.22)
n o -1 k x 2n—1+2k
=z k};)( k!)(n(_/l)+ o (6.5.23)
=z"J,_1(x) (6.5.24)

or

T 8" In(2)] = 2" Ju-s(2) (6.5.25)
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forn=1,2,3,.... Similarly, multiplying (6.5.11) by =", we find that

d—i— [27"Jn(2)] = =27 " Jnya(z) (6.5.26)

forn =0,1,2,3,.... If we now carry out the differentiation on (6.5.25)
and (6.5.26) and divide by the factors %", we have that

T (2) + gJ,.(z) = Jn_1(2) (6.5.27)

and
J.(z) - an(x) = —Jpp1(2). (6.5.28)

Equations (6.3.27)~(6.3.28) immediately yield the recurrence relation-
ships

Jn-1(x) + Jnyi(z) = 2?an(ac) (6.5.29)

and

Jn_l(l‘) - Jn+1(.’L‘) = QJ;(Z') (6.5.30)

forn=1,2,3,... For n = 0, we replace (6.5.30) by Jj(z) = —J1 ().

Let us now construct a Fourier-Bessel series. The exact form of
the expansion depends upon the boundary condition at ¢ = L. There
are three possible cases. One of them is the requirement that y(L) = 0
and results in the condition that J,(uxL) = 0. Another condition is
¥'(L) = 0 and gives J),(uxL) = 0. Finally, if hy(L) + /(L) = 0, then
hJn(peLl) + ped)(ux L) = 0. In all of these cases, the eigenfunction
expansion is the same, namely

f(&) = Apda(uiz), (6.5.31)
k=1
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where g is the kth positive solution of either J, (puxL) = 0, J, (px L) =0
or hdn(pue L) + peJ) (pe L) = 0.

We now need a mechanism for computing A;. We begin by multi-
plying (6.5.31) by «J,(pm) dz and integrate from 0 to L. This yields

<) L L
;Ak/o :an(,uka:)J(,um:c)dacz/O zf(2)In(umz)de. (6.5.32)

From the general orthogonality condition (6.2.1),

L
/0 eI (pr)Jn(pme)de =0 (6.5.33)

if £ # m. Equation (6.5.32) then simplifies to

L L
An / 2J2(4mz) dz = / 2 f(2)Tn (i) dz (6.5.34)
"] 0
or
1 L
Ap = ?J;/o zf(z)Jn(prz) de, (6.5.35)
where
L
Ck-—-/ zJ2(urz)dz (6.5.36)
0

and k has replaced m in (6.5.34).
The factor Cy depends upon the nature of the boundary conditions
at ¢ = L. In all cases we start from Bessel’s equation

’ n?
[} (pez)] + (u%z - ?) Jn(urz) = 0. (6.5.37)

If we multiply both sides of (6.5.37) by 2xJ}, (1txx), the resulting equation
is
d

(ua® = n®) [2(uso)]) = == [e o ()] (6.5.38)

An integration of (6.5.38) from 0 to L, followed by the subsequent use
of integration by parts, results in

L L
(i =)o) - 2 [ 272uen) do = - T |
(6.5.39)
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Because J,(0) = 0 for n > 0, Jo(0) = 1 and «J)(z) = 0 at « = 0, the
contribution from the lower limits vanishes. Thus,

L
Cy :/ J:J,f(,ukz) dz (6.5.40)
0
1
= oz (207 = )T D) 4 P D)] (65.40)
k
Because n
Tn(uez) = —Jn(pez) = prdns1(uiz) (6.5.42)

from (6.5.28), C} becomes

Cr = 3L2J75 1 (e L), (6.5.43)

if Jn(pxl) = 0. Otherwise, if J/ (prL) = 0, then

piL?
Ci = -—~—J2(,ukL) (6.5.44)

Finally,

R - n 4 L7
=B o J2 (L), (6.5.45)
k

if ppJy(peL) = —hJn(prL).

All of the preceding results must be slightly modified when n = 0
and the boundary condition is Jy(urL) = 0 or ppJi(pxL) = 0. This
modification results from the additional eigenvalue pg = 0 being present
and we must add the extra term Ag to the expansion. For this case the
series reads

f)= Ao+ > Aedo(mez), (6.5.46)
k=1
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where the equation for finding Ay is

L
= %/o f(z)zdz (6.5.47)

and (6.5.35) and (6.5.44) with n = 0 give the remaining coefficients.
e Example 6.5.1

Starting with Bessel’s equation, we want to show that the solution

to
-2 2 _ p2e2
Y2y (b2c2x2°_2 +E 2 ) y=0 (6.5.48)
z T
is
y(z) = Az®J, (bx®) + Bz®Y, (bz°), (6.5.49)

provided that bz° > 0 so that Y, (bz®) exists.
The general solution to

52 22 74 5— +(E-nH)p=0 (6.5.50)

18
n= AJ,(&) + BY,(). (6.5.51)
If we now let n = y(z)/z® and € = bz®, then

d _dxd zl=c d

P e (6.5.52)

d2 .’L‘2-2c d2 (c_ 1)1.1—2c d
de? = 22 de? b2c? de’ (6.5.53)

d ryy 1 dy a

dz (x_“) T zidr  geti? (6.5.54)

nd 1dy 2 dy a(l+a)

¥y _ Yy a ay all+a
7 (5) = gt g T e (6.5.55)

Substituting (6.5.52)—(6.5.55) into (6.5.51) and simplifying, yields the
desired result.

e Example 6.5.2
We want to show that

227! (x) = (n? = n = 22)Jn(z) + zJns1(2). (6.5.56)
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From (6.5.28),
J (z) = %Jn(x) — Tnp1(2), (6.5.57)

Ti(@) = =5 Ju(@) + 2 T4(2) = T 4a(a) (6.5.58)
and
@) = =25 Ta(@) + 2 [210(@) = Jasa(2)]

_ [Jn(z)—n+1

J,,+1(x)] (6.5.59)

after using (6.5.27) and (6.5.28). Simplifying,

J(z) = ("Zx; . 1) Jn(z) + ﬁ;—@ (6.5.60)

After multiplying (6.5.60) by z?, we obtain (6.5.56).
e Example 6.5.3

Show that
/ 2% J3(z) dz = a®J3(a) — 2a* Ju(a). (6.5.61)
0

We begin by integrating (6.5.61) by parts. If u = z? and dv =
z3J,(z) dz, then

a a
/ 25 12(2) do = 25J5(2)[ - 2 / 24 J5(2) de, (6.5.62)
0 0

because d{z3J5(x)]/dz = z2J5(z) by (6.5.25). Finally, since z%Ja(z) =
d[z*J4(z)]/dz by (6.5.25),

/a £®Jo(z) de = a®J3(a)— 2x4J4(:c)|g = a®J3(a) — 2a*J4(a). (6.5.63)
0

o Example 6.5.4

Let us expand f(z) = 2,0 < z < 1, in the series

f=) =) Ay (uix), (6.5.64)
k=1



The Sturm-Liouville Problem 317

1.25 Y T T T T
1.00 .
0.75
0.50
0.25

0.00

-0.25
1.25 d T M T v T T v T T T T

1.00
0.75 .
0.50 .
0.25 [

0.00

four terms

00 02 04 06 08 1000 02 04 06 08 10

-0.256

Figure 6.5.6: The Fourier-Bessel series representation (6.5.68) for
f(z) = z, 0 < £ < 1, when we truncate the series so that it includes
only the first, first two, first three, and first four terms.

where p; denotes the kth zero of Ji(y). From (6.5.35) and (6.5.43),

92 1
Ag = —/ 22 Jy(urz) dr. 6.5.65
k Jzz(ﬂk) o l(ﬂk ) ( )
However, from (6.5.25),
% [z272(z)] = 2% J1(2), (6.5.66)
if n = 2. Therefore, (6.5.65) becomes
222 J5(z) |M* 2
= = 6.5.67
TR |, meda(p) ( )
and the resulting expansion is
x_22 Slme) g g (6.5.68)

ped2(px)’

Figure 6.5.6 shows the Fourier-Bessel expansion of f(z) = z in truncated
form when we only include one, two, three, and four terms.
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Figure 6.5.7: The Fourier-Bessel series representation (6.5.79) for
f(z) = 2, 0 < z < 1, when we truncate the series so that it includes
only the first, first two, first three, and first four terms.

e Example 6.5.5

Let us expand the function f(z) = 2%, 0 < z < 1, in the series
f(z) =Y Ardo(uz), (6.5.69)
k=1

where p; denotes the kth positive zero of Jo(g). From (6.5.35) and
(6.5.43),

2 1
Ap = ——o 3J dz. 6.5.70
= Ty, 2 (6570

If we let t = ppz, the integration (6.5.70) becomes

2 Bk
Ap = ———/ t3Jo(2) dt. 6.5.71
© T2 () Jo o) ( )

We now let u = t? and dv = tJo(¢) dt so that integration by parts results
in
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2 123
Ap = ——— |31 (t “k—2/ 27,(t dt] 6.5.72
g /tiJf(uk)[ 1) 0 (1) ( )
2 3 /uk 2 ]
= |3 J -2 2J1(t) dt], 6.5.73
ﬂlez(Hk) [#k l(luk) o 1( ) ( )

because v = tJ1(¢) from (6.5.25). If we integrate by parts once more,
we find that

2
A = m I:/lzjl(l—‘k) — Qp%Jg(pk):l (6.5.74)
__ 2 [Jilem) _ 2J2(pk)
- J{"(uk)[ e % ] (6.5.75)

However, from (6.5.29) with n = 1,

Ti(pe) = sok [J2(pr) + Jo(ue)] (6.5.76)
Ja(pr) = M, (6.5.77)
Bk

because Jo(ur) = 0. Therefore,

2(#% - 4)J1(pr)
Ap = —E—rt 2 6.5.78
¢ pJ7 (1k) ( )
and
(#i — 9)Jo(urz)
x '—22 , O<e<l1. 6.5.79
k=1 3J1 (k) ( )

Figure 6.5.7 shows the representation of z? by the Fourier-Bessel series
(6.5.79) when we truncate it so that it includes only one, two, three, or
four terms. As we add each additional term in the orthogonal expansion,
the expansion fits f(z) better in the “least squares” sense of (6.3.5).

Problems

1. Show from the series solution that

% [Jo(k.’l:)] = —le(k(L').

From the recurrence formulas, show these following relations:
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2.
2Jg () = J2(z) — Jo(z)
3.
Ja(z) = Jg' () — Jo(z)/
+ " JO(J") 2 '
Jg'(z) = - + (;2— - 1) Jo(z)
5.
Bie) 1 @) _ 2 Jol@) _ 2 Jofa)
Ji(z) =z Ji(x) z  Ji(z) =z Ji(x)
6.
Ja(z) = (‘:_3 - S) Ji(z) - (i—;‘ - 1) Jo(®)
7.
n(n? —
Jnga2(z) = [2n +1- 2_(—1,2—1—)] In(z) + 2(n + 1)J)) ()
8. g A
J3(.’L‘) = <F - 1) Jl(:c) - ;Jo(l‘)
9.

4J;/(z) = Jn=2(z) = 2Jn(z) + Jnt2(z)

10. Show that the maximum and minimum values of J,(z) occur when

_ nJp(z) .= nJn(z)
Jny1(z)’ Jn-1(z)’

and Jn_l(il?) = Jn+1(17).

Show that
11. 4
= [2273(2z)] = —zJ3(2z) + 22%T5(22)

12. d
dz [2Jo(2?)] = Jo(z®) — 22°J1(2?)
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13.
/x3J2(3ac) dz = $23J3(3z) + C
14.
/z“2J3(2:c) de = —1272J5(22) + C
15.
/x In(z)Jo(z) dz = Jo(z) + zIn(z)Ji(z) + C ‘
16. . 27, (ka)
_ a“Jilra
/0 zJo(ke)dz = B v—
17. )
/ 2(1 — z2)Jo(kz)dz = Jl(lc) Jo(k')
0
18.

! k-4 2
/0 £ Jo(kz) dz = T =1 (k) + 15 To(k)

19. Show that

Jo(prz)
1=2 0<z<l,
Z Hle (px)’

where py is the kth positive root of Jo(u) = 0.

20. Show that

(o]

1—:1: Z Jo uk:c)

3
/Jkl

0<e<l,
=1

where p;, is the kth positive root of Jo(u) = 0.

21. Show that

J1 /.tkil?)
4z — -1 0 < 2,
z—a3 631#10]0(2/%) Lr <

where i is the kth positive root of J1(2p) = 0.
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22. Show that

2§: - 8)]1 /lkl')

, 0<e<l,
pa Ja(pe)

=1

where pj is the kth positive root of J;(u) = 0.

23. Using the relationship?!

’ BJ,(aa)J}(Ba) — aad,(Ba)],
./o J,(ar)J,(Br)rdr = 2 ()], a) ag(: (Ba) (Ota)
show that
Jo(bz) — Jo(ba) _ 26° < Jo(pex)
Jo(ba) T oa =1 /‘k(/"i - bz)Jl(pka)’ 0<z<a,

where g is the kth positive root of Jo(pa) = 0 and b is a constant.

24. Given the definite integral®?

H(t—1z) _ Qi sin(prt)Jo(pr )

, O<ze<l, 0<t<1,
peJE(pe)

where pj is the kth positive root of Jo(p) = 0 and H( ) is Heaviside’s
step function.

25. Given the definite integral?3

a sin (av/b? + ¢?)
Jo [0Va? — 2?2 ) dz = ——co=7, b>0
/0 cos(cz) Jo ( a?—z ) T N

21 Watson, G. N., 1966: A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, Section 5.11, Equation (8).

22 Gradshteyn, I. S. and Ryzhik, I. M., 1965: Table of Integrals, Series,
and Products, Academic Press, New York. See Section 6.567, formula 1
with v =0 and p = -1/2.

23 Ibid. See Section 6.677, formula 6.
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show that

cosh (b\/t"’ - 1.2) H(t | 9 i sin (t Bi — bz) Jo(prz)
—r) = — ,
12 — g2 a? &=\ Ju — b2 J{(pra)

where 0 < £ < a, pj is the kth positive root of Jo(pa) = 0, H( ) is
Heaviside’s step function, and b is a constant.

26. Using the integral definition of the Bessel function®* for J(z):

2 [ tsin(zt)
Jl(z)_; ; z\/—-——l—_—t;dt, z>0,

show that

t\/ﬁz‘—_—_ (t—2)= 2J1<—)' ("—z—t> 0<z<L,

where H( ) is Heaviside’s step function. [Hint: Treat this as a Fourier
half-range sine expansion.]

24 Ibid. See Section 3.753, formula 5.






Chapter 7
The Wave Equation

In this chapter we shall study problems associated with the equation

0%u 0’u

— =, (7.0.1)

ot? Ox?
where u = u(z,t), z and ¢ are the two independent variables, and ¢
is a constant. This equation, called the wave equation, serves as the
prototype for a wider class of hyperbolic equations:

0%u 0%u 8%u du Ou
a(z,t)w + b(m,t)m + c(:c,t)—aTz— =f (:c,t, U gy -8_t-) , (7.0.2)

where b2 > 4ac. It arises in the study of many important physical prob-
lems involving wave propagation, such as the transverse vibrations of
an elastic string and the longitudinal vibrations or torsional oscillations
of a rod.

7.1 THE VIBRATING STRING

The motion of a string of length L and constant density p (mass per
unit length) provides a simple example of the wave equation. See Fig-
ure 7.1.1. Assuming that the equilibrium position of the string and the
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Figure 7.1.1: The vibrating string.

interval [0, L] along the z-axis coincide, the equation of motion which
describes the vertical displacement u(z,t) of the string follows by con-
sidering a short piece whose ends are at z and z + Az and applying
Newton’s second law.

If we assume that the string is perfectly flexible and offers no re-
sistance to bending, Figure 7.1.1 shows the forces on an element of the
string. Applying Newton’s second law in the z-direction, the sum of

forces equals
=T(z)cos(ay) + T(x + Az) cos(az), (7.1.1)

where T'(z) denotes the tensile force. If we assume that a point on the
string moves only in the vertical direction, the sum of forces in (7.1.1)
equals zero and the horizontal component of tension is constant:

~T(z)cos(ay) + T(z + Az) cos(az) =0 (7.1.2)
and
T(z) cos(ay) = T(z + Az) cos(az) = T, a constant. (7.1.3)

If gravity is the only external force, Newton’s law in the vertical
direction gives

2
=T(z)sin(a;) + T(z + Az)sin(az) — mg = mgT;t, (7.1.4)

where u;; is the acceleration. Because

T T
= = 7.1.
T(z) cos(ar) and T(z+ Axz) cos(aa)’ (7.1.5)
then
0%u

—Ttan(ay) + T tan(az) — pAzg = pAx— (7.1.6)

ot?’
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The quantities tan(a;) and tan(as) equal the slope of the string at =
and z + Az, respectively; that is,

Ou(z,t 0 Az, t
tan(ay) = ué—zz and tan(ag) = u_(.r%%). (7.1.7)
Substituting (7.1.7) into (7.1.6),
Ou(z + Az,t)  Ou(z,t)] _ d%u
T[ 52 -~ or = pAzx T +g9). (7.1.8)

After dividing through by Az, we have a difference quotient on the left:

T [du(z+ Az,t) du(z,t)] _ 0%u
A:c[ oz T T | TP\aEtY) (7:1.9)

In the limit as Az — 0, this difference quotient becomes a partial deriva-
tive with respect to z, leaving Newton’s second law in the form

Pu  H%u

or
Py 10% ¢
22~ 2 o + 2 (7.1.11)
where ¢? = T/p. Because u is generally much larger than g, we can
neglect the last term, giving the equation of the vibrating string as
2 2
Ou 10w (7.1.12)
8z? ¢ ot?
Equation (7.1.12) is the one-dimensional wave equation.

As a second example! we derive the threadline equation which de-
scribes how a thread composed of yard vibrates as we draw it between
two eyelets spaced a distance L apart. We assume that the tension in
the thread is constant, the vibrations are small, the thread is perfectly
flexible, the effects of gravity and air drag are negligible and the mass
of the thread per unit length is constant. Unlike the vibrating string
between two fixed ends, we draw the threadline through the eyelets at
a speed V so that a segment of thread experiences motion in both the
z and y directions as it vibrates about its equilibrium position. The
eyelets may move in the vertical direction.

1 Reprinted from J. Franklin Inst., 275, Swope, R. D., and W. F.
Ames, Vibrations of a moving threadline, 36-55, ©1963, with kind
permission from Elsevier Science Ltd, The Boulevard, Langford Lane,
Kidlington OX5 1GB, UK.
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From Newton’s second law:

d dy
i (mz) = Z forces, (7.1.13)

where m is the mass of the thread. But

dy 0y  dzdy

Because dz/dt =V
dy Jdy Sy
=5t 5 (7.1.15)

and

d dy 0 dy Oy o] Oy
E( dt) (‘)t[ <8t+V6 )]+V6_[ (— dx >]
Because both m and .V are constant, it follows that

2 2 2
4 (rn@) mZY 4 omy LY 4 g2 Y (7.1.17)

dt dt ot? Ox at oz?

The sum of the forces again equals

o?
T S Az (7.1.18)
so that the threadline equation is
82 &%y 6 N y
* 2y o 5
y 2 )
Yol + 2V6 En (V ) 5z =0, (7.1.20)

where p is the density of the thread. Although (7.1.20) is not the classic
wave equation given in (7.1.12), it is an example of a hyperbolic equa-
tion. As we shall see, the solutions to hyperbolic equations share the
same behavior, namely, wave-like motion.

7.2 INITIAL CONDITIONS: CAUCHY PROBLEM

Any mathematical model of a physical process must include not
only the governing differential equation but also any conditions that are
imposed on the solution. For example, in time-dependent problems the
solution must conform to the initial condition of the modeled process.
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Finding those solutions that satisfy the initial conditions (initial data)
is called the Cauchy problem.

In the case of partial differential equations with second-order deriva-
tives in time, such as the wave equation, we correctly pose the Cauchy
boundary condition if we specify the value of the solution u(z,t) = f(¢)
and its time derivative u;(z,%p) = ¢(¢) at some initial time g, usually
taken to be to = 0. The functions f(t) and g(t) are called the Cauchy
data. We require two conditions involving time because the differential
equation has two time derivatives.

In addition to the initial conditions, we must specify boundary con-
ditions in the spatial direction. For example, we may require that the
end of the string be fixed. In the next chapter, we discuss the boundary
conditions in greater depth. However, one boundary condition that is
uniquely associated with the wave equation on an open domain is the
radiation condition. It requires that the waves radiate off to infinity and
remain finite as they propagate there. _

In summary, the Cauchy boundary condition, along with the ap-
propriate spatial boundary conditions, uniquely determines the solution
to the wave equation; any additional information is extraneous. Having
developed the differential equations and initial conditions necessary to
solve the wave equation, let us now turn to the actual methods used to
solve this equation.

7.3 SEPARATION OF VARIABLES

We begin by presenting the most classical method of solving the
wave equation: separation of variables. Despite its current widespread
use, its initial application to the vibrating string problem was immersed
in controversy involving the application of a half-range Fourier sine se-
ries to represent the initial conditions. On one side, Daniel Bernoulli
claimed (in 1775) that he could represent any general initial condition
with this technique. To d’Alembert and Euler, however, the half-range
Fourier sine series, with its period of 2L, could not possibly represent
any arbitrary function.? However, by 1807 Bernoulli was proven correct
by the use of separation of variables in the heat conduction problem and
it rapidly grew in acceptance.® In the following examples we show how
to apply this method to solve the wave equation.

2 See Hobson, E. W., 1957: The Theory of Functions of a Real Vari-
able and the Theory of Fourier’s Series, Vol. 2, Dover Publishers, Mi-
neola, NY, Sections 312-314.

3 Liitzen, J., 1984: Sturm and Liouville’s work on ordinary linear
differential equations. The emergence of Sturm-Liouville theory. Arch.
Hist. Ezact Sci., 29, 317.
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Separation of variables consists of four distinct steps. The basic
idea is to convert a second-order partial differential equation into two
ordinary differential equations. First, we assume that the solution equals
the product X(z)T(t). Direct substitution into the partial differential
equation and boundary conditions yields two ordinary differential equa-
tions and the corresponding boundary conditions. Step two involves
solving a boundary-value problem of the Sturm-Liouville type. In step
three we find the corresponding time dependence. Finally we construct
the complete solution as a sum of all product solutions. Upon apply-
ing the initial conditions, we have an eigenfunction expansion and must
compute the Fourier coefficients. The substitution of these coefficients
into the summation yields the final solution.

o Example 7.3.1

Let us solve the wave equation for the special case when we clamp
the string at x = 0 and * = L. Mathematically, we find the solution to
the wave equation

8%u 262u
i S
ot? ox?’

which satisfies the initial conditions

O<z< L0t (7.3.1)

u(z,0) = f(z), % =g(z), O<z<lL, (7.3.2)
and the boundary conditions
u(0,t)y=u(L,t)=0, 0<t. (7.3.3)

For the present, we have left the Cauchy data quite arbitrary.
We begin by assuming that the solution u(z,t) equals the product
X(z)T(t). (Here T no longer denotes tension.) Because

2
% = X(2)T"(t) (7.3.4)
and o
5;% = X" ()T (t), (7.3.5)
the wave equation becomes
AX'"T=T"X (7.3.6)
or Y/l TII
= (7.3.7)

X ~ T
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after dividing through by ¢2X(z)T'(t). Because the left side of (7.3.7)
depends only on z and the right side depends only on ¢, both sides must
equal a constant. We write this separation constant —\ and separate
(7.3.7) into two ordinary differential equations:

T"+AAT =0, 0<t (7.3.8)

and
X"+AX =0, 0<z<L. (7.3.9)

We now rewrite the boundary conditions in terms of X(z) by noting
that the boundary conditions become

u(0,t) = X(0)T(¢) =0 (7.3.10)

and

w(L,t) = X(L)T(t) = 0 (7.3.11)

for 0 < ¢. If we were to choose T(t) = 0, then we would have a trivial
solution for u(xz,t). Consequently,

X(0)=X(L) =0. (7.3.12)

This concludes the first step.

In the second step we consider three possible values for A: A < 0,
A =0, and A > 0. We begin by assuming that A = —m? < 0. We have
chosen A = —m? so that square roots of A will not appear later on and
m is real. The general solution of (7.3.9) is

X(x) = Acosh(me) + B sinh(mz). (7.3.13)

Because X(0) = 0, A = 0. On the other hand, X(L) = Bsinh(mL) = 0.
The function sinh(mL) does not equal to zero since mL # 0 (recall
m > 0). Thus, B = 0 and we have trivial solutions for a positive
separation constant.

If A = 0, the general solution now becomes

X(z) = C + Dz. (7.3.14)

The condition X(0) = 0 yields C = 0 while X(L) = 0 yields DL = 0
“or D = 0. Hence, we have a trivial solution for the A = 0 separation
constant.

If A = k% > 0, the general solution to (7.3.9) is

X(z) = Ecos(kz) + Fsin(kz). (7.3.15)

The condition X(0) = 0 results in £ = 0. On the other hand, X(L) =
Fsin(kL) = 0. If we wish to avoid a trivial solution in this case (F # 0),
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sin(kL) = 0or k, = nw/L and A, = n?x?/L%. The z-dependence equals
Xn(z) = Fysin(nrz/L). We have added the n subscript to k¥ and A to
indicate that these quantities depend on n. This concludes the second
step.

Turning to (7.3.8) for the third step, the solution to the T'(t) equa-
tion is

Tn(t) = Gp cos(knct) + Hy sin(kpct), (7.3.16)

where G, and H, are arbitrary constants. For each n = 1,2,3,.. .,
a particular solution that satisfies the wave equation and prescribed
boundary conditions is

up(z,t) = Fj, sin (%a—:) [Gn cos (mlr;ct) + Hysin <n7£ct)] (7.3.17)

or

un(z,t) = sin ("Lﬂ) [An cos (m]‘;d) + B, sin (mlrlct)], (7.3.18)

where A, = F,,Gp, and B, = F,H,. This concludes the third step.

An alternative method of finding the product solution is to treat
(7.3.9) along with X(0) = X(L) = 0 as a Sturm-Liouville problem.
Consequently, by solving the Sturm-Liouville problem and finding the
corresponding eigenvalue ), and eigenfunction, we obtain the spatial
dependence. Next we solve for 7,(t). Finally we form the product
solution u,(x,t) by multiplying the eigenfunction times the temporal
dependence.

For any choice of 4, and B, (7.3.18) is a solution of the partial dif-
ferential equation (7.3.1) and also satisfies the end boundary conditions
(7.3.3). Therefore, any linear combination of the u,(z,t) also satisfies
the partial differential equation and the boundary conditions. In mak-
ing this linear combination we need no new constants because A, and
B,, -are still arbitrary. We have, then,

u(e,t) = isin (=) [A,, cos ("’ft) + B, sin ("’2“)] (7.3.19)

n=1

Our example of using particular solutions to build up the general
solution illustrates the powerful principle of linear superposition, which
is applicable to any linear system. This principle states that if u; and us
are any solutions of a linear homogeneous partial differential equation
in any region, then u = cqu; + caus is also a solution of that equation
in that region, where ¢; and ¢, are any constants. We can generalize
this to an infinite sum. It is extremely imporiant because it allows
us to construct general solutions to partial differential equations from
particular solutions to the same problem.
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Our fourth and final task remains to determine A, and B,. At
t=0,

u(z, 0) = i Ay sin ("—Zﬁ) = f(z) (7.3.20)
n=1
and w
us(z,0) = 7‘2 E}JF—CB,, sin (%) = ¢(2). (7.3.21)

Both of these series are Fourier half-range sine expansions over the in-
terval (0, L). Applying the results from Section 2.3,

2 (L . (nTT
Ap = _I:/o f(z)sin (T) dz (7.3.22)
and L
nmwe 2 . [(nTE
_L—Bn = f/o g(z)sin (—L—) dz (7.3.23)
or L
2 . (N7
B, = — | g(z)sin (T) dr. (7.3.24)
As an example, let us take the initial conditions:
0, 0<e<L/4
4h (2 - 1), L/A<x<L/?2
f(z) = (é‘ ;‘) (7.3.25)
4h (3 -1%), L/2<z<3L/4
0, 3L/4<z< L
and
g(x) =0, 0<z<L. (7.3.26)

In this particular example, B, = 0 for all n because g(z) = 0. On the
other hand,

8h [L12 /2 1\ . (nmz
An_f_/;/‘l (Z_Z)SIH(T) dz
+.8.ﬁ/3”“ 32 g (222)
LJy, \a77)"\T
8h . [nw . [ 3nw . /nmT
=3 [2 sin (T) —sin (-—:1—) —sin (T)] (7.3.28)
n

"”)] (7.3.29)

dz (7.3.27)
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_ ;33”_ - (ﬂ) sin? (ﬂ) (7.3.31)
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Figure 7.3.1: The vibration of a string u(x,t)/h at various positions
z/L at the times ¢t/L = 0,0.2,0.4,0.6,0.8, and 1. For times 1 < ¢t/L <
2 the pictures appear in reverse order.

because sin(A4)+sin(B) = 2sin[4(A+B)] cos[3(A—B)] and 1—cos(24) =
25sin?(A). Therefore,

u(z,t) = §2—h i sin (ﬂ) sin? (ﬂ) L sin (m) cos (mrct)
’ 2 —~ 2 8 / n? L L )

(7.3.32)

Because sin(nr/2) vanishes for n even, so does A,. If (7.3.32) were
evaluated on a computer, considerable time and effort would be wasted.
Consequently it is preferable to rewrite (7.3.32) so that we eliminate
these vanishing terms. The most convenient method introduces the
general expression n = 2m—1 for any odd integer, where m = 1,2,3, ..
and notes that sin[(2m—1)7/2] = (—=1)™*!. Therefore, (7.3.32) becomes

i 2m)'"+1 . [(Qms—l)w]
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solution

time distance
[ o A o)

Figure 7.3.2: Two-dimensional plot of the vibration of a string u(z,t)/
h at various times ct/L and positions z/L.

o 2 0me] o [En=0mt]

Although we have completely solved the problem, it is useful to
rewrite (7.3.33) as

u(z,t) = % i Apn {sin [—T%r-(x - ct)] + sin [%(z + ct)] } (7.3.34)

through the application of the trigonometric identity sin(A)cos(B) =
lsin(A — B) + §sin(A + B). From general physics we find expressions
like sin[k, (z — ct)] or sin(kz — wt) arising in studies of simple wave mo-
tions. The quantity sin(kz — wt) is the mathematical description of a
propagating wave in the sense that we must move to the right at the
speed c if we wish to keep in the same position relative to the nearest
crest and trough. The quantities k, w, and ¢ are the wavenumber, fre-
quency, and phase speed or wave-velocity, respectively. The relationship
w = kc holds between the frequency and phase speed.

It may seem paradoxical that we are talking about traveling waves
in a problem dealing with waves confined on a string of length L. Ac-
tually we are dealing with standing waves because at the same time
that a wave is propagating to the right its mirror image is running to
the left so that there is no resultant progressive wave motion. Figures
7.3.1 and 7.3.2 illustrate our solution; Figure 7.3.1 gives various cross
sections of the continuous solution plotted in Figure 7.3.2. The single
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large peak at ¢t = 0 breaks into two smaller peaks which race towards
the two ends. At each end, they reflect and turn upside down as they
propagate back towards £ = L/2 at ct/L = 1. This large, negative peak
at z = L/2 again breaks apart, with the two smaller peaks propagating
towards the endpoints. They reflect and again become positive peaks
as they propagate back to = L/2 at ct/L = 2. After that time, the
whole process repeats itself.

An important dimension to the vibrating string problem is the fact
that the wavenumber k,, is not a free parameter but has been restricted
to the values of nw/L. This restriction on wavenumber is common in
wave problems dealing with limited domains (for example, a building,
ship, lake, or planet) and these oscillations are given the special name
of normal modes or natural vibrations.

In our problem of the vibrating string, all of the components prop-
agate with the same phase speed. That is, all of the waves, regardless
of wavenumber k,, will move the characteristic distance eAt or —cAt
after the time interval At has elapsed. In the next example we will see
that this is not always true.

o Example 7.3.2: Dispersion

In the preceding example, the solution to the vibrating string prob-
lem consisted of two simple waves, each propagating with a phase speed
¢ to the right and left. In problems where the equations of motion are
a little more complicated than (7.3.1), all of the harmonics no longer
propagate with the same phase speed but at a speed that depends upon
the wavenumber. In such systems the phase relation varies between the
harmonics and these systems are referred to as dispersive.

A modification of the vibrating string problem provides a simple
illustration. We now subject each element of the string to an additional
applied force which is proportional to its displacement:

u 0%

oz~ © 9z2
where h > 0 is constant. For example, if we embed the string in a thin
sheet of rubber, then in addition to the restoring force due to tension,
there will be a restoring force due to the rubber on each portion of
the string. From its use in the quantum mechanics of “scalar” mesons,
(7.3.35) is often referred to as the Klein-Gordon equation.

We shall again look for particular solutions of the form u(z,t) =
X(z)T(t). This time, however,

XT" - X"T +hXT =0 (7.3.36)

hu, 0<z<L,0<t, (7.3.35)

or
TII h X/I
=t 5=—=- .3.37
arte=x=h (7.3.37)
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Figure 7.3.3: The vibration of a string u(x,t)/h embedded in a thin
sheet of rubber at various positions z/L at the times c¢t/L =0, 0.2, 0.4,
0.6, 0.8, and 1 for hL?/c? = 10. The same parameters were used as in
Figure 7.3.1.

which leads to two ordinary differential equations
X"4+2X =0 (7.3.38)

and
T" + (Ac? + R)T = 0. (7.3.39)

If we attach the string at £ = 0 and « = L, the X(z) solution is

Xna(z) =sin (E%;E) (7.3.40)

with k, = n7/L and A, = n?7%/L%. On the other hand, the T'(t)
solution becomes

Tn(t) = Ay, cos ( k2¢2 + ht) + By sin ( k2e? + ht) (7.3.41)
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solution

time distance
0 0

Figure 7.3.4: The two-dimensional plot of the vibration of a string
u(z,t)/h embedded in a thin sheet of rubber at various times et/L and
positions z/L for hL?/c? = 10.

so that the product solution is

— sin (™% 2,2 ; 2,2

up(z,t) =sin ( 7 ) [An cos ( k2c? + ht) + B, sin ( kic2+h )]
(7.3.42)

Finally, the general solution becomes

u(z,t) = isin (_n_?) [An cos ( k2c? + ht)

n=1

+ B, sin ( k22 + ht)] (7.3.43)

from the principle of linear superposition. Let us consider the case when
B, = 0. Then we can write (7.3.43)

u(z,t) = i % {sin (kna:+ k2e? + ht) +sin (k,,:c —\VkicZ+h )]

n=1
(7.3.44)
Comparing our results with (7.3.34), the distance that a particular mode
k, moves during the time interval At depends not only upon external
parameters such as h, the tension and density of the string, but also
upon its wavenumber (or equivalently, wavelength). Furthermore, the
frequency of a particular harmonic is larger than that when h = 0.
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This result is not surprising, because the added stiffness of the medium
should increase the natural frequencies.

The importance of dispersion lies in the fact that if the solution
u(z,t) is a superposition of progressive waves in the same direction,
then the phase relationship between the different harmonics will change
with time. Because most signals consist of an infinite series of these
progressive waves, dispersion causes the signal to become garbled. We
show this by comparing the solution (7.3.43) given in Figures 7.3.3 and
7.3.4 for the initial conditions (7.3.25) and (7.3.26) with AL?/c* = 10 to
the results given in Figures 7.3.1 and 7.3.2. Note how garbled the picture
becomes at ct/L = 2 in Figure 7.3.4 compared to the nondispersive
solution at the same time in Figure 7.3.2.

o Example 7.3.3: Damped wave equation

In the previous example a slight modification of the wave equation
resulted in a wave solution where each Fourier harmonic propagates
with its own particular phase speed. In this example we introduce a
modification of the wave equation that will result not only in dispersive
waves but also in the exponential decay of the amplitude as the wave
propagates.

So far we have neglected the reaction of the surrounding medium
(air or water, for example) on the motion of the string. For small-
amplitude motions this reaction opposes the motion of each element of
the string and is proportional to the element’s velocity. The equation
of motion, when we account for the tension and friction in the medium
but not its stiffness or internal friction, is

2 2
‘Z%Hh%it‘-:c?%, 0<z<L,0<t. (7.3.45)
Because (7.3.45) first arose in the mathematical description of the tele-
graph,? it is generally known as the equation of telegraphy. The effect
of friction is, of course, to damp out the free vibration.

Let us assume a solution of the form u(z,t) = X(z)T(t) and sepa-
rate the variables to obtain the two ordinary differential equations:

X" +AX =0 (7.3.46)

and
T" +2hT" + Ac*T =0 (7.3.47)

4 The first published solution was by Kirchhoff, G., 1857: Uber die
Bewegung der Electritat in Drahten. Ann. Phys. Chem., 100, 193-217.
English translation: Kirchhoff, G., 1857: On the motion of electricity in
wires. Philos. Mag., Ser. 4,13, 393-412.
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Figure 7.3.5: The vibration of a string u(z,t)/h with frictional dissi-
pation at various positions z/L at the times c¢t/L = 0, 0.2, 0.4, 0.6, 0.8,
and 1 for hL/c = 1. The same parameters were used as in Figure 7.3.1.

with X(0) = X(L) = 0. Friction does not affect the shape of the normal
modes; they are still

nmwr

Xn(2) = sin (T) (7.3.48)

with k, = nw/L and A\, = n?x2/L%.
The solution for the T'(¢) equation is

To(t) = e ™ [An cos ( k2c? — h? t) + By sin ( k2c? — h? t)]

(7.3.49)
with the condition that k,c > h. If we violate this condition, the solu-
tions are two exponentially decaying functions in time. Because most
physical problems usually fulfill this condition, we will concentrate on
this solution.
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solution

time distance
0 0

Figure 7.3.6: The vibration of a string u(z,t)/h with frictional dissi-
pation at various times ct/L and positions /L for hL/c = 1.

From the principle of linear superposition, the general solution is

u(z,t) = e~ i sin ("Lﬂ) [An cos ( k2¢2 — h? t)
n=1
+ B, sin ( k22 - h?t)] . (7.3.50)

where m¢ > hL. From (7.3.50) we see two important effects. First, the
presence of friction slows all of the harmonics. Furthermore, friction
dampens all of the harmonics. Figures 7.3.5 and 7.3.6 illustrate the
solution using the initial conditions given by (7.3.25) and (7.3.26) with
hL/c = 1. This is a rather large coefficient of friction and these figures
show the rapid damping that results with a small amount of dispersion.

This damping and dispersion of waves also occurs in solutions of
the equation of telegraphy where the solutions are progressive waves.
Because early telegraph lines were short, time delay effects were negli-
gible. However, when engineers laid the first transoceanic cables in the
1850s, the time delay became seconds and differences in the velocity of
propagation of different frequencies, as predicted by (7.3.50), became
noticeable to the operators. Table 7.3.1 gives the transmission rate for
various transatlantic submarine telegraph lines. As it shows, increases in
the transmission rates during the nineteenth century were due primarily
to improvements in terminal technology.

When they instituted long-distance telephony just before the turn
of the twentieth century, this difference in velocity between frequencies



342

Table 7.3.1: Technological Innovation on Transatlantic Telegraph Ca-
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bles.
Year Technological Innovation Performance
(words/min)
1857-58 Mirror galvanometer 3-7
1870 Condensers 12
1872 Siphon recorder 17
1879 Duplex 24
1894 Larger diameter cable 72-90
1915-20 Brown drum repeater and Heurtley 100
magnifier
1923-28 Magnetically loaded lines 300-320
1928-32 Electronic signal shaping amplifiers 480
and time division multiplexing
1950 Repeaters on the continental shelf 100-300
1956 Repeatered telephone cables 21600

From Coates, V. T. and Finn, B., 1979: A Retrospective Technology
Assessment: Submarine Telegraphy. The Transatlantic Cable of 1866,
San Francisco Press, Inc.

should have limited the circuits to a few tens of miles.’> However, in 1899,
Prof. Michael Pupin, at Columbia University, showed that by adding
inductors (“loading coils”) to the line at regular intervals the velocities at
the different frequencies could be equalized.® Heaviside? and the French
engineer Vaschy® made similar suggestions in the nineteenth century.
Thus, adding resistance and inductance, which would seem to make
things worse, actually made possible long-distance telephony. Today

5 Rayleigh, J. W., 1884: On telephoning through a cable. Br. Assoc.
Rep., 632-633; Jordan, D. W., 1982: The adoption of self-induction by
telephony, 1886-1889. Ann. Sci., 39, 433-461.

6 There is considerable controversy on this subject. See Brittain, J.
E., 1970: The introduction of the loading coil: George A. Campbell and
Michael I. Pupin. Tech. Culture, 11, 36-57.

" First published 3 June 1887. Reprinted in Heaviside, O., 1970:
Electrical Papers, Vol. II, Chelsea Publishing, Bronx, NY, pp. 119-
124

8 See Devaux-Charbonnel, X. G. F., 1917: La contribution des ingén-
leurs francais & la téléphonie 4 grande distance par cables souterrains:
Vaschy et Barbarat. Rev. Gén. Electr., 2, 288-295.
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Figure 7.3.7: The axisymmetric vibrations u'(r,t) = capu(r,t)/P of a
circular membrane when struck by a hammer at various positions r/a
at the times ct/a = 0, 0.2, 0.4, 0.6, 0.8, and 1 for € = a/4.

you can see these loading coils as you drive along the street; they are
the black cylinders, approximately one between each pair of telephone
poles, spliced into the telephone cable. The loading of long submarine
telegraph cables had to wait for the development of permalloy and mu-
metal materials of high magnetic induction.

e Example 7.3.4; Axisymmetric vibrations of a circular membrane

The wave equation

Pu  10u 10%u
—+-—=5—-—, 0<r<a0<t 7.3.51
or?  rdr  c? ot? - ( )
governs axisymmetric vibrations of a circular membrane, where u(r,t)is
the vertical displacement of the membrane, r is the radial distance, ¢ is
time, ¢ is the square root of the ratio of the tension of the membrane to
its density, and a is the radius of the membrane. We shall solve (7.3.51)
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Figure 7.3.8: The axisymmetric vibrations capu(r,t)/P of a circular
membrane when struck by a hammer at various times ct/a and positions

r/a for € = a/4.

when the membrane is initially at rest, u(r,0) = 0, and struck so that
its initial velocity is

(7.3.52)

Ou(r,0) { P/(ze?p), 0<r<e
a

0, e<r<a.

If this problem can be solved by separation of variables, then u(r,t)
= R(r)T(t). Following the substitution of this u(r,t) into (7.3.51), sep-
aration of variables leads to

1 d [/ dR 1 dT
TR (T) =araE = (7.3.53)
or 1d [ dR
— — ——— 2 =
- (r dr) +k2R =0 (7.3.54)
and 2T
2 27 __
T =0, (7.3.55)

The separation constant —k? must be negative so that we obtain solu-
tions that remain bounded in the region 0 < r < a and can satisfy the
boundary condition. This boundary condition is u(a,t) = R(a)T(t) =0
or R(a) =0.
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Figure 7.3.9: Same as Figure 7.3.8 except € = a/20.

The solutions of (7.3.54)—(7.3.55), subject to the boundary condi-
tion, are

Anr

Ra(r) = Jo (7.3.56)

a

and

To(t) = Ansin %"'—t- + By cos A—"ac-t- , (7.3.57)

where ), satisfies the equation Jo(A) = 0. Because u(r,0) = 0 and
T,(0) = 0, B, = 0. Consequently, the product solution is

= M\ . (A
u(r,t) = Z AnJo _a_r sin —a—Ct . (7.3.58)
n=1

To determine A, , we use the condition
6“(7’,0) _ d Anc )\nr _ P/(ﬂ'czp), 0 <r<e
ot —Z AnJo a | 0, e<r<a.
(7.3.59)
Equation (7.3.59) is a Fourier-Bessel expansion in the orthogonal func-
tion Jo(An7/a), where A, equals

n=1

Anc 2 ¢ P AnT
TAH = (12]12(/\") /0 7l'€2pJ0 T dr (7360)
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from (6.5.35) and (6.5.43) in Section 6.5. Carrying out the integration,

_ 2PJy(Ane/a)
) 728y
or
2P X NhOnefa) . [ Anr\ . [ Anct
u(r,t) = C“P,; N2 T200) Jo el Ll Gl B (7.3.62)

Figures 7.3.7, 7.3.8, and 7.3.9 illustrate the solution (7.3.62) for
various times and positions when ¢ = a/4 and ¢ = a/20. Figures 7.3.8
and 7.3.9 show that striking the membrane with a hammer generates a
pulse that propagates out to the rim, reflects, inverts, and propagates
back to the center. This process then repeats itself forever.

Problems

Solve the wave equation u;; = c?uzz, 0 < ¢ < L, 0 < t subject to the
boundary conditions that u(0,¢) = u(L,t) = 0, < 0 and the following
initial conditions for 0 < z < L:

L u(z,0) =0, wuz,0)=1
2. u(z,0)=1, u(z,00=0

_ | 3hz/2L, 0<ez<2L/3 _
3. u(z,0)= {3h(L —2)/L, 2U3<z<L, “E®O=0

4. u(z,0) = [3sin(wz/L) —sin(3nz/L)]/4, wu.z,0)=0,

0, 0<z<L/4
5. u(z,0) =sin(rz/L), wuz,0)={ a, L/4<x<3L/4
0, 3L/A<z< L

B _ | az/L, 0<z<L/2
6. u(z,0)=0, w(z,0)= {a(L—x)/L, Li2<ze<L
_ z, O<z<L/2 _
" u(z’o)_{L—x, Lj2<z<L, "®0=0

8. Solve the wave equation

Pu 0%

W—Cgﬁ, O<z<m0<t
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subject to the boundary conditions

du(0,8) _ du(mt) _ |

t
oz oz o 0<
and the initial conditions
u(z,0)=0 and a_u((;_,()_): 1+ cos®(z), O<z<m.

[Hint: You must include the separation constant of zero.]

9. The differential equation for the longitudinal vibrations of a rod
within a viscous fluid is
d%u du _ ,0%u

S +2ho =

5 at—c-a'ﬁ, 0<(L‘<L,0<t,

where ¢ is the velocity of sound in the rod and h is the damping coef-
ficient. If the rod is fixed at 2 = 0 so that u(0,t) = 0 and allowed to
freely oscillate at the other end z = L so that uy(L,t) = 0, find the
vibrations for any location z and subsequent time t if the rod has the
initial displacement of u(z,0) = = and the initial velocity u,(z,0) = 0
for 0 < £ < L. Assume that h < c7/(2L). Why?

10. A closed pipe of length L contains air whose density is slightly
greater than that of the outside air in the ratio of 1+so to 1. Everything
being at rest, we suddenly draw aside the disk closing one end of the
pipe. We want to determine what happens inside the pipe after we
remove the disk.
As the air rushes outside, it generates sound waves within the pipe.

The wave equation

u _ ,0%u

oz~ ¢ Ba?
governs these waves, where ¢ is the speed of sound and u(z,t) is the ve-
locity potential. Without going into the fluid mechanics of the problem,
the boundary conditions are

a. No flow through the closed end: u(0,t) = 0.
b. No infinite acceleration at the open end: ug-(L,t) = 0.
c. Air is initially at rest: uz(z,0) = 0.

d. Air initially has a density greater than the surrounding air by the
amount so: us(z,0) = —c?so.
Find the velocity potential at all positions within the pipe and all

subsequent times.
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11. One of the classic applications of the wave equation has been the
explanation of the acoustic properties of string instrurnents. Usually
we excite a string in one of three ways: by plucking (as in the harp,
zither, etc.), by striking with a hammer (piano), or by bowing (violin,
violoncello, etc.). In all these case, the governing partial differential
equation is

Ou  ,0%

52 ¢ g2
with the boundary conditions u(0,¢) = u(L,t) = 0, 0 < ¢. For each
of following methods of exciting a string instrument, find the complete
solution to the problem: )

(a) Plucked string

For the initial conditions:

_ Bz/a, O0<e<a
u(z,0) = {ﬁ(L —o)/(L-a), a<z<L
and
ut(x,O):O, 0<17<L,
show that
28L2 .1 . /nma\ . /nrvzx nwet
) = gy o () sin (1) ( L )

n=1

We note that the harmonics are absent where sin(nwa/L) = 0.
Thus, if we pluck the string at the center, all of the harmonics of even
order will be absent. Furthermore, the intensity of the successive har-
monics will vary as n=2. The higher harmonics (overtones) are therefore
relatively feeble compared to the n = 1 term (the fundamental).

(b) String excited by impact
The effect of the impact of a hammer depends upon the manner and

duration of the contact, and is more difficult to estimate. However, as
a first estimate, let

u(z,0) =0, 0<z<L

and
a—e<z<a+e¢€

u(z,0) = {0, otherwise,
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where € < 1. Show that the solution in this case is
4,uL 1 . /nmey . /nma\ . (nmxy\ . (nmrct
u(z,t) = g ,,Z:I —3sin (T) sin (—L—) sin (—L—) sin ( I ) .

As in part (a), the nth mode is absent if the origin is at a node.
The intensity of the overtones are now of the same order of magnitude;
higher harmonics (overtones) are relatively more in evidence than in

part (a).

(¢) Bowed violin string

The theory of the vibration of a string when excited by bowing is poorly
understood. The bow drags the string for a time until the string springs
back. After awhile the process repeats. It can be shown® that the proper
initial conditions are

u(z,0) =0, 0<eze<l

and
uy(z,0) = 4PBc(L — z)/L?, O<z< L,

where 3 is the maximum displacement. Show that the solution is now

(2,1) = Z sin (232) sin <"’£Ct) :

9 See Lamb, H., 1960: The Dynamical Theory of Sound. Dover Pub-
lishers, Mineola, NY, Section 27.
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7.4 D'ALEMBERT’'S FORMULA

In the previous section we sought solutions to the homogeneous
wave equation in the form of a product X (z)T(¢). For the one-dimen-
sional wave equation there is a more general method for constructing
the solution. D’Alembert!® derived it in 1747.

Let us determine a solution to the homogeneous wave equation

u _ ,0%

67—0 @, —OO<1'<O0,0<t (741)

which satisfies the initial conditions

u(z,0) = f(z) and % =g(z), —-o<r<oo. (74.2)

We begin by introducing two new variables £, 7 defined by ¢ = z+ct
and 7 = z—ct and set u(z,t) = w(£,n). The variables £ and 7 are called
the characteristics of the wave equation. Using the chain rule,

9 _%0 mo _9 o
Oz~ Oz 06 Oz On ~ 8¢ ' Oy

o oo mo o o
5t = otoe T oton - o San (7-4.4)

62_656 o 0 on d (0 o
m-ag(&*%)*a—z%(%w—n) (745)

92 92 o2

(7.4.3)

22—+ — 7.4.6
= o7 " “aean T o (7.4.8)
and similarly
0? o? o? o?
A | I Y 47
e c<8£2 20{3774_3772)’ (7.4.7)
so that the wave equation becomes
0w
363, = 0 (7.4.8)

The general solution of (7.4.8) is

w(€,n) = F(§) + G(n). (7.4.9)

10 D’Alembert, J., 1747: Recherches sur la courbe que forme une corde
tendué mise en vibration. Hist. Acad. R. Sci. Belles Lett., Berlin, 214
219.
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Figure 7.4.1: Although largely self-educated in mathematics, Jean Le
Rond d’Alembert (1717-1783) gained equal fame as a mathematician
and philosophe of the continental Enlightenment. By the middle of the
eighteenth century, he stood with such leading European mathemati-
cians and mathematical physicists as Clairaut, D. Bernoulli, and Euler.
Today we best remember him for his work in fluid dynamics and ap-
plying partial differential equations to problems in physics. (Portrait
courtesy of the Archives de I’Académie des sciences, Paris.)

Thus, the general solution of (7.4.1) is of the form
u(z,t) = F(z + ct) + G(z — ct), (7.4.10)

where F and G are arbitrary functions of one variable and are assumed
to be twice differentiable. Setting ¢t = 0 in (7.4.10) and using the initial
condition that u(z,0) = f(z),

F(z)+ G(z) = f(=). (7.4.11)
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The partial derivative of (7.4.10) with respect to ¢ yields

Ou(z, 1)
ot

=cF'(z + ct) — ¢G'(z — ct). (7.4.12)

Here primes denote differentiation with respect to the argument of the
function. If we set £ = 0 in (7.4.12) and apply the initial condition that

ui(z,0) = g(x),
cF'(z) — ¢G'(z) = g(x). (7.4.13)

Integrating (7.4.13) from 0 to any point x gives
1 T
F(z)-G(z) = - / g(r)dr +C, (7.4.14)
0

where C' is the constant of integration. Combining this result with
(7.4.11),

F(z) = ﬂ;—) + 51;/; g(r)dr + % (7.4.15)
and .
G(z) = @ - '21?/0 o(r)dr — % (7.4.16)

If we replace the variable z in the expression for F' and G by « + ¢t and
z — ct, respectively, and substitute the results into (7.4.10), we finally
arrive at the formula

z+ec z—c ohet
u(x,t) = fz+ t);f( ) + 21—0/ g(r)dr. (7.4.17)

—-ct

This is known as d’Alembert’s formula for the solution of the wave equa-
tion (7.4.1) subject to the initial conditions (7.4.2). It gives a represen-
tation of the solution in terms of known initial conditions.

o Example 7.4.1

To illustrate d’Alembert’s formula, let us find the solution to the
wave equation (7.4.1) satisfying the initial conditions u(z,0) = sin(z)
and u(z,0) = 0, —0o < z < co. By d’Alembert’s formula (7.4.17),

u(z, t) = S0 =) j; sin(z +ef) _ sin(z)cos(ct).  (7.4.18)




The Wave Equation 353

e Example 7.4.2

Let us find the solution to the wave equation (7.4.1) when u(z,0) =
0 and u;(z,0) = sin(2z), —o0 < # < co. By d’Alembert’s formula, the
solution is

x4ct . :
w(z,t) = — / sin(2r) dr = SLM;‘“(—?CQ (7.4.19)

2c —ct

In addition to providing a method of solving the wave equation,
d’Alembert’s solution may also be used to gain physical insight into the
vibration of a string. Consider the case when we release a string with
zero velocity after giving it an initial displacement of f(z). According
to (7.4.17), the displacement at a point z at any time ¢ is

u(z,t) = fz +ct) _; fz = Ct). (7.4.20)

Because the function f(z —ct) is the same as the function of f(z) trans-
lated to the right by a distance equal to ¢t, f(z — ct) represents a wave
of form f(z) traveling to the right with the velocity c, a forward wave.
Similarly, we can interpret the function f(x + ct) as representing a wave
with the shape f(z) traveling to the left with the velocity ¢, a back-
ward wave. Thus, the solution (7.4.17) is a superposition of forward
and backward waves traveling with the same velocity ¢ and having the
shape of the initial profile f(z) with half of the amplitude. Clearly the
characteristics ¢ + ¢t and z — ct give the propagation paths along which
the waveform f(z) propagates.

o Example 7.4.3

To illustrate our physical interpretation of d’Alembert’s solution,
suppose that the string has an initial displacement defined by

_Ja—|=|, —a<z<a

f@) = { 0, otherwise. (7.4.21)
In Figure 7.4.2(A) the forward and backward waves, indicated by the
dashed line, coincide at ¢ = 0. As time advances, both waves move
in opposite directions. In particular, at ¢ = a/(2c), they have moved
through a distance a/2, resulting in the displacement of the string shown
in Figure 7.4.2(B). Eventually, at ¢ = a/c, the forward and backward
waves completely separate. Finally, Figures 4.7.2(D) and 4.7.2(E) show
how the waves radiate off to infinity at the speed of ¢. Note that at each
point the string returns to its original position of rest after the passage
of each wave.
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Figure 7.4.2: The propagation of waves due to an initial displacement
according to d’Alembert’s formula.

Consider now the opposite situation when u(z,0) = 0 and u,(z, 0)
= g(z). The displacement is

z+ct
u(z,t) = %/ g(r)dr. (7.4.22)

If we introduce the function

o(z) = —1—/ g(r)dr, (7.4.23)
2c Jo
then we can write (7.4.22) as
u(z,t) = p(z + ct) — p(x — ct), (7.4.24)

which again shows that the solution is a superposition of a forward
wave —p(z —ct) and a backward wave ¢(z + ct) traveling with the same
velocity ¢. The function ¢, which we compute from (7.4.23) and the
initial velocity g(z), determines the exact form of these waves.
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DISPLACEMENT OF STRING
D'ALEMBERT SOLUTION
CASE |

X|=9
Ap=-i

46 -4 -2 10 -8 6 4 2 0 2 4 6 8 100R 4 16"
Figure 7.4.3: Displacement of an infinite, moving threadline when
¢c=10and V = 1.

e Example 7.4.4: Vibration of a moving threadline

The characterization and analysis of the oscillations of a string or
yarn have an important application in the textile industry because they
describe the way that yarn winds on a bobbin!!. As we showed in

Section 7.4.1, the governing equation, the “threadline equation,” is

0%y 82y

s Tog— +ﬂ (7.4.25)
where a = 2V, 8 = V2 — gT/p, V is the wmdup velocity, g is the
gravitational attraction, 7" is the tension in the yarn, and p is the density
of the yarn. We now introduce the characteristics £ = = + Ayt and
17 = x + Aqt, where A; and A, are yet undetermined. Upon substituting

& and 7 into (7.4.25),

(AT +2VA; + V2 — gT/p)uge + (A3 + 2V A2 + V2 — gT/p)uyy
+ [2V2 — 2gT/p + QV(Al + Az) + 2)1)2]11@, =0. (7426)

11 Reprinted from J. Franklin Inst., 275, Swope, R. D., and W. F.
Ames, Vibrations of a moving threadline, 36-55, (©1963, with kind
permission from Elsevier Science Ltd, The Boulevard, Langford Lane,
Kidlington OX5 1GB, UK.
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DISPLACEMENT OF STRING
D'ALEMBERT SOLUTION

t=0 CASE |t
t=2 A=
Ap=-19
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— r ¢ 3 » X
0 -8 -6 -4 2 0 2 4 6 8 1012 14 16 I8 20 22

Figure 7.4.4: Displacement of an infinite, moving threadline when

c=11and V = 10.

If we choose A; and A5 to be roots of the equation:

Solving (7.4.27) yields

M4 2VA+ V2 —gT/p=0, (7.4.27)
(7.4.26) reduces to the simple form
Uen = 0, (7.4.28)
which has the general solution
u(z,t) = F(€) + G(n) = F(z + Mt) + G(z + Ast). (7.4.29)
AM=c—-V and Ay =—c—V, (7.4.30)
where ¢ = \/gT/p. If the initial conditions are
u(z,0) = f(z) and uy(z,0) = g(2), (7.4.31)

then

1’+A1t

u(z,t) = 51-6-[/\1f($+)\2t)—/\2f(1'+’\1t)+/+A ,

g(7) dr]. (7.4.32)
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Because A; does not generally equal to Ao, the two waves that
constitute the motion of the string move with different speeds and have
different shapes and forms. For example, if

1
f() = ) and g(z) =0, (7.4.33)
1 c—-V c+V
u(z,t) = %{ o [17 — (C T V)t]z + n [z — (c — V)t]2 } (7.4.34)

Figures 7.4.3 and 7.4.4 illustrate this solution for several different pa-
rameters.

Problems

Use d’Alembert’s formula to solve the wave equation (7.4.1) for the
following initial conditions defined for |z| < oco.

1. u(z,0) = 2sin(z) cos(x) us(z,0) = cos(x)

2. u(z,0) = zsin(z) us(z,0) = cos(2z)

3. u(z,0) = 1/(z2+1) uy(z,0) = €*

4. u(z,0)=¢"" uy(z,0) = 1/(z2 + 1)

5. u(z,0) = cos(ma/2) us(z,0) = sinh(az)

6. u(z,0) = sin(3z) us(z,0) = sin(2z) — sin(z)

7.5 THE LAPLACE TRANSFORM METHOD

The solution of linear partial differential equations by Laplace trans-
forms is the most commonly employed analytic technique after the
method of separation of variables. Because the transform consists solely
of an integration with respect to time, we obtain a transform which
varies both in z and s, namely

U(z,s) = /000 u(z,t)e™* dt. (7.5.1)

Partial derivatives involving time have transforms similar to those that
we encountered in the case of functions of a single variable. They include

Lluy(z,t)] = sU(z,s) — u(z,0) (7.5.2)

and
Llug(z,t)] = s°U(z, s) — su(z,0) — uy(z,0). (7.5.3)

These transforms introduce the initial conditions via u(xz, 0) and u.(z, 0).
On the other hand, derivatives involving & become

Llus(z,1)] = % (Llu(z, 1))} = dU(g’;’ ) (7.5.4)
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and
2 20 (z. s
E[ux.r(l', t)] = :? {[,[U(.’L', t)}} = %2’—)' (755)

Because the transformation has eliminated the time variable, only
U(z,s) and its derivatives remain in the equation. Consequently, we
have transformed the partial differential equation into a boundary-value
problem for an ordinary differential equation. Because this equation
is often easier to solve than a partial differential equation, the use of
Laplace transforms has considerably simplified the original problem. Of
course, the Laplace transforms must exist for this technique to work.

To summarize this method, we have constructed the following sche-
matic:

partial differential equation

+ initial conditions solution to original problem

+ boundary conditions

Laplace transform Inverse transform
ordinary differential equation solution of boundary-value
ry diffe q . f ry

+ boundary conditions problem

In the following examples, we will illustrate transform methods by
solving the classic equation of telegraphy as it applies to a uniform
transmission line. The line has a resistance R, an inductance L, a
capacitance C, and a leakage conductance G per unit length. We denote
the current in the direction of positive by I; V is the voltage drop
across the transmission line at the point . The dependent variables I
and V are functions of both distance z along the line and time t.

To derive the differential equations that govern the current and
voltage in the line, consider the points A at z and B at ¢ 4+ Az in
Figure 7.5.1. The current and voltage at A are I(z,t) and V(z,t); at
B, I+ %Aw and V + %%A:c. Therefore, the voltage drop from A to B
is —%—‘;Az and the current in the line is T + %Ax. Neglecting terms
that are proportional to (Az)?,

oI oV
(LE + RI) Az=-Z-Az. (7.5.6)
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Figure 7.5.1: Schematic of an uniform transmission line.

The voltage drop over the parallel portion HK of the line is V' while
the current in this portion of the line is —%Az. Thus,

ov oI
(CW + GV) Az = —a—xA:L'. (7.5.7)

Therefore, the differential equations for I and V are

a1 ov
Lo +RI= -2 (7.5.8)

and oV a1
Co+GV = (7.5.9)

Turning to the initial conditions, we solve these simultaneous par-
tial differential equations with the initial conditions:

I(z,0) = Io(z) (7.5.10)

and
V(z,0) = Vo(z) (7.5.11)

for 0 < t. There are also boundary conditions at the ends of the line; we
will introduce them for each specific problem. For example, if the line
is short-circuited at ¢ = a, V = 0 at £ = a; if there is an open circuit
atz=a,I=0atz=a.
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To solve (7.5.8)-(7.5.9) by Laplace transforms, we take the Laplace
transform of both sides of these equations, which yields

(Ls + R)I(z,s) = — ch(;, ) + Llo(z) (7.5.12)
and .
(&+GW@@:—£%2+C%@. (7.5.13)

Eliminating T gives an ordinary differential equation in V:

d27 275 dIo(.’L‘)
21—3—37 -q°V = LT - C(L3 + R)VO(Z')7 (7'5'14)

where ¢ = (Ls+ R)(Cs+G). After finding V, we may compute I from

1 iz LIo(lr)
Ls+Rdz Ls+ R’

I=- (7.5.15)

At this point we treat several classic cases.
o Example 7.5.1: The semi-infinite transmission line

We consider the problem of a semi-infinite line z > 0 with no initial
current and charge. The end = 0 has a constant voltage F for 0 < t.
In this case,

9—17 —q°V =0, z > 0. (7.5.16)

The boundary conditions at the ends of the line are

VO,t)=E, 0<t (7.5.17)

and V(z,t) is finite as £ — co. The transform of these boundary con-
ditions is

V(0,s)= E/s and lim V(z,s) < co. (7.5.18)
The general solution of (7.5.16) is
Viz,s) = Ae™ %" + Be®". (7.5.19)

The requirement that V remains finite as £ — oo forces B = 0. The
boundary condition at z = 0 gives A = E//s. Thus,

Viz,s) = %exp[—\/(Ls + R)(Cs + G)z]. (7.5.20)
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We will discuss the general case later. However, for the so-called “loss-
less” line, where R = G =0,

V(z,s) = gexp(—sz/c), (7.5.21)
where ¢ = 1/v/LC. Consequently,
T
V(z,t) = EH (t - Z) , (7.5.22)

where H(t) is Heaviside’s step function. The physical interpretation of
this solution is as follows: V(z,t) is zero up to the time «/c at which
time a wave traveling with speed ¢ from & = 0 would arrive at the point
x. V(z,t) has the constant value E afterwards.

For the so-called “distortionless” line, R/L = G/C = p,

V(e,t)= Be?*/°H (t - f) . (7.5.23)
In this case, the disturbance not only propagates with velocity ¢ but
also attenuates as we move along the line.
Suppose now, that instead of applying a constant voltage E at
z = 0, we apply a time-dependent voltage, f(¢). The only modification
is that in place of (7.5.20),

Vi(z,s) = F(s)e 9. (7.5.24)

In the case of the distortionless line, ¢ = (s + p)/¢, this becomes

V(z,s) = F(s)e~(s+p)=/e (7.5.25)
and ) - :z'
— —pzfec _® e

V(z,t) = e#o/ef (t c) H (t c) . (7.5.26)

Thus, our solution shows that the voltage at z is zero up to the time
z/c. Afterwards V(z,t) follows the voltage at z = 0 with a time lag of
z/c and decreases in magnitude by e=#%/¢

o Example 7.5.2: The finite transmission line

We now discuss the problem of a finite transmission line 0 < z < {
with zero initial current and charge. We ground the end £ = 0 and
maintain the end z = [ at constant voltage E for 0 < t.

The transformed partial differential equation becomes

&2V -
;EZ— -¢*V=0, O<z<l (7.5.27)
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Figure 7.5.2: The voltage within a lossless, finite transmission line of
length { as a function of time ¢.

The boundary conditions are
V{0,t)=0 and V(,1)=F, 0<t. (7.5.28)
The Laplace transform of these boundary conditions is
V(o, 5)=0 and V(l,s) = E/s. (7.5.29)
The solution of (7.5.27) which satisfies the boundary conditions is

_ E sinh(qz)

Viz,s)= s sinh(gql)

(7.5.30)

Let us rewrite (7.5.30) in a form involving negative exponentials and
expand the denominator by the binomial theorem,

— E _ 1 — exp(—2¢z)
vV —_ L —q(i-z) 1~ &XPl—oqZ) 7.5.31
(2,5) s* 1 —exp(—2¢l) (7.5.31)
FE
- e—q(l—x)(l e—ZqI) (1 e~ 20 4 o4 + .. ) (7.5.32)
E

- _[e—Q(I—r) — e~ UHT) 4 o=aBl-z) _ o—q(Bl4z) 4 . 1. (7.5.33)
S

In the special case of the lossless line where ¢ = s/c,

V(z,s) — g[e—s(l—x)/c _ e—s(l+z‘)/c + 6—3(31—-1’)/c _ e—s(31+r)/c + .- ]

(7.5.34)
V(z,t):E[H (t_ ’—cw) _H(t_l—l(;:c>
+H(t_ 31—:c) —H(t— 31+x) +] (7.5.35)

or

c c
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Figure 7.5.3: The voltage within a submarine cable as a function of
distance for various «t’s.

We illustrate (7.5.35) in Figure 7.5.2. The voltage at ¢ is zero up to
the time (I — z)/¢, at which time a wave traveling directly from the end
z = | would reach the point z. The voltage then has the constant value
E up to the time (I +z)/c, at which time a wave traveling from the end
z = [ and reflected back from the end z = 0 would arrive. From this
time up to the time of arrival of a twice-reflected wave, it has the value
zero, and so on.

o Example 7.5.3: The semi-infinite transmission line reconsidered

In the first example, we showed that the transform of the solution
for the semi-infinite line is

V(z,s) = ge-“, (7.5.36)

where q? = (Ls+ R)(Cs+G). In the case of a lossless line (R = G = 0),
we found traveling wave solutions.

In this example, we shall examine the case of a submarine cable!?
where L = G = 0. In this special case,

V(z,s) = g-e" s/x (7.5.37)

12 First solved by Thomson, W., 1855: On the theory of the electric
telegraph. Proc. R. Soc. London, AT, 382-399.
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where k = 1/(RC). From a table of Laplace transforms,*?

immediately invert (7.5.37) and find that

we can

V(z,t) = E erfc (%) , (7.5.38)

where erfc is the complementary error function. Unlike the traveling
wave solution, the voltage diffuses into the cable as time increases. We
illustrate (7.5.38) in Figure 7.5.3.

o Example 7.5.4: A short-circuited, finite transmission line

Let us find the voltage of a lossless transmission line of length !
that initially has the constant voltage E. At t = 0, we ground the line
at = = 0 while we leave the end z = I insulated.

The transformed partial differential equation now becomes

Tz & V=- oz (7.5.39)
where ¢ = 1/v/LC. The boundary conditions are
V(0,5)=0 (7.5.40)
and -
- _ 1dv(l,s) _
I(l,s) = “Ts dz 0 (7.5.41)
from (7.5.15).
The solution to this boundary-value problem is
— I—
F(e,s)= = - Z cosh{s(l = z)/¢] (7.5.42)

s s cosh(sl/¢)

The first term on the right side of (7.5.42) is easy to invert and equals
E. The second term is much more difficult to handle. We will use
Bromwich’s integral.

In Section 4.10 we showed that

_y [coshfs({—z)/c]| _ 1 e+t cosh[z(1 — z)/cle” :
£ { s cosh(sl/c) } - 271'1'/ z cosh(zl/c) d

c—o0t

(7.5.43)

13 Gee Churchill, R. V., 1972: Operational Mathematics, McGraw-Hill
Book, New York, Section 27.
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To evaluate this integral we must first locate and then classify the sin-
gularities. Using the product formula for the hyperbolic cosine,

cosh[z(l — z)/c] 1+ 422(’—’”)2][1 + 42;&’};?2] o

c2n?
= 7.5.44
z cosh(zl/c) 2142281+ 255 ( )

This shows that we have an infinite number of simple poles located
at z = 0 and z, = £(2n — 1)wci/(2]), where n = 1,2,3,.... Therefore,
Bromwich’s contour can lie along, and just to the right of, the imaginary
axis. By Jordan’s lemma we close the contour with a semicircle of
infinite radius in the left half of the complex plane. Computing the
residues,

cosh{ (I — IB)/c]e” cosh[z(l _ :L‘)/c]etz 3
Res{ 2 cosh(21/0) } = zl—»o cosh(21/0) =1 (7.5.45)
and
cosh{z(l — z)/cle** '
Res{ z cosh(zl/c) ’z"}
= i (Zz2n)coshz(I = 2)/cle® (7.5.46)

Z—zn z cosh(zl/c)
_ cosh[(2n — )w(1 — z)i/(2])] exp[£(2n — 1)mwcti/(21)]
[(2n — 1)7i/2] sinh[(2n — 1)7i/2]

(7.5.47)

- (2(“—_1):;: 7 cos [(2" =l ””)] exp [N"—%atz] .

(7.5.48)

Summing the residues and using the relationship that cos(t) = (e* +

e *)/2,
V(ac,t):E—E{l_ i:: 271:1 [(2n—1;;r(1—z)]

X cos [(2—"‘71)-"-61]} (7.5.49)
_4E Z (in)—m;l . [(Qn - 1;?(1 - :c)] - [(Qn —211)7rct] |
(7.5.50)

An alternative to contour integration is to rewrite (7.5.42) as

Vo= £ (1 S0/l gl /) g
E

— _s_ [1 _ e—sz/c _ e—-s(21—x)/c + 6—3(21+x)/c + - ] (7552)
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so that

V(ac,t):E[l——H(t—%)—H(t—QIZI)+H(t—21:x>+

(7.5.53)

o Example 7.5.5: The general solution of the equation of telegraphy

In this example we solve the equation of telegraphy without any
restrictions on R, C, G or L. We begin by eliminating the dependent
variable I(z,t) from the set of Equations (7.5.8)~(7.5.9). This yields

% o%v
CL—- 502 +(GL+ RC) + RGV = 57 (7.5.54)
We next take the Laplace transform of (7.5.54) assuming that V(z,0) =
f(z) and V;(z,0) = g(z). The transformed version of (7.5.54) is

(f;——[CLs +(GL+RC)s+ RG]V = —CLg(z)—(CLs+GL+RC)f(x)
(7.5.55)
or

dz? c? c? c?

&V _(s+p)’ =0t () (i + i_;’) f(z),  (7.5.56)

where ¢2 = 1/LC, p = ¢(RC + GL)/2 and o = ¢}(RC — GL)/2.

We solve (7.5.56) by Fourier transforms (see Section 3.6) with the
requirement that the solution dies away as |¢| — 0o. The most con-
venient way of expressing this solution is the convolution product (see
Section 3.5)

V(e,s) = [M N (% . 2_,,) ‘o) ] exp 2|\x/|(31%_¢—§7/c1

(7.5.57)

From a table of Laplace transforms,

o1 [exp (—=bV/s? ; a?)] -1 (a\/m) H(t—b), (7.5.58)

s —a

where b > 0 and I( ) is the zeroth order modified Bessel function of the
first kind. Therefore, by the first shifting theorem,

{exp[ el TP c]}
(s+p)?—0?

= e, [UW] ( |x|). (7.5.59)
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Figure 7.5.4: The evolution of the voltage with time given by the gen-
eral equation of telegraphy for initial conditions and parameters stated
in the text.
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Using (7.5.59) to invert (7.5.57), we have that
vu¢>=iw-“aw*hJaVﬁifﬁaﬂfnt—uV@
Le=f(z) * — {Io[a\/t—Qa:—/c]}H t— |z|/c)
+§e“(m*hkv@TZUBﬂHa—uvo

+ 5e7Pf(z + ct) + f(z - et)]. (7.5.60)

The last term in (7.5.60) arises from noting that sF(s) = L[f(¢)]+ f(0).
If we explicitly write out the convolution, the final form of the solution
is

V(z,t) = 3¢ [f(z + ct) + f(z ~ ct)]

+ 57" /x+n[9(n)+2pf(n)]fo [0'\/0—2{2——(1'——71)2/6] dn

r—ct

sk [ o ovem—a=ar [} an
(7.5.61)

The physical interpretation of the first line of (7.5.61) is straight-
forward. It represents damped progressive waves; one is propagating
to the right and the other to the left. In addition to these progressive
waves, there is a contribution from the integrals, even after the waves
have passed. These integrals include all of the points where f(z) and
g(z) are nonzero within a distance ¢t from the point in question. This
effect persists through all time, although dying away, and constitutes a
residue or tail. Figure 7.5.4 illustrates this for p = 0.1, ¢ = 0.2, and
¢ = 1. We evaluated the integrals by Simpson’s rule for the initial con-
ditions f(z) = H(z+1)— H(z—1) and g(x) = 0. We have also included
the solution for the lossless case for comparison. If there was no loss,
then two pulses would propagate to the left and right as shown by the
dashed line. However, with resistance and leakage the waves leave a
residue after their leading edge has passed.

Problems

1. Use transform methods to solve the wave equation

ot2 ~ fz?’

for the boundary conditions

0<z<1,0<t

u(0,2) = u(1,t) = 0, 0<t
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and the initial conditions

u(z,0) =0, Q%l:l, O<z<l1.

2. Use transform methods to solve the wave equation

?u  8%u
(—9?2——51'—2, 0<z<1,0<«t
for the boundary conditions

u(0,t) = u-(1,t) =0, 0<t

and the initial conditions

ou(0,1)
ot

u(z,0) =0, =z O<z<l

3. Use transform methods to solve the wave equation

v O%u
5{2——5?, 0<x<l,0<«<t

for the boundary conditions
u(0,t) = u(1,t) = 0, o<t

and the initial conditions

u(z,0) = sin(rz), du(z,0) = —sin{7rz), O0<z<l.

ot

4. Use transform methods to solve the wave equation

9y _ 232u

_815—2_65—1’_2-, 0<z<al<t

for the boundary conditions
u(0,t) = sin(wt), u(a,t)=0, 0<t

and the initial conditions

u({z,0) =0, ?—y—gaxt’—o)-:*O, 0<z<a.
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Assume that wa/c is not an integer multiple of 7. Why?

5. Use transform methods to solve the wave equation

W ax2—8 y 0<1'<O0,0<t

for the boundary conditions
u(0,t)=1—e€"*, lm |u(z,t)|~ 2", nfinite, 0<t
T—0Q

and the initial conditions

du(z,0) -

z, 0<z<oo.
ot

u(z,0) =0,

6. Use transform methods to solve the wave equation

0? 6?
67:—6—;::.%", 0<r<oo0<t

for the boundary conditions
u(0,t) = cos(t), lim |u(z,t)| ~ 2", n finite, 0 <1
T == 00

and the initial conditions

u(z,0) =1, @%20, 0<z<o0.

7. Use transform methods to solve the wave equation

8%y 0%

Wzgx—z, 0<zx< L,0<t

for the boundary conditions

0%u(L,t)  k du(L,t) _

u(0,t) =0, BTE +; 52 g, O<t
and the initial conditions
u(z,0) =0, 3_u%ct,_0):0, O<e< L,

where ¢, k, m, and g are constants.
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8. Use transform methods!? to solve the wave equation

?u  , 8 Ou
67_66_1‘(1:'8_1‘)’ 0<.’L’<1,0<t

for the boundary conditions

lim u(z,t)| < 00, wu(l,t)= Asin(wt), 0<t
T—+00

and the initial conditions

Ou(z,0)
o

Assume that 2w # ¢f,, where Jo(3,) = 0. [Hint: The ordinary differ-

ential equation
d au s?
-(E (.’L‘E) - C_2U =0

u(xz,0) =0, 0, 0<z<1.

has the solution
s . (s
U((L‘,S) =c 1y (-c-\/z) + 3Ky (z\/—.’;) ,

where Iy(z) and Kp(z) are modified Bessel functions of the first and
second kind, respectively. Note that J,(iz) = i®I,(2) and I,(iz) =
i" Jo(z) for complex z.]

9. A lossless transmission line of length ¢ has a constant voltage E
applied to the end z = 0 while we insulate the other end [uz(¢,t) = 0].
Find the voltage at any point on the line if the initial current and charge
are zero.

10. Solve the equation of telegraphy without leakage

8%u du 0%u
W_CRW—FCLW’ O<e<,0<t

subject to the boundary conditions
u(0,t)=0 and u(f,t) = E, 0<t
and the initial conditions

u(z,0) = uy(z,0) =0, 0<z<t.

14 Suggested by a problem solved by Brown, J., 1975: Stresses in
towed cables during re-entry. J. Spacecr. Rockets, 12, 524-527.
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Assume that 472L/CR2¢? > 1. Why?

11. The pressure and velocity oscillations from water hammer in a pipe
without friction!® are given by the equations

op _ 20u

'5;——P oz
and

ou _ _10p

ot~ poz’

where p(z,t) denotes the pressure perturbation, u(x,t) is the velocity
perturbation, ¢ is the speed of sound in water, and p is the density
of water. These two first-order partial differential equations may be
combined to yield

azp 2 82

otz ~ " bz?
Find the solution to this partial differential equation if p(0,t) = po and
u(L,t) = 0 and the initial conditions are p(z,0) = pg, p:(z,0) = 0 and
u(z,t) = uo.

12. Use Laplace transforms to solve the wave equation'®
9%(ru) 2 0?(ru)

otz or?
subject to the boundary conditions that

O, 2 0u
orz " 3ror)|._,

where & > 0, and the initial conditions that

, a<r<oo, 0<t

=poe"**H(t) and lim |u(r,t)] < oo, 0<t,

u(r,0) = uy(r,0) = 0, a<r<oo.

13. Consider a vertical rod or column of length L that is supported at
both ends. The elastic waves that arise when the support at the bottom
is suddenly removed are governed by the wave equation!?

Oy _ 0
ot? oz

15 See Rich, G. R., 1945: Water-hammer analysis by the Laplace-
Mellin transformation. Trans. ASME, 67, 361-376.

16 Originally solved using Fourier transforms by Sharpe, J. A., 1942:
The production of elastic waves by explosion pressures. 1. Theory and
empirical field observations. Geophysics, 7, 144-154.

17 Abstracted with permission from Hall, L. H., 1953: Longitudinal
vibrations of a vertical column by the method of Laplace transform.
Am. J. Phys., 21, 287-292. (©1953 American Association of Physics
Teachers.

+ g, O<z< L, 0<t,
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where g denotes the gravitational acceleration, ¢ = E/p, E is Young’s
modulus and p is the mass density. Find the wave solution if the bound-
ary conditions are

u(0,) _ ou(L.t) _
dz ~ 8z

0, 0<t

and the initial conditions are

Ou(z,0)
ot

2
Ma®=—§} =0, O<z<L.

14. Solve the telegraph-like equation!®

6%y ou 5 [ 0%u Ou
AR Nt Y il hutbed
6t2+ e c(3z2+a6z>’ O<e<oo, 0«
subject to the boundary conditions
Ou(0,t) )
Fra ~ugb(t), Ilerolo fu(z,t)| < oo, <z <o

and the initial conditions
u(z,0) = up, u(x,0)=0, 0<t
with ac > k.

Step 1: Take the Laplace transform of the partial differential equation
and boundary conditions and show that

d?U(z, s) +adU(z,s) 3 (32 +ks) Uz, s) = - <s+ k) o

dz? dz c? c?
with U’(0,s) = —up and limy—.oo |U(%, 8)| < 00.

Step 2: Show that the solution to the previous step is

exp [—x (s+ 5%+ az/c]

%+\/(s+%)2+a2/c

18 From Abbott, M. R., 1959: The downstream effect of closing a
barrier across an estuary with particular reference to the Thames. Proc.
R. Soc. London, A251, 426-439 with permission.

Uz,s) = Y0 4 yge=o/?
s
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where 4a? = o2¢c? — k2 > 0.

Step 3: Using the first and second shifting theorems and the property
that

F(VEsa) =c [f(t) ~a [ 2T dr} ,

12— 72
show that

u(z,t) = ug + ugce ¥/2H(t — z/c)

N [e—act/z _ a/' S (av® —12) Mre_w/zdr} .
z/c

12 — r2

15. As an electric locomotive travels down a track at the speed V, the
pantograph (the metallic framework that connects the overhead power
lines to the locomotive) pushes up the line with a force P. Let us find
the behavior!® of the overhead wire as a pantograph passes between two
supports of the electrical cable that are located a distance L apart. We
model this system as a vibrating string with a point load:

d%u 282 P T
=gt 6(t—7), O<z<L, 0<t.

Let us assume that the wire is initially at rest [u(z,0) = u,(x,0) = 0 for
0 < z < L] and fixed at both ends [u(0,t) = u(L,t) = 0 for 0 < t].

Step 1: Take the Laplace transform of the partial differential equation
and show that

d*U(z,s) P
2 _ 2 3 —-zs/V
sU(:L',s)_c—dx2 +p—Ve zs/V

Step 2: Solve the ordinary differential equation in Step 1 as a Fourier
half-range sine series:

||M8

By (s)sin (mrx) ,

19 From Oda, O. and Ooura, Y., 1976: Vibrations of catenary over-
head wire. Q. Rep., (Tokyo) Railway Tech. Res. Inst., 17, 134-135
with permission.
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where

_ 2PB, 1 1 (_1\n.-Ls/V
Bu(s) = JLipr — a2) [s2+az‘s2+ﬁs] 1= oretert],

an = nmc/L and B, = nwV/L. This solution satisfies the boundary
conditions.

Step 3: By inverting the solution in Step 2, show that

u(z 1) = 2P & [sin(ﬂnt) v sin(ant)]sin (mrx)

T pL a2 -2 ¢ ai-pE L

_ %H (t - -é) 2(—1)" sin (*72)
y {sin[ﬂn(t —L/V)] _V sin[an(t - L/V)]}

af - B3 ¢ of — 3

_ 2P 2. [sin(Bat) V sin(ant)] . /nme
‘Ez[az—ﬂz T ai—ﬂz]s‘“( i)

[ Vo

o - B

sinfan(t — L/V)] }
ey

The first term in both summations represents the static uplift on the line;

this term disappears after the pantograph has passed. The second term

in both summations represents the vibrations excited by the traveling
force. Even after the pantograph passes, they will continue to exist.

16. Solve the wave equation

e e e — e — = ————2 0<r<a, 0<«t,

where 0 < a < a, subject to the boundary conditions

du(a,t) + h

}1_1}(1)|u(r¢)|< oo and e au(a,t):O, 0<t

and the initial conditions

u(r,0) = us(r,0) = 0, 0<r<a.
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Step 1: Take the Laplace transform of the partial differential equation
and show that

dzU(r,s)+ldU(r,s)_(sz N r1_2> U(rs) = _b(r—a) 0<r<a

dr? r dr sa?

c2

with
dU(a 5)

lirr(l)[U(r,s)|<oo and + - U(a s)=0.
r—

Step 2: Show that the Dirac delta function can be reexpressed as the
Fourier-Bessel series:

_2ah _ BRh(Baaja)
__2‘7‘21(18%-}-}12_l)le(’Bn)Jl(ﬁnT'/a), 0Sr<a,

where (3, is the nth root of 3J{(8)+h J1(8) = BJo(B)+(h—1)J1(8) =0
and Jo( ), J1( ) are the zeroth and first-order Bessel functions of the first
kind, respectively.

Step 3: Show that solution to the ordinary differential equation in Step
lis

U(r,s) =

Ji(Bna/a)J1(Bnr/a) s
Z(ﬂ%+h2 11)Jz(ﬁn)[ - 2+czﬂ%/az]

Note that this solution satisfies the boundary conditions.

Step 4: Taking the inverse of the Laplace transform in Step 3, show
that the solution to the partial differential equation is

o= 2 S grir o o (2]

17. A powerful method for solving certain partial differential equations
is the joint application of Laplace and Fourier transforms. To illustrate
this joint transform method, let us find the Green’s function for the
Klein-Gordon equation

= S —PPu=—8(@)(t), —w0<z<o00<t

subject to the boundary condition

lim Ju(z,t)] <00, 0<t
r—*oo
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and the initial conditions

u(z,0) = ue(z,0) =0, ~00 < & < 00.

Step 1: Take the Laplace transform of the partial differential equation
and show that

d*U(z,s) 2
gz ‘63'1',3 U(z,s)=~6(z), —00<r <o
with the boundary condition

Il}inoo |U(z, s)| < oo.

Step 2: Using Fourier transforms, show that the solution to the ordinary
differential equation in Step 1 is

exp (el /T 1 )
2/s? 2+ B

You may need to review Section 3.6.

U(z,s) =

Step 3: Using tables, show that the Green’s function is
u(z,t) = %Jo (,8\/ c?t? — .'!22) H(ct — z),

where Jo() is the zeroth order Bessel function of the first kind.
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7.6 NUMERICAL SOLUTION OF THE WAVE EQUATION

Despite the powerful techniques shown in the previous sections for
solving the wave equation, often these analytic techniques fail and we
must resort to numerical techniques. In counterpoint to the continu-
ous solutions, finite difference methods, a type of numerical solution
technique, give discrete numerical values at a specific location (zm, t,),
called a grid point. These numerical values represent a numerical ap-
proximation of the continuous solution over the region (z,, —Az/2, ., +
Az/2) and (t, — At/2,t, + At/2), where Az and At are the distance
and time intervals between grid points, respectively. Clearly, in the limit
of Az, At — 0, we recover the continuous solution. However, practical
considerations such as computer memory or execution time often require
that Az and At, although small, are not negligibly small.

The first task in the numerical solution of a partial differential
equation is the replacement of its continuous derivatives with finite dif-
ferences. The most popular approach employs Taylor expansions. If
we focus on the z-derivative, then the value of the solution at u[(m +
1)Az, nAt] in terms of the solution at (mAz,nAt) is

[(m + 1)Al‘ nAt] = u(xm,t )+ A:L' 8”(17,", n) (Az)2 82“(1:111; n)

oz 2! ox?
(Aa:)3 83u (:cm, tn) (A.’L‘)4 64u(:cm,tn)
3 o3 T 4l oot T
(7.6.1)
au(zm,t )

=u(em,t,) + Az +0[(Az)?], (7.6.2)
where O[(Az)?] gives a measure of the magnitude of neglected terms.2°
From (7.6.2), one possible approximation for u is

Ou(zm,t,) Uppg — U
oz - Az
where we have used the standard notation that u?, = u(z,,t,). This is
an example of a one-sided finite difference approximation of the partial
derivative u;. The error in using this approximation behaves as Axz.

Another possible approximation for the derivative arises from using
u(mAzx,nAt) and u[(m — 1)Az, nAt]. From the Taylor expansion:

éﬁ(’?u(z’m,tn) (Az)? O%u(zm,t,)
1! Oz 2! Ox?

m + O(Ax), (7.6.3)

ul(m — 1)Az, nAt] = u(zm, ty) —

20 The symbol O is a mathematical notation indicating relative magni-
tude of terms, namely that f(€) = O(e") provided lim,_q | f(€)/€"| < 0.
For example, as ¢ — 0, sin(e) = O(e), sin(e?) = O(e?), and cos(e) =

o(1).
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(Az)? Bu(zm, tn) |, (Az)* O*u(em,tn)

3! 83 41 dz? K
(7.6.4)
we can also obtain the one-sided difference formula
n _ ,n
UBmitn) _ ¥m = ¥mo1 | oA, (7.6.5)

Oz Az
A third possibility arises from subtracting (7.6.4) from (7.6.1):

a matn
WPy — = 2Az“—(’g;—) +0[(Az)?] (7.6.6)
or a ( y ) n n
UTm,ln) _ Umpr — Um—i 2
S = el 4 0[(As)7) (71.6.7)

Thus, the choice of the finite differencing scheme can produce profound
differences in the accuracy of the results. In the present case, centered
finite differences can yield results that are markedly better than using
one-sided differences.

To solve the wave equation, we need to approximate uz,. If we add
(7.6.1) and (7.6.4),

0*u(zm,tn)

502 (Az)? 4+ O[(Az)Y] (7.6.8)

U1 + Uppog = 2up, +

or
Pu(m,tn) _ Umi1 = 2Um + Un_g

Ox? - (Az)?
Similar considerations hold for the time derivative. Thus, by neglecting

errors of O[(Az)?] and O[(At)?}, we may approximate the wave equation
by

+ O[(Az)%. (7.6.9)

upt! — 2uf, 4+ up? =2 Upp1 — 2up, +up g
(At)? (Az)?

Because the wave equation represents evolutionary change of some quan-
tity, (7.6.10) is generally used as a predictive equation where we forecast
upt! by

(7.6.10)

2
_ cAt
W = 2un —ynl 4 (H) (ulyy — 200 +ul_y) . (1.6.11)

Figure 7.6.1 illustrates this numerical scheme.
The greatest challenge in using (7.6.11) occurs with the very first
prediction. When n = 0, clearly ul,,,, u5, and u),_; are specified from

the initial condition u(mAz,0) = f(zn,). But what about u.,'? Recall
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t A

n+l
u
m
n n n
um-l u m um+1
S n-1
H ' u Il
=~ 1 =
= =
At
L Ax |-
X
1 -
0_ -1 0
u,=f(x,) Uy = u,- At g(x,)

Figure 7.6.1: Schematic of the numerical solution of the wave equation
with fixed end points.

that we still have u,(x,0) = g(z). If we use the backward difference
formula (7.6.5),

0 -1
Uy — Uy
—_—= m)- 7.6.12
U = g(zm) (76.12)
Solving for ;!
unl = ul — Atg(en,). (7.6.13)

One of the disadvantages of using the backward finite-difference
formula is the larger error associated with this term compared to those
associated with the finite-differenced form of the wave equation. In the
case of the barotropic vorticity equation, a partial differential equation
with wave-like solutions, this inconsistency eventually leads to a separa-
tion of solution between adjacent time levels.?! This difficulty is avoided
by stopping after a certain number of time steps, averaging the solution,
and starting again.

*1 Gates, W. L., 1959: On the truncation error, stability, and con-
vergence of difference solutions of the barotropic vorticity equation. J.
Meteorol., 16, 556-568. See Section 4.
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A better solution for computing that first time step employs the
centered difference form

1 -1
Up —Un _
T = g(2m) (7.6.14)

along with the wave equation

1 0 -1 0 0 0
Uy — 2um + U, _ 2Ump1 — 2um + Uy g

(at)? =c )’ (7.6.15)

so that
- (_AA_:)Z (CREY N [1 . (%)2 Fem)+ Atg(zm).
(7.6.16)

Although it appears that we are ready to start calculating, we need
to check whether our numerical scheme possesses three properties: con-
vergence, stability, and consistency. By consistency we mean that the
difference equations approach the differential equation as Az, At — 0.
To prove consistency, we first write up, ., up,_q, Up, L and u?tl in
terms of u(x,t) and its derivatives evaluated at (¢m,t,). From Taylor

expansions,

n ou|™ Oul™ 33
Uy = Upy, +A:c5; i +§(A-’C)26_w§ +3 (A‘c)a . +‘ -, (7.6.17)
n n u|™ %u|™ Bul™
up = u"‘—AxB—a: +%(Az)2-8? ) —é(Az‘)sa‘g , (7.6.18)
o ou|™ 2y |™ ;0%u|™
nl = +At§ Z(At)'“’ o + £(At)3 55 - (7.6.19)
and
Sul|™ m B3u|”
n-1_ n _ vu 2 _1 3~ e
upt = up, — At ik + 3(At) 6t2 ) s(At) | +--- (7.6.20)
Substituting (7.6.17)—(7.6.20) into (7.6.10), we obtain
upt! = 2up Fupml Uy — 2 U
(At)? (Az)?
u_ gt ["
T 8:::2 n
4y 4., |™
12(At)26 EEWOVSCL ]
ozt|,

(7.6.21)
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The first term on the right side of (7.6.21) vanishes because u(z, t) sat-
isfies the wave equation. As Az — 0, At — 0, the remaining terms on
the right side of (7.6.21) tend to zero and (7.6.10) is a consistent finite
difference approximation of the wave equation.

Stability is another question. Under certain conditions the small
errors inherent in fixed precision arithmetic (round off) can grow for
certain choices of Az and At. During the 1920s the mathematicians
Courant, Friedrichs, and Lewy?? found that if cAt/Az > 1, then our
scheme is unstable. This CFL criteria has its origin in the fact that if
cAt > Az, then we are asking signals in the numerical scheme to travel
faster than their real-world counterparts and this unrealistic expectation
leads to instability!

One method of determining stability, commonly called the von Neu-
mann method,?? involves examining solutions to (7.6.11) that have the
form

n im@ein)\

ul =e : (7.6.22)

where @ is an arbitrary real number and X is a complex number that
has yet to be determined. Our choice of (7.6.22) is motivated by the
fact that the initial condition 12, can be represented by a Fourier series
where a typical term behaves as e™?.
If we substitute (7.6.22) into (7.6.10) and divide out the common
factor e™?¢i"*  we have that
el 9 4 =il L€ — 2 4 =i
G =Ty (7.6.23)

sin? (%) = (%)2sin2 (g) : (7.6.24)

The behavior of uy, is determined by the values of A given by (7.6.24).
If cAt/Az < 1, then X is real and u?, is bounded for all # as n — oo.
If cAt/Az > 1, then it is possible to find a value of @ such that the
right side of (7.6.24) exceeds unity and the corresponding A’s occur
as complex conjugate pairs. The A with the negative imaginary part
produces a solution with exponential growth because n = t, /At — co
as At — 0 for a fixed t, and cAt/Az. Thus, the value of u?, becomes
infinitely large, even though the initial data may be arbitrarily small.

or

?? Courant, R., Friedrichs, K. O., and Lewy, H., 1928: Uber die par-
tiellen Differenzengleichungen der mathematischen Physik. Math. An-
nalen, 100, 32-74. Translated into English in IBM J. Res. Dev., 11,
215-234.

3 After its inventor, J. von Neumann. See O’Brien, G. G., Hyman,
M. A., and Kaplan, S., 1950: A study of the numerical solution of partial
differential equations. J. Math. Phys., 29, 223-251.
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Figure 7.6.2: The growth of error ||e,|| as a function of ct for
various resolutions. For the top line, Az = 0.1; for the middle line,
Az = 0.01; and for the bottom line, Az = 0.001.

Finally, we must check for convergence. A numerical scheme is
convergent if the numerical solution approaches the continuous solution
as Az, At — 0. The general procedure for proving convergence involves
the evolution of the error term e?, which gives the difference between
the true solution u(z,,t,) and the finite difference solution uy,. From
(7.6.21),

. AN " ANl .
em+l = (EL’—) (em+1 + em—-l) + 2 [1 - (E) ] em - Cm 1
+ O[(At)*] + O[(Az)?(At)?]. (7.6.25)
Let us apply (7.6.25) to work backwards from the point (zm,tn) by
changing n to n — 1. The nonvanishing terms in e}, reduce to a sum of
n+ 1 values on the line n = 1 plus 1(n+1)n terms of the form A(Az)*.
If we define the max norm ||e,|] = maxn, |} |, then
lleall € nB(Az)? + L(n + 1)nA(Ax)*. (7.6.26)
Because nAz < ct,, (7.6.26) simplifies to

lleall < ctn B(Az)? 4 3c*t2 A(Az)?. (7.6.27)
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Figure 7.6.3: The numerical solution u(z,t)/h of the wave equation
with cAt/Az = } using (7.6.11) at various positions z’ = /L and times
t' = ct/L. We have plotted the exact solution as a dashed line.

Thus, the error tends to zero as Az — 0, verifying convergence. We have
illustrated (7.6.27) by using the finite difference equation (7.6.11) to
compute ||e, || during a numerical experiment that used cAt/Az = 0.5,
f(z) = sin(wz) and g(x) = 0. Note how each increase of resolution by
10 results in a drop in the error by 100.

In the following examples we apply our scheme to solve a few simple
initial and boundary conditions:

o Example 7.6.1

For our first example, we resolve (7.3.1) — (7.3.3) and (7.3.25) —
(7.3.26) numerically using (7.6.11) with cAt/Az = 1/2 and Az = 0.01.
Figure 7.6.3 shows the resulting numerical solution at the nondimen-
sional times c¢t/L = 1,3,7, and 15. We also included the exact solution
as a dashed line.

Overall, the numerical solution approximates the exact or analytic
solution well. However, we note small-scale noise in the numerical so-
lution. Why does this occur? Recall that the exact solution could be
written as an infinite sum of sines in the =z dimension. Each successive
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Figure 7.6.4: The numerical solution u(x,t)/h of the wave equation
when the right end moves freely with cAt/Az = 1 using (7.6.11) and
(7.6.30) at various positions ¢’ = z/L and times t’ = ct/L. We have
plotted the exact solution as a dashed line.

harmonic adds a contribution from waves of shorter and shorter wave-
length. In the case of the numerical solution, the longer-wavelength har-
monics are well represented by the numerical scheme because there are
many grid points available to resolve a given wavelength. As the wave-
lengths become shorter, the higher harmonics are poorly resolved by the
numerical scheme, move at incorrect phase speeds, and their misplace-
ment (dispersion) creates the small-scale noise that you observe rather
than giving the sharp angular features of the exact solution. The only
method for avoiding this problem is to devise schemes that resolve the
smaller-scale waves better.

e Example 7.6.2

Let us redo Example 7.6.1 except that we will introduce the bound-
ary condition that u;(L,t) = 0. This corresponds to a string where we
fix the left end and allow the right end to freely move up and down.
This requires a new difference condition along the right boundary. If we
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employ centered differencing,

U7y — Ul
B e e 7.6.28
2Azx 0 ( )

and

At\?
it =2 g+ (B (-2 ) (620

Eliminating u7 , between (7.6.28)-(7.6.29),

At\?
uptl = 2uf —u}~t 4 (CA_:L') (2uf_, —2u}). (7.6.30)

Figure 7.6.4 is the same as Figure 7.6.3 except for the new boundary
condition. In this case the exact solution is

u(z,t) = ﬁ 3 __1____._
’ m? £~ (2n - 1)?
y {2sin [(Qn; l)r] s [3(2718— 1)7r] sin [(2n ; 1)7r] }
X sin [(271—-2—;2—72] cos [Wc—t] . (7.6.31)

We have highlighted those times when the solution has its maximum
amplitude at the free right end. The results are consistent with those
presented in Example 7.6.1, especially the small-scale noise due the dis-
persion. Overall, however, the numerical solution does approximate the
exact solution well.

Project: Numerical Solution of First-Order
Hyperbolic Equations

The equation u; +u; = 0 is the simplest possible hyperbolic partial
differential equation. Indeed the classic wave equation can be written
as a system of these equations: u; + cv, = 0 and v; + cuy = 0. In this
project you will examine several numerical schemes for solving such a
partial differential equation.

Step 1: One of the simplest numerical schemes is the forward-in-time,
centered-in-space of
untl — g0 + U1 — Up_g —0

At 20z
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Figure 7.6.5: The numerical solution u(z,t) of the first-order hyper-
bolic partial differential equation u; + u; = 0 using the Lax-Wendroff
formula. The initial conditions are given by (7.3.25) with h = 1 and
At/Az = 1. We have plotted the exact solution as a dashed line.

Use von Neumann'’s stability analysis to show that this scheme is always
unstable.

Step 2: The most widely used method for numerically integrating first-
order hyperbolic equations is the Laz- Wendroff method:

At n n (At)2 n n
u?n+1 = Uy — 27z (um+l - um—l) + '2_(31:—)2 (unm+1 - 2up, + u'"—l) :

This methods introduces errors of O[(At)?] and O[(Az)?]. Show that
this scheme is stable if it satisfies the CFL criteria of At/Az < 1.

Using the initial condition given by (7.3.25), write code that uses
this scheme to numerically integrate u; + u, = 0. Plot the results
over the interval 0 < z < 1 given the periodic boundary conditions
of u(0,t) = u(l,t) for the temporal interval 0 < ¢ < 100. Discuss
the strengths and weaknesses of the scheme with respect to dissipation
or damping of the numerical solution and preserving the phase of the
solution. Most numerical methods books will discuss this.?

24 For example, Lapidus, L. and Pinder, G. F., 1982: Numerical Solu-
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Figure 7.6.6: Same as Figure 7.6.5 except that the centered-in-time,
centered-in-space scheme was used.

Step 3: Another simple scheme is the centered-in-time, centered-in-

space of

n+l __ ,n—-1
U Um

+ Upip1 — Uy -0
2At 2Ax

This methods introduces errors of O[(At)?] and O[(Az)?]. Show that
this scheme is stable if it satisfies the CFL criteria of At/Az < 1.

Using the initial condition given by (7.3.25), write code that uses
this scheme to numerically integrate u; + u; = 0 over the interval 0 <
x < 1 given the periodic boundary conditions of u(0,t) = u(1,t). Plot
the results over the spatial interval for the temporal interval 0 < ¢ < 100.
One of the difficulties is taking the first time step. Use the scheme in
Step 1 to take this first time step. Discuss the strengths and weaknesses
of the scheme with respect to dissipation or damping of the numerical
solution and preserving the phase of the solution.

tion of Partial Differential Equations in Science and Engineering, John
Wiley & Sons, New York.



Chapter 8

The Heat Equation

In this chapter we deal with the linear parabolic differential equa-
tion
ou  ,8%
—=a"— 8.0.1
5t~ * 822 (8.0.1)
in the two independent variables x and ¢. This equation, known as the
one-dimensional heat equation, serves as the prototype for a wider class
of parabolic equations:

8%u O?u 0%u Ou Ou
Cl(l‘, t)w + b(l‘,t)ﬁ -+ c(z, t)a? = (1,‘, t,u, 6_1:’ —a-t—> s (802)

where b2 = 4ac. It arises in the study of heat conduction in solids as well
as in a variety of diffusive phenomena. The heat equation is similar to
the wave equation in that it is also an equation of evolution. However,
the heat equation is not “conservative” because if we reverse the sign of
t, we obtain a different solution. This reflects the presence of entropy
which must always increase during heat conduction.
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X x+Ax
Figure 8.1.1: Heat conduction in a thin bar.
8.1 DERIVATION OF THE HEAT EQUATION

To derive the heat equation, consider a heat-conducting homoge-
neous rod, extending from = = 0 to z = L along the z-axis (see Figure
8.1.1). The rod has uniform cross section A and constant density p,
is insulated laterally so that heat flows only in the z-direction and is
sufficiently thin so that the temperature at all points on a cross section
is constant. Let u(z,t) denote the temperature of the cross section at
the point = at any instant of time ¢, and let ¢ denote the specific heat
of the rod (the amount of heat required to raise the temperature of a
unit mass of the rod by a degree). In the segment of the rod between
the cross section at x and the cross section at z + Az, the amount of
heat is

Q) = /HAx epAu(s,t)ds. (8.1.1)

On the other hand, the rate at which heat flows into the segment across
the cross section at x is proportional to the cross section and the gradient
of the temperature at the cross section (Fourier’s law of heat conduc-
tion):
Ou(z,t)
—KA——2,
Oz

where x denotes the thermal conductivity of the rod. The sign in (8.1.2)
indicates that heat flows in the direction of decreasing temperature.
Similarly, the rate at which heat flows out of the segment through the
cross section at z + Az equals

(8.1.2)

Ou(z + Ax,t)

—KkA 32

(8.1.3)

The difference between the amount of heat that flows in through the
cross section at z and the amount of heat that flows out through the
cross section at  + Az must equal the change in the heat content of
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the segment < s < ¢+ Az. Hence, by subtracting (8.1.3) from (8.1.2)
and equating the result to the time derivative of (8.1.1),
oQ vHiz Ou(s,t) , Ou(z + Az, t)  Ou(x,i)
B ) AT ds=ra oz T oz |

(8.1.4)
Assuming that the integrand in (8.1.4) is a continuous function of s,
then by the mean value theorem for integrals,

z+Azx
/ 6“((9?1‘) ds = augft;t) Az, <<+ Az, (815)

so that (8.1.4) becomes

cpA (8.1.6)

LOuEt) _ fou(z+Az,t)  du(zt)
ot Oz or |

Dividing both sides of (8.1.6) by cpAxz and taking the limit as Az — 0,

du(z,t) _ ,0%u(z,1)

5 = e (8.1.7)

with a2 = k/(cp). Equation (8.1.7) is called the one-dimensional heat
equation. The constant a® is called the diffusivity within the solid.
If an external source supplies heat to the rod at a rate f(x,?) per

unit volume per unit time, we must add the term f;+Aw f(s,t)ds to
the time derivative term of (8.1.4). Thus, in the limit Az — 0,

du(z,t) » 0%u(z,t)
ot a Oz2

= F(z,1), (8.1.8)

where F(x,t) = f(x,t)/(cp) is the source density. This equation is called
the nonhomogeneous heat equation. ,

8.2 INITIAL AND BOUNDARY CONDITIONS

In the case of heat conduction in a thin rod, the temperature func-
tion u(z,?) must satisfy not only the heat equation (8.1.7) but also how
the two ends of the rod exchange heat energy with the surrounding
medium. If (1) there is no heat source, (2) the function f(z),0 <z < L
describes the temperature in the rod at ¢ = 0, and (3) we maintain
both ends at zero temperature for all time, then the partial differential
equation

du(z,t)  ,0%u(,t)
ot T 0a?

O<z<L,0<t (8.2.1)
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describes the temperature distribution u(z,t) in the rod at any later
time 0 < ¢ subject to the condition

u(z,0) = f(x), 0<z< L (8.2.2)

and
u(0,¢) = u(L,t) =0, 0<t. (8.2.3)

Equations (8.2.1)-(8.2.3) describe the initial-boundary value problem for
this particular heat conduction problem; (8.2.3) is the boundary condi-
tion while (8.2.2) gives the initial condition. Note that in the case of
the heat equation, the problem only demands the initial value of u(z,?)
and not u,(z,0), as with the wave equation.

Historically most linear boundary conditions have been classified in
one of three ways. The condition (8.2.3) is an example of a Dirichlet
problem?! or condition of the first kind. This type of boundary condition
gives the value of the solution (which is not necessarily equal to zero)
along a boundary. '

The next simplest condition involves derivatives. If we insulate both
ends of the rod so that no heat flows from the ends, then according to
(8.1.2) the boundary condition assumes the form

0u(0,1) _ du(L,t) _
8 ~ Qx

0<t. (8.2.4)

This is an example of a Neumann problem? or condition of the second
kind. This type of boundary condition specifies the value of the normal
derivative (which may not be equal to zero) of the solution along the
boundary.

Finally, if there is radiation of heat from the ends of the rod into
the surrounding medium, we shall show that the boundary condition is
of the form

ingl,_t) — hu(0,t) = a constant (8.2.5)

and
w + hu(L,t) = another constant (8.2.6)
T

! Dirichlet, P. G. L., 1850: Uber einen neuen Ausdruck zur Bes-
timmung der Dichtigkeit einer unendlich diinnen Kugelschale, wenn
der Werth des Potentials derselben in jedem Punkte ihrer Oberfiache
gegeben ist. Abh. Koniglich. Preuss. Akad. Wiss., 99-116.

2 Neumann, C. G., 1877: Untersuchungen uber das Logarithmische
und Newton’sche Potential. Leibzig.
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for 0 < t, where h is a positive constant. This is an example of a
condition of the third kind or Robin problem? and is a linear combination
of Dirichlet and Neumann conditions.

8.3 SEPARATION OF VARIABLES

As with the wave equation, the most popular and widely used tech-
nique for solving the heat equation is separation of variables. Its suc-
cess depends on our ability to express the solution u(z,t) as the product
X (z)T(t). If we cannot achieve this separation, then the technique must
be abandon for others. In the following examples we show how to apply
this technique even if it takes a little work to get it right.

e Example 8.3.1

Let us find the solution to the homogeneous heat equation

o _ a0
ot~ 0xz?’

which satisfies the initial condition

0<z<LO<t (8.3.1)

u(z,0)= f(z), 0<z<L (8.3.2)
and the boundary conditions
u(0,t) =u(L,t)=0, 0<t. (8.3.3)

This system of equations models heat conduction in a thin metallic bar
where both ends are held at the constant temperature of zero and the
bar initially has the temperature f(z).

We shall solve this problem by the method of separation of vari-
ables. Accordingly, we seek particular solutions of (8.3.1) of the form

u(z,t) = X(2)T(t), (8.3.4)
which satisfy the boundary conditions (8.3.3). Because
Ou

a5 = X(=)T'(t) (8.3.5)
and o
u "
57 = X"(2)T(2), (8.3.6)

3 Robin, G., 1886: Sur la distribution de I'électricité & la surface
des conducteurs fermés et des conducteurs ouverts. Ann. Sci. I’Ecole
Norm. Sup., Ser. 3, 3, S1-S58.
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(8.3.1) becomes
T (1) X(z) = a®X"(2)T(t). (8.3.7)

Dividing both sides of (8.3.7) by a?X(2)T(t) gives

T X"
= — =—-A

5= % : (8.3.8)

where —A is the separation constant. Equation (8.3.8) immediately
yields two ordinary differential equations:

X"4+2X =0 (8.3.9)
and
T +ad’XT =0 (8.3.10)

for the functions X (z) and T'(¢), respectively.

We now rewrite the boundary conditions in terms of X (z) by noting
that the boundary conditions are u(0,t) = X(0)T(¢) = 0 and u(L,t) =
X(L)T(t) = 0 for 0 < ¢t. If we were to choose T'(t) = 0, then we would
have a trivial solution for u(x,t). Consequently, X(0) = X(L) = 0.

There are three possible cases: A = —m? A =0, and X = k2. If
A = —m? < 0, then we must solve the boundary-value problem:

X" -m*X =0, X(0)=X(L)=0. (8.3.11)
The general solution to (8.3.11) is
X(x) = Acosh(mz) + Bsinh(mz). (8.3.12)

Because X(0) = 0, it follows that A = 0. The condition X(L) = 0
yields Bsinh(mL) = 0. Since sinh(mL) # 0, B = 0 and we have a
trivial solution for A < 0.

If A =0, the corresponding boundary-value problem is

X"(z)=0, X(0)=X(L) =0. (8.3.13)
The general solution is
X(x) =C+ Dx. (8.3.14)

From X(0) = 0, we have that C = 0. From X(L) = 0, DL = 0 or
D = 0. Again, we obtain a trivial solution.

Finally, we assume that A = k2 > 0. The corresponding boundary-
value problem is

X'"+kX =0 X(0)=X(L)=0. (8.3.15)
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solution

o 0 distance

time
Figure 8.3.1: The temperature u(z,t) within a thin bar as a function
of position z/7 and time a?t when we maintain both ends at zero and
the initial temperature equals z(7 — z).

The general solution to (8.3.15) is
X(z) = Ecos(kz) + Fsin(kz). (8.3.16)

Because X(0) = 0, it follows that E = 0; from X(L) = 0, we obtain
Fsin(kL) = 0. To have a nontrivial solution, F # 0 and sin(kL) = 0.

This implies that k,L = nm, where n = 1,2,3,.... In summary, the
z-dependence of the solution is
. (nTZ
Xn(z) = Fysin (T) , (8.3.17)

where A, = n?r%/L%
Turning to the time dependence, we use A\, = n?7?/L? in (8.3.10):

a’n?7?

The corresponding general solution is
aZn2n?
Tn(t) = Grexp <—- Tt) . (8.3.19)
Thus, the functions
2,22
un(z,1) = By sin (?) exp (-“-%%t) n=1,23,.., (83.20)

where B, = F,Gp, are particular solutions of (8.3.1) and satisfy the
homogeneous boundary conditions (8.3.3).

As we noted in the case of wave equation, we can solve the z-
dependence equation as a regular Sturm-Liouville problem. After find-
ing the eigenvalue A, and eigenfunction, we solve for 7,,(¢). The product
solution u,(z,t) equals the product of the eigenfunction and Tj,(t).
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Having found particular solutions to our problem, the most general
solution equals a linear sum of these particular solutions:

00 2,22
u(z,t) = Z B, sin ("Lﬂ) exp ( a;—?ﬂ-t) . (8.3.21)
n=1

The coefficient B, is chosen so that (8.3.21) yields the initial condition
(8.3.2) if t = 0. Thus, setting ¢ = 0 in (8.3.21), we see from (8.3.2) that
the coefficients B, must satisfy the relationship

f(z) = f: B, sin ("Lﬂ) , O0O<z<L (8.3.22)
n=1

This is precisely a Fourier half-range sine series for f(z) on the interval
(0, L). Therefore, the formula

/ f( :c)sm ) dez, n=123,... (8.3.23)

gives the coefficients B,,. For example, if L = r and u(z,0) = z(7 — z),
then

T

B, == '/07r z(m — z)sin(nz) dz (8.3.24)

= 2/ zsin(ne) de — —72;/ z?sin(nz) dz (8.3.25)
0 0

1—(=1)"
—n(f!_)‘ (8.3.26)
Hence,
_ sin[(2n — 1)z] _(5n_1y2 2t
u(z,t) = — n; e (8.3.27)

Figure 8.3.1 illustrates (8.3.27) for various times. Note that both
ends of the bar satisfy the boundary conditions, namely that the tem-
perature equals zero. As time increases, heat flows out from the center
of the bar to both ends where it is removed. This process is reflected in
the collapse of the original parabolic shape of the temperature profile
towards zero as time increases.

o Example 8.3.2

As a second example, let us solve the heat equation

Ou 28

% =Y e 0<z<L,0<t (8.3.28)
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which satisfies the initial condition
u(z,0)=2, O0<z<lL (8.3.29)

and the boundary conditions
a—ué—oa;—t) =u(L,t)=0, 0<t. (8.3.30)

The condition u;(0,t) = 0 expresses mathematically the constraint that
no heat flows through the left boundary (insulated end condition).

Once again, we employ separation of variables; as in the previous
example, the positive and zero separation constants yield trivial solu-
tions. For a negative separation constant, however,

X"+k2X =0 (8.3.31)

with
X'(0) = X(L) =0, (8.3.32)

because u-(0,t) = X’(0)T(t) = 0 and u(L,t) = X(L)T(t) = 0. This
regular Sturm-Liouville problem has the solution

2n — V7w

X,,(a:):cos[( ST ] n=123,... (8.3.33)

The temporal solution then becomes

2n — 1)27r2t]

Ta(t) = B, exp [— aX e (8.3.34)

Consequently, a linear superposition of the particular solutions gives the
total solution which equals

)= 55y [ 17 [ P2 g

n=1

Our final task remains to find the B,’s. Evaluating (8.3.35) at
t=0,

u(z,0)=z= Z B, cos [Qﬁ—;—[‘i)-ﬁ

n=1

] , O<z<LIL. (83.36)
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time ) distance

Figure 8.3.2: The temperature u(z,t)/L within a thin bar as a function
of position /L and time a?t/L? when we insulate the left end and hold
the right end at the temperature of zero. The initial temperature equals

.

Equation (8.3.36) is not a half-range cosine expansion; it is an ex-

pansion in the orthogonal functions cos{(2n — 1)wz /{2L)] corresponding
to the regular Sturm-Liouville problem (8.3.31)-(8.3.32). Consequently,
B, is given by (6.3.4) with r(z) =1 as

n

_ [ zcos[(2n — Vmz/(2L)] dx

T (@2n-1272  (2n- D7’

. (8.3.37)
Jo cos?[(2n — L)z /(2L)] d=
L2 2n—lrz | 1L 2Lz : 2n—Vrz | |L
e 1yse7 COS [( o I] lo + @ty sin [( o ] lo (8.3.38)

L . - L
z L (2n—-1)rzx
2 |0 *t 3En 1) SIN [ L ]Io

ﬁ{ [(2%91] - 1} o [(2n 2 m}
(8.3.39)

8L 4L(-1)

(8.3.40)

as cos[(2n — 1)7/2] = 0 and sin[(2n — 1)7/2] = (=1)"*!. Consequently,
the final solution is

u(e,t) = ‘% g [(2n —21)27r + é;l_)nl] cos [(% ;Ll)w_z]

_(2n - 1)27r2a2t]

X exp [ IV (8.3.41)
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Figure 8.3.2 illustrates the evolution of the temperature field with
time. Initially, heat near the center of the bar flows towards the cooler,
insulated end, resulting in an increase of temperature there. On the right
side, heat flows out of the bar because the temperature is maintained
at zero at = = L. Eventually the heat that has accumulated at the left
end flows rightward because of the continual heat loss on the right end.
In the limit of t — oo, all of the heat has left the bar.

o Example 8.3.3

A slight variation on Example 8.3.1 is

Ou ,0%u
a-—-a W’ 0<1’<L,0<t, (8342)
where
u(z,0)=u(0,t)=0 and u(L,t)=9. (8.3.43)

We begin by blindly employing the technique of separation of vari-
ables. Once again, we obtain the ordinary differential equation (8.3.9)
and (8.3.10). The initial and boundary conditions become, however,

X(0)=T0)=0 (8.3.44)
and
X(L)T(t) =8. (8.3.45)

Although (8.3.44) is acceptable, (8.3.45) gives us an impossible condition
because T'(t) cannot be constant. If it were, it would have to equal to
zero by (8.3.44).

To find a way around this difficulty, suppose we wanted the solu-
tion to our problem at a time long after ¢ = 0. From experience we
know that heat conduction with time-independent boundary conditions
eventually results in an evolution from the initial condition to some time-
independent (steady-state) equilibrium. If we denote this steady-state
solution by w(z), it must satisfy the heat equation

a’w’(z) = 0 (8.3.46)
and the boundary conditions
w(0)=0 and w(L)=2§6. (8.3.47)
We can integrate (8.3.46) immediately to give

w(z) = A+ Bz (8.3.48)
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and the boundary condition (8.3.47) results in

bz

w(z) = I

Clearly (8.3.49) cannot hope to satisfy the initial conditions; that

was never expected of it. However, if we add a time-varying (transient)

solution v(z,t) to w(z) so that

(8.3.49)

u(z,t) = w(z) + v(z,t), (8.3.50)
we could satisfy the initial condition if
v(z,0) = u(z,0) — w(zx) (8.3.51)

and v(z,t) tends to zero as t — co. Furthermore, because w”(z) =
w(0) = 0 and w(L) = 6,

v o2 ?v
5 =% 0<z<l0<t (8.3.52)

with the boundary conditions
v(0,t)=0 and v(L,t)=0, 0<t. (8.3.53)

We can solve (8.3.51), (8.3.52), and (8.3.53) by separation of variables;
we did it in Example 8.3.1. However, in place of f(z) we now have
u(z,0) — w(z) or —w(z) because u(z,0) = 0. Therefore, the solution
v(z,t) is

v(z,t) = "i::l B, sin ("Lﬁ) exp (—ﬁ#t) (8.3.54)
with
= —/ —w(z) sm ) (8.3.55)
=< /OL _0% sin (%) dz (8.3.56)
- [ () - 2w (2)] w39m
= (—1)"%' (8.3.58)

© (_1)m 2,22
u(z,t) = bz + 20 Z (=1) sin (E{——l—‘) exp (—ut> . (8.3.59)
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Figure 8.3.3: The temperature u(z,t)/6 within a thin bar as a function
of position /L and time a?t/L? with the left end held at a tempera-
ture of zero and right end held at a temperature ¢ while the initial

temperature of the bar is zero.

The quantity a®t/L? is the Fourier number.

Figure 8.3.3 illustrates our solution. Clearly it satisfies the bound-
ary conditions. Initially, heat flows rapidly from right to left. As time
increases, the rate of heat transfer decreases until the final equilibrium

(steady-state) is established and no more heat flows.

o Example 8.3.4

Let us find the solution to the heat equation

du _ ,0%
E—a—a—z—f, O<z< L,O<t

subject to the Neumann boundary conditions

ou(0,t) _ Ou(L,t) _
z ~ Bz

and the initial condition that

u(z,0) = 2, 0<e<L.

We have now insulated both ends of the bar.

0, 0<t

(8.3.60)

(8.3.61)

(8.3.62)
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Assuming that u(z,t) = X (2)T(t),

TI XII
7 = 5 = -k, (8.3.63)

where we have presently assumed that the separation constant is neg-
ative. The Neumann conditions give u;(0,t) = X'(0)T(t) = 0 and
ugy(L,t) = X'(L)T(t) = 0 so that X'(0) = X'(L) = 0.

The Sturm-Liouville problem

X"+EX =0 (8.3.64)

and
X'(0)=X(L)=0 (8.3.65)

gives the z-dependence. The eigenfunction solution is
Xn(x) = cos ("Lﬂ) , (8.3.66)

where k, = nv/L and n =1,2,3,...
The corresponding temporal part equals the solution of

' 272 , | atn’m?

Tn “+a knTn = Tn + TTH =0, (8367)
which is 9 2 9
a‘n‘m

T.(t) = A, exp (— JE t) . (8.3.68)

Thus, the product solution given by a negative separation constant is
_ _ nwe a’n?x?
tun(2,1) = Xn(2)Tn(t) = An cos (T) exp (77 t). (8.3.69)

Unlike our previous problems, there i1s a nontrivial solution for a
separation constant that equals zero. In this instance, the z-dependence
equals

X(z) = Az + B. (8.3.70)

The boundary conditions X’(0) = X’(L) = 0 force A to be zero but
B is completely free. Consequently, the eigenfunction in this particular
case is

Xo(z) = 1. (8.3.71)

Because T§(t) = 0 in this case, the temporal part equals a constant which
we shall take to be Ag/2. Therefore, the product solution corresponding
to the zero separation constant is

UQ((L‘,t) = X()(Z')To(t) = A0/2 (8372)
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Figure 8.3.4: The temperature u(z,t)/L within a thin bar as a function
of position z/L and time a?t/L? when we insulate both ends. The initial
temperature of the bar is «.

The most general solution to our problem equals the sum of all of
the possible solutions:

Ao el nre an?x?
u(z,t) = 5 + nzzzl Ap cos (T> exp (-Tt . (8.3.73)
Upon substituting £ = 0 into (8.3.73), we can determine A, because
Ag = nre
U((L‘, 0) == 7 + ;An COS (T) (8374)

is merely a half-range Fourier cosine expansion of the function z over
the interval (0, L). From (2.1.23)-(2.1.24),

9 (L
Ao = —/ zdzr=1 (8.3.75)
L Jo
and
9 L
A, = f/o T cos (%) dx (8.3.76)
2 L? nwe zL nrzy]t
= 2| 2 cos{ =) + —sin (— 8.3.
L[nzwzcos( T )+mrsm( I )]0 (8.3.77)

% (=1 —1]. (8.3.78)
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The final solution is

L 4L & 1 (2m — )7z
“(z’t)zi'FZ(Qm—l)z“’s[ I ]
m=1

2 _1)2,.2
xexp |- VT (8379

because all of the even harmonics vanish and we may rewrite the odd
harmonics using n = 2m — 1, where m=1,2,3,4, ...

Figure 8.3.4 illustrates (8.3.79) for various positions and times. The
physical interpretation is quite simple. Since heat cannot flow in or out
of the rod because of the insulation, it can only redistribute itself. Thus,
heat flows from the warm right end to the cooler left end. Eventually
the temperature achieves steady-state when the temperature is uniform
throughout the bar.

o Example 8.3.5

So far we have dealt with problems where the temperature or flux
of heat has been specified at the ends of the rod. In many physical
applications, one or both of the ends may radiate to free space at tem-
perature ug. According to Stefan’s law, the amount of heat radiated
from a given area dA in a given time interval dt is

o(u* — ul)dA dt, (8.3.80)

where ¢ is called the Stefan-Boltzmann constant. On the other hand,
the amount of heat that reaches the surface from the interior of the
body, assuming that we are at the right end of the bar, equals

du

—k—dAdt, 8.3.81

Oz ( )
where k is the thermal conductivity. Because these quantities must be
equal,

0
“ —ud) = o(u — wo)(v® + ulug +uul + ud).  (8.3.82)

—k— =o(u

If u and up are nearly equal, we may approximate the second bracketed
term on the right side of (8.3.82) as 4ud. We write this approximate
form of (8.3.82) as

—"6—1; = h(u - Uo), (8383)

where h, the surface conductance or the coefficient of surface heat trans-
fer, equals 40u3/k. Equation (8.3.83) is a “radiation” boundary con-
dition. Sometimes someone will refer to it as “Newton’s law” because
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(8.3.83) is mathematically identical to Newton’s law of cooling of a body
by forced convection.

Let us now solve the problem of a rod that we initially heat to the
uniform temperature of 100. We then allow it to cool by maintaining the
temperature at zero at z = 0 and radiatively cooling to the surrounding
air at the temperature of zero? at z = L. We may restate the problem
as

du _ ,0%u
—67—(1 8_:1,‘2—’ 0<1:<L,0<t (8384)
with
u(z,0) =100, O0<z<L (8.3.85)
u(0,t)=0, 0<t (8.3.86)
and u(L
"gz’t) +hu(L,t)=0, 0<t. (8.3.87)

Once again, we assume a product solution u(z,t) = X (z)T(t) with
a negative separation constant so that

XH TI

= = p =k (8.3.88)
We obtain for the z-dependence that
X" +k*X =0 (8.3.89)
but the boundary conditions are now
X(0)=0 and X'(L)+hX(L)=0. (8.3.90)
The most general solution of (8.3.89) is
X(z) = Acos(kz)+ Bsin(kz). (8.3.91)

However, A = 0 because X(0) = 0. On the other hand,
kcos(kL) + hsin(kL) = kL cos(kL) + hLsin(kL) = 0, (8.3.92)

if B # 0. The nondimensional number hL is the Biot number and is
completely dependent upon the physical characteristics of the rod.

4 Although this would appear to make h = 0, we have merely chosen
a temperature scale so that the air temperature is zero and the absolute
temperature used in Stefan’s law is nonzero.
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Table 8.3.1: The First Ten Roots of (8.3.93) and C, for AL = 1.

n an Approximate a, Cn

1 2.0288 2.2074 118.9193
2 4.9132 4.9246 31.3402
3 7.9787 7.9813 27.7554
4 11.0856 11.0865 16.2878
5 14.2075 14.2079 14.9923
6 17.3364 17.3366 10.8359
7 23.6044 23.6043 8.0989
8 26.7410 26.7409 7.7483
9 29.8786 29.8776 6.4625
10 33.0170 33.0170 6.2351

In Chapter 6 we saw how to find the roots of the transcendental
equation
a + hLtan(a) =0, (8.3.93)

where o = kL. Consequently, if «, is the nth root of (8.3.93), then the
eigenfunction is
Xn(z) = sin{anz/L). (8.3.94)

In Table 8.3.1, we list the first ten roots of (8.3.93) for AL = 1.
In general, we must solve (8.3.93) either numerically or graphically.
If « is large, however, we can find approximate values by noting that

cot(a) = —hL/a =0 (8.3.95)

” an, = (2n - DHm/2, (8.3.96)

where n = 1,2, 3,... We may obtain a better approximation by setting
an =(2n—-1)7/2 —¢,, (8.3.97)
where ¢, < 1. Substituting into (8.3.95),
[(2n — 1)7/2 — €p]) cot[(2n — 1)7/2 — €,] + RL = 0. (8.3.98)
We can simplify (8.3.98) to
4+ (2n— )7 /24+hL =0 (8.3.99)
because cot[(2n —~1)7/2— 6] = tan(f) and tan(d) =~ 6 for § < 1. Solving

for €,,
2hL

G- r

(8.3.100)
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and
_(2n—-Drm 2hL

nN T (2n — )7’
In Table 8.3.1 we compare the approximate roots given by (8.3.101) with

the actual roots.
The temporal part equals

(8.3.101)

2 2\ aZa’t
Tn(t) = Crexp (—k2a’t) = Cpexp | — ) (8.3.102)

Consequently, the general solution is

oo 2,2
u(z,t) = Z Cp sin (a_z.z_') exp (— a’}; t) , (8.3.103)
n=1

where a;, is the nth root of (8.3.93).
To determine C,,, we use the initial condition (8.3.85) and find that

100 = i Cp sin (azz) . (8.3.104)
n=1

Equation (8.3.104) is an eigenfunction expansion of 100 employing the
eigenfunctions from the Sturm-Liouville problem

X"+kEX=0 (8.3.105)
and
X(0)=X'(L)+hX(L) =0. (8.3.106)
Thus, the coefficient C,, is given by (6.3.4) or
L .
100 nz/L)d
C, = lo - sin(anz/L)dz. (8.3.107)
Js sin?(anz/L)dz
as r(z) = 1. Performing the integrations,
100L{1 — cos(an)]/an 200[1 — cos(an)]
Ch = = . (8.3.108
"7 L[L - Lsin(2an)/(2an))] an[l + cos?(an)/(hL)] ( )
because sin(2ay,) = 2 cos(an)sin(ay,) and a, = —hLtan(an). The final

solution is

o= 200[1—cos(an)] . (onZ _apa’t
us,t) = ; anll + c0s2(am)/(AD)] sin (% )e"p( Iz )
(8.3.109)
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solution

50 1

0.2

distance

time 0
Figure 8.3.5: Tbe temperature u(z,t) within a thin bar as a function
of position z/L and time a?t/L% when we allow the bar to radiatively
cool at z = L while the temperature is zero at £ = 0. Initially the
temperature was 100.

Figure 8.3.5 illustrates this solution for AL = 1 at various times and
positions. It is similar to Example 8.3.1 in that the heat lost to the
environment occurs either because the temperature at an end is zero
or because it radiates heat to space which has the temperature of zero.
The oscillations in the initial temperature distribution arise from Gibbs
phenomena. We are using eigenfunctions that satisfy the boundary con-
ditions (8.3.90) to fit a curve that equals 100 for all .

o Example 8.3.6: Refrigeration of apples

Some decades ago, shiploads of apples, going from Australia to
England, deteriorated from a disease called “brown heart,” which oc-
curred under insufficient cooling conditions. Apples, when placed on
shipboard, are usually warm and must be cooled to be carried in cold
storage. They also generate heat by their respiration. It was suspected
that this heat generation effectively counteracted the refrigeration of the
apples, resulting in the “brown heart.”

This was the problem which induced Awberry® to study the heat
distribution within a sphere in which heat is being generated. Awberry
first assumed that the apples are initially at a uniform temperature.
We can take this temperature to be zero by the appropriate choice of
temperature scale. At time t = 0, the skins of the apples assume the
temperature # immediately when we introduce them into the hold.

5 Awberry, J. H., 1927: The flow of heat in a body generating heat.
Philos. Mag., Ser. 7, 4, 629-638.



The Heat Equation 409

Because of the spherical geometry, the nonhomogeneous heat equa-

tion becomes

%%z%% (rzg—ﬁ>+% 0<r<b0<t, (8.3.110)
where a2 is the thermal diffusivity, b is the radius of the apple, x is the
thermal conductivity, and G is the heating rate (per unit time per unit
volume).

If we try to use separation of variables on (8.3.110), we find that it
does not work because of the G/« term. To circumvent this difficulty,
we ask the simpler question of what happens after a very long time. We
anticipate that a balance will eventually be established where conduc-
tion transports the heat produced within the apple to the surface of the
apple where the surroundings absorb it. Consequently, just as we intro-
duced a steady-state solution in Example 8.3.3, we again anticipate a

steady-state solution w(r) where the heat conduction removes the heat
generated within the apples. The ordinary differential equation

1d [ ,dw G
7‘_25 (7‘ -dT) = - (83111)

K

gives the steady-state. Furthermore, just as we introduced a transient
solution which allowed our solution to satisfy the initial condition, we
must also have one here and the governing equation is

v a®d ov
5% =75 (ﬂ E) . (8.3.112)

Solving (8.3.111) first,

D Gr?

The constant D equals zero because the solution must be finite at r = 0.
Because the steady-state solution must satisfy the boundary condition
w(b) =4,

=0+ —. 8.3.114
C=0+ on ( )
Turning to the transient problem, we introduce a new dependent
variable y(r,t) = rv(r,t). This new dependent variable allows us to
replace (8.3.112) with
Oy _ 2823:'

a =a w, (83115)
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which we can solve. If we assume that y(r,t) = R(r)T'(t) and we only
have a negative separation constant, the R(r) equation becomes

d’R
<7 tFR=0, (8.3.116)
which has the solution
R(r) = Acos(kr) + Bsin(kr). (8.3.117)

The constant A equals zero because the solution (8.3.117) must vanish

at » = 0 in order that v(0,t) remains finite. However, because § =
w(b) + v(b,t) for all time and v(b,t) = R(b)T(t)/b = 0, then R(b) = 0.
Consequently, k, = nw/b and

B, 202424
vp(r,t) = —T-sin (%) exp (—%) . (8.3.118)

Superposition gives the total solution which equals

(rt)-0+ —"2)+Z—" ln( ) p( #)
(8.3.119)

Finally, we determine the B,,’s by the initial condition that u(r,0) =
0. Therefore,

b
B, = _2/ r [9 + S0 rz)] sin ("—:f) dr (8.3.120)
0

b 6%
=2y ( ) (~1)". (8.3.121)

The final solution is

20b ne . 2r2a’t
u(rt)_€+—z( )sm(n—;”:)exp(—ﬂlp—a——)

G .o o 2GB®X(-1)" . /nxr n?r?a’t
+6fc(b —r)+rmr3z n3 sm( b )exp T2 '

(8.3.122)

The first line of (8.3.122) gives the temperature distribution due to the
imposition of the temperature § on the surface of the apple while the
second line gives the rise in the temperature due to the interior heating.

Returning to our original problem of whether the interior heating is
strong enough to counteract the cooling by refrigeration, we merely use
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the second line of (8.3.122) to find how much the temperature deviates
from what we normally expect. Because the highest temperature exists
at the center of each apple, its value there is the only one of interest in
this problem. Assuming b = 4 cm as the radius of the apple, a*G/x =
1.33 x 107% °C/s and a? = 1.55 x 1072 cm?/s, the temperature effect
of the heat generation is very small, only 0.0232 °C when, after about 2
hours, the temperatures within the apples reach equilibrium. Thus, we
must conclude that heat generation within the apples is not the cause
of brown heart.

We now know that brown heart results from an excessive concentra-
tion of carbon dioxide and a deficient amount of oxygen in the storage
hold.® Presumably this atmosphere affects the metabolic activities that
are occurring in the apple” and leads to low-temperature breakdown.

o Example 8.3.7

In this example we illustrate how separation of variables may be
employed in solving the axisymmetric heat equation in an infinitely long
cylinder. In circular coordinates the heat equation is

2

g—?:a2(%£ %%’5), 0<r<b0<t, (8.3.123)
where r denotes the radial distance and a? denotes the thermal diffu-
sivity. Let us assume that we have heated this cylinder of radius b to
the uniform temperature Ty and then allowed it to cool by having its
surface held at the temperature of zero starting from the time ¢ = 0.

We begin by assuming that the solution is of the form u(r,t) =
R(r)T'(t) so that

d’R 1d T k2
L (IR R Ldl_ k. (8.3.124)

E(W*F?)Zﬁ'd?‘ 5

The only values of the separation constant that yield nontrivial solu-
tions are negative. The nontrivial solutions are R(r) = Jo(kr/b), where
Jo is the Bessel function of the first kind and zeroth order. A separa-
tion constant of zero gives R(r) = In(r) which becomes infinite at the

6 Thornton, N. C., 1931: The effect of carbon dioxide on fruits and
vegetables in storage. Contrib. Boyce Thompson Inst., 3, 219-244.

7 Fidler, J. C. and North, C. J., 1968: The effect of conditions of
storage on the respiration of apples. IV. Changes in concentration of
possible substrates of respiration, as related to production of carbon
dioxide and uptake of oxygen by apples at low temperatures. J. Hortic.
Sci., 43, 429-439.
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Figure 8.3.6: The temperature u(r,t)/T, within an infinitely long
cylinder at various positions r/b and times a?t/b? that we initially heated
to the uniform temperature Tp and then allowed to cool by forcing its
surface to equal zero.

origin. Positive separation constants yield the modified Bessel function
Io(kr/b). Although this function is finite at the origin, it cannot satisfy
the boundary condition that u(b,t) = R()T'(t) = 0 or R(b) = 0.

The boundary condition that R(b) = 0 requires that Jo(k) = 0.
This transcendental equation yields an infinite number of k,,’s. For each
of these k,’s, the temporal part of the solution satisfies the differential
equation

dT, k2a?
—+ 2T, = .3.125
dt+ = T, =0, (8.3.125)
which has the solution
k2a?
Ta(t) = A, exp (— 22 t) . (8.3.126)
Consequently, the product solutions are
r k2a?
un(r,t) = ApJo (knz) exp (— 22 t) . (8.3.127)

The total solution is a linear superposition of all of the particular solu-
tions or

o 2,2
u(r,t) = Z AnJo (k,, %) exp (— k’l;: t) . (8.3.128)
n=1
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Our final task remains to determine A,,. From the initial condition
that u(r,0) = Ty,

(r,0) = ZA Jo (kn ) (8.3.129)

From (6.5.35) and (6.5.43),

2
An = Jf(k,,)bﬁ/ rJo (kn b) dr (8.3.130)
2T% knr ry |® 2T%
= B2k ( > h(kp)l,= 5 Ty &3131)

from (6.5.25). Thus, the final solution is

u(r,t) = 2T, Z = Jl(k )Jo (k ) exp ( k%ft) . (8.3.132)

Figure 8.3.6 illustrates the solution (8.3.132) for various Fourier numbers
a’t/b%. 1t is similar to Example 8.3.1 except that we are in cylindrical
coordinates. Heat flows from the interior and is removed at the cylin-
der’s surface where the temperature equals zero. The initial oscillations
of the solution result from Gibbs phenomena because we have a jump
in the temperature field at r = b.

e Example 8.3.8

In this example we find the evolution of the temperature field within
a cylinder of radius b as it radiatively cools from an initial uniform
temperature Tp. The heat equation is

Ou _ of%%u  10u
o 2 \ore T ror

), 0<r<bo<t, (8.3.133)

which we shall solve by separation of variables u(r,t) = R(r)T(t).
Therefore,

e Ry i o (8:3.134)

1 (dzR 1drR\ 1 dT k2

: )
because only a negative separation constant yields a R(r) which is finite
at the origin and satisfies the boundary condition. This solution is
R(r) = Jo(kr/b), where Jy is the Bessel function of the first kind and
zeroth order.
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solution

distance time

Figure 8.3.7: The temperature u(r,t)/Tp within an infinitely long
cylinder at various positions r/b and times a%¢/b? that we initially heated
to the temperature Ty and then allowed to radiatively cool with hb = 1.

The radiative boundary condition may be expressed as
6u(b t) (b)
+ hu(b,t) = T(t) + hR(b)| = 0. (8.3.135)
Because T(t) #0,
kJy(k) + hbJo(k) = —kJ1 (k) + hdJo(k) =0, (8.3.136)

where the product hb is the Biot number. The solution of the transcen-
dental equation (8.3.136) yields an infinite number of distinct k,,’s. For
each of these k,’s, the temporal part equals the solution of

dT,  kZa®

T =0, (8.3.137)
or
k2a?
Ta(t) = Apexp | — = t). (8.3.138)

The product solution is, therefore,

up(r,t) = ApJo ( b) exp ( kzzzt) (8.3.139)

and the most general solution is a sum of these product solutions

(rt) = ZA Jo( )exp( ki;ﬂt). (8.3.140)
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Finally, we must determine A,. From the initial condition that

u(r,0) = To,

o0
wr,0)=To= 3 Anlo (k,,%) , (8.3.141)
n=1
where
22T, b r
A, = n "= 8.3.14
" b2[k3,+b2h2].7§(k,,)/0 rlo (kng) dr (8.3.142)
U2T, bt . Y
= T PRI (—b-) A (k,,z)'O (8.3.143)
2k ToJ1(kn) % ToJ1(kn)
= = 3.
W+ PR e~ FiTRe) 4 PRy o
2 ToJ1(kn) 3ToJ1 (kn) (5.5.145)

= k202 (kn) + k2J2(kn)  kalJa(kn) + J2(kn)]

which follows from (6.5.25), (6.5.35), (6.5.45), and (8.3.136). Conse-
quently, the final solution is

d J1(kn) r k2a?

ulri) =20 X ey (beg) o (-5
(8.3.146)
Figure 8.3.7 illustrates the solution (8.3.146) for various Fourier
numbers a?t/b? with hb = 1. It is similar to Example 8.3.5 except
that we are in cylindrical coordinates. Heat flows from the interior and
is removed at the cylinder’s surface where it radiates to space at the
temperature zero. Note that we do not suffer from Gibbs phenomena in
this case because there is no initial jump in the temperature distribution.

o Example 8.3.9: Temperature within an electrical cable

In the design of cable installations we need the temperature reached
within an electrical cable as a function of current and other parameters.
To this end,8 let us solve the nonhomogeneous heat equation in cylin-
drical coordinates with a radiation boundary condition.

The derivation of the heat equation follows from the conservation
of energy:

heat generated = heat dissipated + heat stored

8 Iskenderian, H. P. and Horvath, W. J., 1946: Determination of the
temperature rise and the maximum safe current through multiconductor
electric cables. J. Appl. Phys., 17, 255-262.
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or

I’RN dt = —k [27"* g—: - 2m(r + Ar) g—lﬁ dt + 2nrArcpdu,

r r+Ar]

r

(8.3.147)
where [ is the current through each wire, R is the resistance of each
conductor, N is the number of conductors in the shell between radii r
and r+ Ar = 2wmrAr/(wb?), b is the radius of the cable, m is the total
number of conductors in the cable, x is the thermal conductivity, p is

the density, c is the average specific heat, and u is the temperature. In
the limit of Ar — 0, (8.3.147) becomes

Ou 9210 ([ Ou

where A = I? Rm/(wb%cp) and a® = x/(pc).

Equation (8.3.148) is the nonhomogeneous heat equation for an
infinitely long, axisymmetric cylinder. From Example 8.3.3, we know
that we must write the temperature as the sum of a steady-state and
transient solution: wu(r,t) = w(r) + v(r,t). The steady-state solution
w(r) satisfies

1d dw A
;5 (7’3) = —?‘—2- (83149)
or
Ar?
w(r) =T - -, (8.3.150)

where T is the (yet unknown) temperature in the center of the cable.
The transient solution v(r,t) is govern by

v _ 210 ( 0v
8t ror\ or

), 0<r<bo<t (8.3.151)

with the initial condition that u(r,0) = T. — Ar?/(4a?) + v(0,t) = 0.
At the surface r = b heat radiates to free space so that the boundary
condition is u, = —hu, where h is the surface conductance. Because
the steady-state temperature must be true when all transient effects die
away, it must satisfy this radiation boundary condition regardless of the
transient solution. This requires that

A (b2 b
T.= = (Z + %) : (8.3.152)

Therefore, v(r,t) must satisfy vr(b,t) = —hv(b,t) at r = b.
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solution

10 time

distance

Figure 8.3.8: The temperature field (in degrees Celsius) within an
electric copper cable containing 37 wires and a current of 22 amperes
at various positions r/b and times a®t/b%. Initially the temperature was
zero and then we allow the cable to cool radiatively as it is heated. The
parameters are hb = 1 and the radius of the cable b = 4 cm.

We find the transient solution v(r,t) by separation of variables
v(r,t) = R(r)T(t). Substituting into (8.3.151),

1 d/dR\ 1 dT
or d [ dR
—— — 2 —_—
p (r dr) +k*R=0 (8.3.154)
and AT
- +k%a’T = 0, (8.3.155)

with R'(b) = —hR(b). The only solution of (8.3.154) which remains
finite at » = 0 and satisfies the boundary condition is R(r) = Jo(kr),
where J is the zero-order Bessel function of the first kind. Substituting
Jo(kr) into the boundary condition, the transcendental equation is

kbJy (kb) — hbJo(kb) = 0. (8.3.156)

For a given value of h and b, (8.3.156) yields an infinite number of unique
zeros k.
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The corresponding temporal solution to the problem is
T, (t) = An exp(—a®k2t), (8.3.157)

so that the sum of the product solutions is

v(r,t) = i ApJo(kar)exp(—a®k2t). (8.3.158)

n=1

Our final task remains to compute A,,. By evaluating (8.3.158) at
t=0,

v(r,0) = A" -T. = ZA Jo(kar), (8.3.159)

which is a Fourier-Bessel series in Jo(k, 7). In Section 6.5 we showed that
the coefficient of a Fourier-Bessel series with the orthogonal function
Jo(ks7) and the boundary condition (8.3.156) equals

Ap = 2k, (A T, ) Jo(knr)dr (8.3.160)
" T TR20 + h202)J2(knb) Jo | \ a2  T¢) JoUEmTAT AR

from (6.5.35) and (6.5.45). Carrying out the indicated integrations,

2

(k3 + h?)J§(knb)

[(Aknb A Tek
4a? " kqba? b

Ap =

We obtained (8.3.161) by using (6.5.25) and integrating by parts in a
similar manner as was done in Example 6.5.5.

To illustrate this solution, let us compute it for the typical param-
eters b = 4 cm, hd = 1, a® = 1.14 cm?/s, A = 2.2747 °C/s, and T, =
23.94°C. The value of A corresponds to 37 wires of #6 AWG copper
wire within a cable carrying a current of 22 amp.

Figure 8.3.8 illustrates the solution as a function of radius at various
times. From an initial temperature of zero, the temperature rises due to
the constant electrical heating. After a short period of time, it reaches
its steady-state distribution given by (8.3.150). The cable is coolest at
the surface where heat is radiating away. Heat flows from the interior
to replace the heat lost by radiation.
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Problems
For problems 1-5, solve the heat equation u; = a%uz;, 0 <z < 7, 0< ¢
subject to the boundary conditions that u(0,t) = u(7,t) =0, 0 < ¢t and
the following initial conditions for 0 < ¢ < =
1. u(z,0) = A, a constant
2. u(z,0) = sin®*(z) = [3sin(z) - sin(3z)]/4
3. u(z,0)==¢

4. u(z,0) =7 —=z

_ z, 0<z<mw/2
> u(x,O)_{W_x, T/2<z<m7w

For problems 6-10, solve the heat equation u; = a’ugz;, 0 < z < T,
0 < t subject to the boundary conditions that uz(0,t) = uz(x,t) =0,
0 < t and the following initial conditions for 0 < z < 7:

6. u(z,0)=1

7. u(z,0)==z

8. u(z,0) = cos®(z) = [1 + cos(2z)]/2

9. u(z,0)=7r—2z

| Ty, O<z<m/2
10. u(x,O)_{Tl, T/2<z<m

For problems 11-17, solve the heat equation u; = a?uz;, 0 < = < w,
0 < t subject to the following boundary conditions and initial condition:

11. uz(0,8) = w(m,t) =0,0< t; u(z,0) =2’ -7}, 0<z <™
12. u(0,t) = u(m,t)=Tp, 0 < t; u(z,0) =Ty #To, 0< <™
13. u(0,¢) =0, uz(m,t) =0,0< t; u(z,0)=1,0<2z< 7™
14. u(0,8) =0, ug(m,t) =0,0< t; u(z,0)=2z,0<z <7

15. u(0,t) =0, ug(m,t)=0,0< t; u(x,0)=7—z,0< <7
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16. u(0,t) = Tp, uzx(m,t) =0,0< t; u(z,0)=T1 # Ty, 0<z < 7
17 u(0,t) = 0,u(m,t)=Tp, 0< t; u(z,0) =Ty, 0< z < 7

18. It is well known that a room with masonry walls is often very
difficult to heat. Consider a wall of thickness L, conductivity &, and
diffusivity a? which we heat at a constant rate H. The temperature of
the outside (out-of-doors) face of the wall remains constant at Ty and
the entire wall initially has the uniform temperature T,. Let us find the
temperature of the inside face as a function of time.®

We begin by solving the heat conduction problem

ou 262
= t
£ pyol 0<z<L,0<
subject to the boundary conditions that
0u(0,) H _
e =W and  u(L,t)=Tp

and the initial condition that u(z,0) = T5. Show that the temperature
field equals

(2n - 1)2n%a%
X exXp |~ ——pms——| .

Therefore, the rise of temperature at the interior wall z =0 is

HL{ _%i T [ (2n—4ll);7r2a2t]}
SjrzL Z(?n 1)2{ T exp ['%JL)TWG—%]}

For a®t/L? < 1 this last expression can be approximated!® by 4Hat!/2/
7!/2x. We thus see that the temperature will initially rise as the square

or

® Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from Dufton, A. F., 1927: The warming of walls. Philos. Mag., Ser.
7, 4, 888-889.

10 Tet us define the function

21— exp[—(2n — 1)272a% /L2
f(t)=z Pl EQn_1;2 Y ]

n=1
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root of time and diffusivity and inversely with conductivity. For an
average rock k£ = 0.0042 g/cm-s and a? = 0.0118 cm?/s while for wood
(Spruce) & = 0.0003 g/cm-s and a? = 0.0024 cm?/s.

The same set of equations applies to heat transfer within a transis-
tor operating at low frequencies.!! At the junction (z = 0) heat is pro-
duced at the rate of H and flows to the transistor’s supports (z = +L)
where it is removed. The supports are maintained at the temperature
Tp which is also the initial temperature of the transistor.

19. The linearized Boussinesq equation!?

fu  O%u

E:EL‘—E’ O<z<L,0<t

governs the height of the water table u(z,t) abovesome reference point,
where a? is the product of the storage coefficient times the hydraulic
coefficient divided by the aquifer thickness. A typical value of a? is
10 m?/min. Consider the problem of a strip of land of width L that
separates two reservoirs of depth h;. Initially the height of the water
table would be ;. Suddenly we lower the reservoir on the right z = L
to a depth hy [u(0,t) = Ay, u(L,t) = ho, and u(z,0) = h;]. Find the

Then

a®r? &
@)= 72 Zexp[—(?n— 1)2n%a®t/L7).
n=1

Consider now the integral

/°° ( a2t :cz) dz L
exp [ — = .
o P L? 2a+/t

If we approximate this integral by using the trapezoidal rule with Az =
2, then

® a’n’t , d~2°° 9 127242t/ L2
; exp | ——75~2 T Zexp[—(n— )emfa“t/L?]

n=1

and f'(t) ~ aw®/?/(4Lt'/?). Integrating and using f(0) = 0, we finally
have f(t) ~ aw3/%t1/2/(2L). The smaller a?t/L? is, the smaller the error
will be. For example, if t = L?/a?, then the error is 2.4 %.

11 Mortenson, K. E., 1957: Transistor junction temperature as a func-
tion of time. Proc. IRE, 45,504-513. Eq. (2a) should read T, = —F/k.

12 See, for example, Van Schilfgaarde, J., 1970: Theory of flow to
drains in Advances in Hydroscience, Academic Press, New York, pp.
81-85.
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height of the water table at any position z within the aquifer and any
time ¢ > 0.

20. The equation (see Problem 19)

du  %u
— = L t

3 = 922 0<z<L,0<

governs the height of the water table u(z,t). Consider the problem!3 of
a piece of land that suddenly has two drains placed at the points z = 0
and £ = L so that u(0,t) = u(L,t) = 0. If the water table initially has
the profile:

u(z,0) = 8H (L% — 3L%? + 4La® - 20%)/ L4,
1]
find the height of the water table at any point within the aquifer and
any time £ > 0.

21. We want to find the rise of the water table of an aquifer which
we sandwich between a canal and impervious rocks if we suddenly raise
the water level in the canal hy units above its initial elevation and then
maintain the canal at this level. The linearized Boussinesq equation (see
Problem 19)

ou _ 8%u

ot = 0z?’
governs the level of the water table with the boundary conditions u(0,¢)
= ho and uy(L,t) = 0 and the initial condition u(z,0) = 0. Find the
height of the water table at any point in the aquifer and any time ¢ > 0.

O<zx<L,0<t

22. Solve the nonhomogeneous heat equation

ou 0% _
‘W—aw=€x, 0<-’L'<7l',0<t
subject to the boundary conditions u(0,t) = uz(w,t) = 0, 0 < ¢, and
the initial condition u(z,0) = f(z), 0< z < m.

23. Solve the nonhomogeneous heat equation

Ou  O%u

a—w:—l, 0<zr<l,0<«t

13 For a similar problem, see Dumm, L. D., 1954: New formula for
determining depth and spacing of subsurface drains in irrigated lands.
Agric. Eng., 35, 726-730.
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subject to the boundary conditions u;(0,t) = uz(1,t) =0, 0 < ¢, and
the initial condition u(z,0) = (1 — 2?), 0 < z < 1. [Hint: Note that
any function of time satisfies the boundary conditions.]

24. Solve the nonhomogeneous heat equation

Ou o2 d%u

gt - = t

5 3oz = Acos(wt), 0<z<ml<
subject to the boundary conditions u.(0,t) = uz(7,t) =0, 0 < ¢, and
the initial condition u(z,0) = f(z), 0 < £ < x. [Hint: Note that any
function of time satisfies the boundary conditions.]

25. Solve the nonhomogeneous heat equation

0<z<m0<t

a_u_az_u_ z, O<a<n/2
ot Oz2 \|\wm—u=x, r/2<z <,

subject to the boundary conditions u(0,¢) = u(7,t) = 0, 0 < t, and the
initial condition u(z,0) = 0, 0 < # < 7. [Hint: Represent the forcing
function as a half-range Fourier sine expansion over the interval (0, ) ]

26. A uniform, conducting rod of length L and thermometric diffusivity
a? is initially at temperature zero. We supply heat uniformly throughout

the rod so that the heat conduction equation is

u  Ou
2 = —_——l
s Ty P, 0<er< L0«

where P is the rate at which the temperature would rise if there was no
conduction. If we maintain the ends of the rod at the temperature of
zero, find the temperature at any position and subsequent time.

27. Solve the nonhomogeneous heat equation

Ou 28u Ao
ooy 0 L ¢
ot Oz2 + 0<z<L,0<t,

where a2 = k/cp with the boundary conditions that

ou(0,t) Ju(L,t)
N — =0 and K—c‘?z

and the initial condition that u(z,0)=0,0< z < L.

+hu(L,t)=0, 0<t

28. Find the solution of

2
%;izg.x_;‘_u, 0<z<L,0<t
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with the boundary conditions u(0,t) = 1 and u(L,t) = 0, 0 < ¢, and the
initial condition u(z,0)=0,0< z < L.

29. Solve the heat equation in spherical coordinates

du a? 8 (2(911

— = 2 2= <
o 3y rar), 0<r<1,0<t
subject to the boundary conditions lim,_¢ |u(r,t)| < oo and u(1,t) = 0,

0 < ¢, and the initial condition u(r,0)=1,0<r < 1.

30. Solve the heat equation in cylindrical coordinates

fu a28<3u

—_—= —_ < b 4
ot r Or rar)’ 0<r<b0<
subject to the boundary conditions lim,_.¢ |u(r,t)| < co and u(b,t) = 4,

0 < t, and the initial condition u(r,0)=1,0< r < b.

31. The equationt4

ou G (62u 10u
— = v
ot p

= W ;E), 0§r<b,0<t

governs the velocity u(r,t) of an incompressible fluid of density p and
kinematic viscosity v flowing in a long circular pipe of radius b with an
imposed, constant pressure gradient —G. If the fluid is initially at rest
u(r,0) = 0, 0 < r < b, and there is no slip at the wall u(b,t) =0, 0 < ¢,
find the velocity at any subsequent time and position.

32. Solve the heat equation in cylindrical coordinates

— re-

ou_a* 0 (o
ot~ r Or

), 0<r<b o<t

subject to the boundary conditions lim,_¢ |u(r, )| < co and u,(b,) =
—hu(b,t), 0 < ¢, and the initial condition u(r,0) = 4% —r2, 0 < r < b.

14 From Szymanski, P., 1932: Quelques solutions exactes des équa-
tions de ’hydrodynamique du fluide visqueux dans le cas d’un tube
cylindrique. J. math. pures appl., Ser. 9, 11, 67-107. (©Gauthier-
Villars
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33. In their study of heat conduction within a thermocouple through
which a steady current flows, Reich and Madigan®® solved the following
nonhomogeneous heat conduction problem:

ou 0%

57—(1 W:J—P&(m—b), 0<e<L,0<t,0<b< L,

where J represents the Joule heating generated by the steady current
and the P term represents the heat loss from Peltier cooling.!® Find
u(z,t) if both ends are kept at zero [u(0,t) = u(L,t) = 0] and initially
the temperature is zero [u(z,0) = 0]. The interesting aspect of this
problem is the presence of the delta function.

Step 1: Assuming that u(z,t) equals the sum of a steady-state solution
w(z) and a transient solution v{xz,t), show that the steady-state solution
is governed by

d’w
a2W =Pé(z-b)—-J, w(0)=w(l)=0.

Step 2: Show that the steady-state solution is

w(z) = Jz(L — z)/2a? + Az, O<z<b
T Jz(L - z)/2a* + B(L — z), b<z<lL.

Step 3: The temperature must be continuous at z = b; otherwise, we
would have infinite heat conduction there. Use this condition to show
that Ab = B(L - b).
Step 4: To find a second relationship between A and B, integrate the
steady-state differential equation across the interface at £ = b and show
that bt

. d ¢

lima? 22 =P

e~0 dr b—e¢

Step 5: Using the result from Step 4, show that A + B = —P/a® and

_ { Jz(L — z)/2a® — Px(L — b)/a®L, 0<z<b
w(z) = Jz(L — z)/2a® — Pb(L — z)/a’L, b<z<L.

15 Reich, A. D. and Madigan, J. R., 1961: Transient response of a
thermocouple circuit under steady currents. J. Appl. Phys., 32, 294~
301.

16 In 1834 Jean Charles Athanase Peltier (1785-1845) discovered that
there is a heating or cooling effect, quite apart from ordinary resistance
heating, whenever an electric current flows through the junction between
two different metals.
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Step 6: Reexpress w(z) as a half-range Fourier sine expansion and show
that
4JL? &N sin[(2m — 1)wz /L)

w(z) = aZnd

— (2m —1)3
2LP X sin(nwb/L)sin(nwz/L)
) n2 '
n=1

Step 7: Use separation of variables to find the transient solution by
solving
dv 0%
s
subject to the boundary conditions v(0,¢) = v(L,t) =0, 0 < t, and the
initial condition v(z,0) = —w(z),0 < z < L.

0<ae< L,O<t

Step 8: Add the steady-state and transient solutions together and show
that

_4JL? - sin[(2m — 1)7z/L] [1 3 e—a2(2m—1)27r2t/L2]
a?rd £~ (2m - 1)3

2LP . sin(nwb/L)sin(nwz/L) —a?n?x?t/L7
 a’n? n? [l - ] '

8.4 THE LAPLACE TRANSFORM METHOD

In the previous chapter we showed that we may solve the wave
equation by the method of Laplace transforms. This is also true for the
heat equation. Once again, we take the Laplace transform with respect
to time. From the definition of Laplace transforms,

Llu{z,t)] = Ul(z, s), (8.4.1)
Lluy(z,t)] = sU(z,s) — u(z,0) (8.4.2)
and
d*U(z, s)

Llugz(z,t)] = (8.4.3)

dz?
We next solve the resulting ordinary differential equation, known as the
auziliary equation, along with the corresponding Laplace transformed
boundary conditions. The initial condition gives us the value of u(z,0).
The final step is the inversion of the Laplace transform U(x,s). We
typically use the inversion integral.
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o Example 8.4.1

To illustrate these concepts, we solve a heat conduction problem!?
in a plane slab of thickness 2L. Initially the slab has a constant temper-
ature of unity. For 0 < t we allow both faces of the slab to radiatively
cool in a medium which has a temperature of zero.

If u(x,t) denotes the temperature, a? is the thermal diffusivity, h is
the relative emissivity, ¢ is the time, and « is the distance perpendicular
to the face of the slab and measured from the middle of the slab, then
the governing equation is

du _ ,0%u

with the initial condition
u(z,0) =1, —-L<z<lL (8.4.5)
and boundary conditions

Ou(L,t)
Oz

Ou(—L,t)

+ hu(L,t)=0 and p

+hu(-L,t) =0, 0<t.
(8.4.6)
Taking the Laplace transform of (8.4.4) and substituting the initial
condition,
o2 d*U(z,s)
dz?

If we write s = a2q?, (8.4.7) becomes

—sU(z,s) =-1. (8.4.7)

1
2 —
q U(.’L‘,S) = —'a—2. (848)

d?U(z, s) B
dx?

From the boundary conditions U(z, s) is an even function in z and we
may conveniently write the solution as

U(z,s) = :t- + A cosh(gz). (8.4.9)
From (8.4.6),
qAsinh(qL) + g + hAcosh(qL) =0 (8.4.10)
and . b cosh
U(z,s) = - cosh(gz) (8.4.11)

s s[gsinh(gL) + hcosh(gqL)]’

17 Goldstein, S., 1932: The application of Heaviside’s operational
method to the solution of a problem in heat conduction. Zeit. Angew.
Math. Mech., 12, 234-243.
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The inverse of U(x,s) consists of two terms. The inverse of the
first term is simply unity. We will invert the second term by contour
integration.

We begin by examining the nature and location of the singularities
in the second term. Using the product formulas for the hyperbolic cosine
and sine functions, the second term equals

h(1+422) (1422

s[q2L (1+ﬁ%3) (1+ 9:—#3) --~+h(1+i§¥) (1+ig%3) }
(8.4.12)
Because ¢? = s/a?, (8.4.12) shows that we do not have any /s in the
transform and we need not concern ourselves with branch points and
cuts. Furthermore, we have only simple poles: one located at s = 0 and
the others where

gsinh(qL) 4+ hcosh(¢L) = 0. (8.4.13)
If we set ¢ = i), (8.4.13) becomes
hcos(AL) — Asin(AL) =0 (8.4.14)
or
ALtan(AL) = hL. (8.4.15)

From Bromwich’s integral,

_1{ h cosh(qz) }
s[gsinh(gL) + h cosh(qL)]

1 h cosh(qz)et”
Bz 4.16
27i f;- z[gsinh(qL) + h cosh(qL)] dz, (8.4.16)

where ¢ = 21/2/a and the closed contour C consists of Bromwich’s
contour plus a semicircle of infinite radius in the left half of the z-plane.
The residue at z = 0 is 1 while at z, = —a?)2,

h cosh(gz)e'* _
© z[gsinh(qL) + h cosh(qL)}’ o

h(z + a?)2) cosh(qz)et?

_ 4.17
zlir?,. z[gsinh(qL) + h cosh(qL)] (8417
. h cosh(gz)e*?
= Jim z{(1 + hL)sinh(gL) + h cosh(qL)]/(2a%q) (8.4.18)
_ __ 2ha’Asicosh(idyz) exp(=A2a%) (8.4.19)
T (—a®A2)[(1+ hL)isin(An L) + Ay Lcos(An L)] -
232
_ 2h cos(Anz) exp(—a?A2t) (8.4.20)

An[(1+ hL)sin(AnL) + ApLcos(Ap, L))
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distance time

Figure 8.4.1: The temperature within the portion of aslab0 < z/L <
1 at various times a?t/L? if the faces of the slab radiate to free space
at temperature zero and the slab initially has the temperature 1. The
parameter hL = 1.

Therefore, the inversion of U(z, s) is

~ il cos(Anz) exp(—a®A2t)
u(:c,t) =1- {1 - 2h"X=:1 /\n[(l -+ hL) Sin(/\nL) + /\nL COS(AnL)] }

(8.4.21)

or

o cos(Anz) exp(—a®A2t)
u(z,t) = 2h ; Ml(L+ RLYSIn(An L) + AnL cos(An L)]’

(8.4.22)

We can further simplify (8.4.22) by using /A, = tan()\,L) and hL =
AnLtan(A,L). Substituting these relationships into (8.4.22) and sim-
plifying,

=< sin(A, L) cos(An2) exp(—a?A2t)
t) = . 8.4.23

u(=,t) 2;_:1 AL +sin(, L) cos(An L) ( )
o Example 8.4.2: Heat dissipation in disc brakes

Disc brakes consist of two blocks of frictional material known as
pads which press against each side of a rotating annulus, usually made
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of a ferrous material. In this problem we determine the transient tem-
peratures reached in a disc brake during a single brake application.!®
If we ignore the errors introduced by replacing the cylindrical portion
of the drum by a rectangular plate, we can model our disc brakes as
a one-dimensional solid which friction heats at both ends. Assuming
symmetry about £ = 0, the boundary condition there is u;(0,¢) = 0.
To model the heat flux from the pads, we assume a uniform disc de-
celeration that generates heat from the frictional surfaces at the rate
N(1 — Mt), where M and N are experimentally determined constants.

If u(z,t), k and a? denote the temperature, thermal conductiv-
ity, and diffusivity of the rotating annulus, respectively, then the heat
equation 1s ‘

du 0%
— =a"=— [ 4.
> aaxz, O<e<L,0< (8.4.24)
with the boundary conditions
0u(0,t) Ou(L,t)
e 0 and « Fra N(1 - Mt), 0<t. (8.4.25)

The boundary condition at # = L gives the frictional heating of the disc
pads.
Introducing the Laplace transform of u(z,t), defined as

U(z,s) = /000 u(z,t)e™*dt, (8.4.26)

the equation to be solved becomes

d2U s

T =U=0, (8.4.27)

subject to the boundary conditions that

WO0.5) _ o g ULs) N1 MY 8.4.28)
dr dr K \s s?

The solution of (8.4.27) is

U(z,s) = Acosh(gqz) + Bsinh(gz), (8.4.29)

18 From Newcomb, T. P., 1958: The flow of heat in a parallel-faced
infinite solid. Br. J. Appl. Phys., 9, 370-372. See also Newcomb,
T. P., 1958/59: Transient temperatures in brake drums and linings.
Proc. Inst. Mech. Eng., Auto. Div., 227-237; Newcomb, T. P., 1959:
Transient temperatures attained in disk brakes. Br. J. Appl. Phys.,
10, 339-340.
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where ¢ = s!/2/a. Using the boundary conditions, the solution becomes

_ N (1 MY cosh(qx)
U(z,s) = — (— - —2) gsinh(¢l)’ (8.4.30)

It now remains to invert the transform (8.4.30). We will invert
cosh(qz)/[sgsinh(gL)]; the inversion of the second term follows by ana-
log.

Our first concern is the presence of s!/2 because this is a multivalued
function. However, when we replace the hyperbolic cosine and sine
functions with their Taylor expansions, cosh(gz)/[sgsinh(gL)] contains
only powers of s and is, in fact, a single-valued function.

From Bromwich’s integral,

1 [ cosh(gz) 1 /°+°°i cosh(gz)et?
—_— | = — ———d 4.
[sq sinh(qL)] 278 Jo_oo; 2gsinh(gL) “ (8.4.31)

where ¢ = 2'/2/a. Just as in the previous example, we replace the
hyperbolic cosine and sine with their product expansion and find that
z = 0 is a second-order pole. The remaining poles are located where

z?LJa = nmi or 2z, = —n?n2a2/L?, where n = 1,2,3,.... We have
chosen the positive sign because 2/2 must be smgle—valued if we had
chosen the negative sign the answer would have been the same. Our
expansion also shows that the poles are simple.

Having classified the poles, we now close Bromwich’s contour, which
lies slightly to the right of the imaginary axis, with an infinite semicircle
in the left half-plane, and use the residue theorem. The values of the
residues are

tz
es[cosh(q:c)e _0]

zgsinh(gqL)’
1 d [ (z—0)%cosh(gz)e’
Rt zh—»o dz { zqsinh(gqL) (8.4.32)
_ d [ zcosh(gz)e™
0 { gsinh(qL) (8.4.33)
azl { [1+2.a2+ H }}
= —lim
L :—0dz 2+ L2 4.
(8.4.34)
a? d zz? L2
= le E—{1+t + 57 " g +} (8.4.35)

(8.4.36)

|
=~ 8
—
+
o
::N| 8,
o
8, &
h—v——/
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80 1 T T T

TEMPERATURE (°C)

TIME (SECONDS)

Figure 8.4.2: Typical curves of transient temperature at different lo-
cations in a brake lining. Circles denote computed values while squares
are experimental measurements. (From Newcomb, T. P., 1958: The flow
of heat in a parallel-faced infinite solid. Br. J. Appl. Phys., 9, 372 with

permission.)

and

cosh(gz)et* . cosh(gz) , . z— 1z
—_—t—z,| = ——e*]| 1 —] (8.4.37
= [zqsinh(qL) ,z 11_151" zq e sinh(qL) ( )

L cosh(qz)e'”
- 21_121“ zqcosh(qL)L/(2a%q) (8.4.38)

_ cosh(nwzi/L)exp(—n3n2a’t/L?)
= Cntna? /DY) cosh(nri)Lj(2a7) (o439

= —2—%(,;_—12)- cos(nrx/L)e'"z"zazt/Lz. (8.4.40)
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When we sum all of the residues from both inversions, the solution is

( t)_c_z_z_]_\f_ t+i L_z
WEE =T 2a2  6a?

2LN X (—=1)»
_ Z_:l( 2)

n2x2a3t/L?

— ~ cos(nwz/L)e”

a’NM (¢ + tz?  tL? + et 2%L? + TL4
kL 2  2a%2 6a?  24a* 12a*  360a?
3 X/ _1yn 2 2
_2LNM E ( 14) cos(nwe/L)e™™ ma%t/L% (8.4.41)
n

alkmt
n=1

Figure 8.4.2 shows the temperature in the brake lining at various
places within the lining [¢' = z/L] if @®> = 3.3 x 1073 cm?/sec, k =
1.8 x 1073 cal/(cm sec°C), L = 0.48 cm and N = 1.96 cal/(cm? sec).
Initially the frictional heating results in an increase in the disc brake’s
temperature. As time increases, the heating rate decreases and radiative
cooling becomes sufficiently large that the temperature begins to fall.

e Example 8.4.3

In the previous example we showed that Laplace transforms are
particularly useful when the boundary conditions are time dependent.
Consider now the case when one of the boundaries is moving.

We wish to solve the heat equation

ou _ ,8%u

- a° — t 8.4.42
5 = a7 Bt<z<o0,0< ( )

subject to the boundary conditions
u(:c,t)lx___ﬁt = f(t) and xlir{.lo |u(z, )| < oo, 0<t (84.43)
and the initial condition
u(z,0) =0, 0<z<oo. (8.4.44)

This type of problems arises in combustion problems where the bound-
ary moves due to the burning of the fuel.

We begin by introducing the coordinate n = z — #t. Then the
problem can be reformulated as

Ou v ,0%

-3—t—ﬁ55=a Erel 0<n<oo,0<t (8.4.45)
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subject to the boundary conditions
u(0,¢) = f(t) and nlirglo |u(n,t)| < oo, 0<t (8.4.46)
and the initial condition
u(n,0) = 0, 0<n<oo. (8.4.47)
Taking the Laplace transform of (8.4.45), we have that

@U(n,s) B dU(ms) s

a7 T dr —U(n,s) =0 (8.4.48)
with
U(0,s) = F(s) and lim |U(n,s)| < co. (8.4.49)
n—00
The solution to (8.4.48)—(8.4.49) is
pn _n pg?
U(n,s) = F(s)exp (_ﬁ -\ + 1z | (8.4.50)
Because
L[®(n,t)] = 7 5 8.4.51
[(U,)]—exP —'; S+m ) ( )
where
= L|—8n/2d* m__ sVt
®(n,t) = 3 [e erfc <2a\/t_ 5a
+ ePn/20% erfe < 74 M)] (8.4.52)
2av/t
and
erfe(z) =1— —/ -’ dn, (8.4.53)

we have by the convolution theorem that

u(n,t) = e_p”/z"Q/O f@t —7)®(n,7)dr (8.4.54)

or

u(z,t) = ¢~ Ale=p1)/2a7 /t ft - 7)®(z - Br, ) dr. (8.4.55)
0
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Problems
1. Solve
du _ 0%u
ot~ 0z?
subject to the boundary conditions

—a*(u - Tp), 0<z<1,0<t

ou(0,)  Ou(l,t) _
9z ~ Oz

0, 0<t

and the initial condition

u(xz,0) =0, 0<e<l.

2. Solve ,
ou _ o
ot~ 0z’
subject to the boundary conditions

O<z<1,0<t

ou(0,t)
oz

0, u(,t)=t, 0<t
and the initial condition
u(z,0) =0, 0<z<l.

3. Solve
u 0%

ot ~ 0z’
subject to the boundary conditions

0<zx<1,0<t

uw(0,0)=0, u(l,t)=1, 0<t
and the initial condition
u(z,0) =0, 0<e<l.

4. Solve
du  O%u

B8t~ 8z
subject to the boundary conditions

1 1
—§<$<§,0<t

us (=5,4) =0, uz(3,1) =6(2), 0<t
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and the initial condition

u(z,0) =0, -3<z<i

5. Solve
Ou 0%

8t 0xZ
subject to the boundary conditions

1, 0<zr<l,0<t

u(0,t) = u(1,t) =0, 0<t
and the initial condition

u(z,0) =0, 0<z< 1.

6. Solvel!®
6_U _ a2 62U

ot~ 9z?’
subject to the boundary conditions

0<z<oo,0<t

w(0,)=1, lim |u(z, 1) < oo, 0<t
and the initial condition
u(z,0) =0, 0<z < oo.

[Hint: Use tables to invert the Laplace transform.]

7. Solve
ou_Bu oo 0<t
ot~ 0z?’ 700
subject to the boundary conditions
Ou(0,t)

5z — L Jim fu(z )] <o, 0<t

and the initial condition

u(z,0) = 0, 0<z<oo.

19 If u(z,t) denotes the Eulerian velocity of a viscous fluid in the half
space z > 0 and parallel to the wall located at £ = 0, then this problem
was first solved by Stokes, G. G., 1850: On the effect of the internal
friction of fluids on the motions of pendulums. Proc. Cambridge Philos.
Soc., 9, Part II, [8]-[106].
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[Hint: Use tables to invert the Laplace transform.]
8. Solve
ou_ o
ot~ 8z%’

subject to the boundary conditions

0<z<oo,0<t

u(0,t) =1, len;lo lu(z,t)| < 00, 0<t
and the initial condition
u(z,0)=e€"%, 0<z<oo.

[Hint: Use tables to invert the Laplace transform ]

9. Solve
Ou 8%u
ik [62 (1+5)—+6u] 0<z<0,0<t,

where § is a constant, subject to the boundary conditions
u(0,t) = uy, zl_i_’rglo lu(z,t)| <00, 0<t
and the initial condition
u(x,0) =0, 0<z<oo0.

Note that
£t [1 exp (—Qa\/s + 32 )] = le20Berfe <_a_ + g\/{)
S 2 \/t-

+ %e'z"ﬁerfc ( - ﬂ\/f) ,

«
Vi
where erfc is the complementary error function.

10. Solve

au 26“

—kz
5 =% 52 + Ae™ 7, 0<e<oo,0<t

subject to the boundary conditions

90 _ o tim u(e,t) = uo, 0<t

Oz " r—oo
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and the initial condition

u(z,0) = ug, 0<z<oo.

11. Solve
Ou  O%u

8t~ 0z
subject to the boundary conditions

P, O<e<L,0<t

u(0,t)=t, u(L,t)=0, 0<t
and the initial condition

u(z,0) =0, 0<z<lL.

12. An electric fuse protects electrical devices by using resistance heat-
ing to melt an enclosed wire when excessive current passes through it.
A knowledge of the distribution of temperature along the wire is impor-
tant in the design of the fuse. If the temperature rises to the melting
point only over a small interval of the element, the melt will produce
a small gap, resulting in an unnecessary prolongation of the fault and
a considerable release of energy. Therefore, the desirable temperature
distribution should melt most of the wire. For this reason, Guile and
Carne?? solved the heat conduction equation

2
%:a2%+q(l+au), —L<z<L,0<t

to understand the temperature structure within the fuse just before

meltdown. The second term on the right side of the heat conduction

equation gives the resistance heating which is assumed to vary linearly

with temperature. If the terminals at * = +L remain at a constant

temperature, which we can take to be zero, the boundary conditions are

u(—L,t) = u(L,t) =0, 0<t.
The initial condition is

u(z,0) =0, -L<z< L.

20 From Guile, A. E. and Carne, E. B., 1954: An analysis of an ana-
logue solution applied to the heat conduction problem in a cartridge
fuse. AIEE Trans., Part I, 72, 861-868. ©AIEE (now IEEE).
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Find the temperature field as a function of the parameters a, ¢, and a.

13. Solve?! 5 5 -
u u u
- 4= <
3= a7 Tron 0ST<LOSI
subject to the boundary conditions
. Ou(l,t) _
rlf})lu(r,t)|<oo, o =1, 0<t

and the initial condition
u(r,0) =0, 0<r<l.
[Hint: Use the new dependent variable v(r,t) = ru(r,t).]

14. Consider?? a viscous fluid located between two fixed walls z = +L.
At z = 0 we introduce a thin, infinitely long rigid barrier of mass m per
unit area and let it fall under the force of gravity which points in the
direction of positive z. We wish to find the velocity of the fluid u(z,1).
The fluid is governed by the partial differential equation

du &u
a—llw, 0<$<L,0<t

subject to the boundary conditions

du(0,1) _ 2u8u(0,1) _

u(L,t)=0 and e oz

g, 0<t

and the initial condition

u(z,0) =0, 0O<z< L.

15. Consider?® a viscous fluid located between two fixed walls 2 = +L.
At z = 0 we introduce a thin, infinitely long rigid barrier of mass m per

21 From Reismann, H., 1962: Temperature distribution in a spinning
sphere during atmospheric entry. J. Aerosp. Sci., 29, 151-159 with
permission.

22 Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from Havelock, T. H., 1921: The solution of an integral equation
occurring in certain problems of viscous fluid motion. Philos. May.,
Ser. 6,42, 620-628.

23 Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from Havelock, T. H., 1921: On the decay of oscillation of a solid
body in a viscous fluid. Philos. Mag., Ser. 6, 42, 628-634.
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unit area. The barrier is acted upon an elastic force in such a manner
that it would vibrate with a frequency w if the liquid were absent. We
wish to find the barrier’s deviation from equilibrium, y(t). The fluid is
governed by the partial differential equation

du 8%u

_— —_— t.
o uazz, 0<x<L,0<

The boundary conditions are

2
u(L,t) = %?;—2 aug)t)+mwy_0and3——u(0t) 0<t

and the initial conditions are

u(z,0)=0,0<z<L and y(0)=A4, y'(0)=0.

16. Solve
u  O%u

8t~ 022

subject to the boundary conditions

0<z<l10<t

u(0,t) = 0, 3a[-aiéi’—t) (lt)] 6“(1 ’)_5(t), 0<t

and the initial condition

u(z,0) =0, 0<z<l.

17. Solve?* the partial differential equation

Ou u  O%u
E""Va—z——w, 0<l‘<1,0<t,

where V is a constant, subject to the boundary conditions

u(0,t) =1 and uz(1,t) = 0, 0<t

?* Reprinted from Solar Energy, 56, Yoo, H., and E.-T. Pak, Ana-
lytical solutions to a one-dimensional finite-domain model for stratified
thermal storage tanks, 315-322, ©)1996, with kind permission from Else-
vier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB,
UK.
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and the initial condition

u(z,0) =0, <<l
18. Solve

%% (r‘;_’:) _g_;‘za(t), 0<r<a0<t
subject to the boundary conditions
}Erg) |u(r,t)] < oo, u(a,t) =0, 0<t
and the initial condition
u(r,0) =0, 0<r<a.

Note that J,(iz) = i*I,(2) and I,(iz) = i"J,(z) for all complex z.

19. Solve
Ou 10 ( Ou

== 75 T—a—r)’i—H(t), 0<r<ab«t
subject to the boundary conditions
3i_r{(1) |u(r, t)] < oo, u(a,t) =0, 0<t
and the initial condition
u(r,0) =0, 0<r<a.
Note that J,(iz) = i"I,(z) and I,(iz) = i®Jn(z) for all complex 2.
g—?:%g—;(r%), 0<r<al<t

subject to the boundary conditions

20. Solve

lim lu(r,t)| < oo, u(a,t) = e~/ 0<t
r—

and the initial condition

u(r,0) =1, 0<r<a.
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Note that J,(iz) = i”I,(z) and I,(iz) = i"J,(z) for all complex 2.

21. Solve the nonhomogeneous heat equation for the spherical shell?®

2 A
a_“—_—az(a—u+ga—u+r—4), a<r<p0<t

ot or?  ror
subject to the boundary conditions
Ou(c, t)

£ u(8,t) =0, 0<t

and the initial condition
u(r,0) =0, a<r<p.
Step 1: By introducing v(r,t) = ru(r,t), show that the problem sim-

plifies to
2 A
%;-)-:a2<%;§-+r—3), a<r<pB0<t

subject to the boundary conditions
ov(a,t)  v(a,t)
or «

and the initial condition

v(r,0) = 0, a<r<p.

=v(6,t) =0, 0<t

Step 2: Using Laplace transforms and variation of parameters, show
that the Laplace transform of u(r,t) is

A { sinh{g(8 — r)] * ag cosh(qn) +sinh(gn)
srq | aq cosh(gf) + sinh(gqf) J, (e +17)?

[ i)

Step 3: Take the inverse of U(r, s) and show that

r0=4{(55) [5-2 (5+5)

202 N sin[yn (8 — 7)) exp(—a 72t)/ sin 7n€7;) }
T 2 i) 1 otR) oGP

where 7, is the nth root of a7y + tan(¢y) =0 and 6 =1+ /L.

U(r,s) =

where ¢ = v/s/a and £ = — a.

25 Abstracted with permission from Malkovich, R. Sh., 1977: Heating
of a spherical shell by a radial current. Sov. Phys. Tech. Phys., 22
636. (©1977 American Institute of Physics.
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8.5 THE FOURIER TRANSFORM METHOD

We now consider the problem of one-dimensional heat flow in a rod
of infinite length with insulated sides. Although there are no boundary
conditions because the slab is of infinite dimension, we do require that
the solution remains bounded as we go to either positive or negative
infinity. The initial temperature within the rod is u(z,0) = f(z).

Employing the product solution technique of Section 8.3, u(z,?)
= X(2)T(t) with

T +a*XT =0 (8.5.1)

and
X"+2X =0. (8.5.2)

Solutions to (8.5.1)~(8.5.2) which remain finite over the entire z-domain
are

X(z) = E cos(kz) + Fsin(kz) (8.5.3)

and
T(t) = Cexp(—k?a’t). (8.5.4)

Because we do not have any boundary conditions, we must include all
possible values of k. Thus, when we sum all of the product solutions
according to the principle of linear superposition, we obtain the integral

u(z,t) = /OOO[A(IC) cos(kz) + B(k)sin(kz)] exp(—k?a’t) dk. (8.5.5)

We can satisfy the initial condition by choosing

A(k) = 7—1-/_0:0 f(z) cos(ke) dx (8.5.6)
and -~
B(k) = ;lr-/_oo f(z)sin(kz)dz, (8.5.7)
because the initial condition has the form of a Fourier integral
f(z) = /0 “LA(k) cos(kz) + B(k)sin(kz)] dk, (8.5.8)
when ¢t = 0.

Several important results follow by rewriting (8.5.8) as
1 (oo} o
we.)= 3 [ [ 5@ conth ostin) e
0 —o0

+/_°° F(&)sin(k€) sin(kx) d€ exp(—kZaQt) dk. (8.5.9)
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Combining terms,

= { | s@costie) costha)

+ sin(k€) sin(kz)] dg}e-k”a’t dk (8.5.10)

u(z,t)

1 o0 o0 2 2
—/ [/ f(€) cos(k(€ — z)] d&]e"‘ “tdk. (8.5.11)
T Jo -0

Reversing the order of integration,

uz,t) = %‘/j: (& [/000 cos[k(€ — z)] exp(—k?a’t) dk} d¢. (8.5.12)

The inner integral is called the source function. We may compute its
value through an integration on the complex plane; it equals

- Vi T (€~ 2)?
_ —k2q? (T -
/o cos[k(é — z)] exp(—k“a“t) dk = (4a2t) exp [ T |
(8.5.13)
if 0 < t. This gives the final form for the temperature distribution:

oo )2
u(z,t) = \/ﬁ/—w f(&)exp [-— (€4a2t) ] dg. (8.5.14)

e Example 8.5.1

Let us find the temperature field if the initial distribution is

To, z>0
u(z,0) = { _,}0’ <0, (8.5.15)

Then

T 0 2
u(z,t) = — 4a02_7rt /_oo exp [— (£4a21;) ] d¢

T = (§ —=z)°
+ N/W/o exp [— 1oy dé (8.5.16)
o0 oC
Sy [/ e~ dr — / e dr] (8.5.17)
ﬁ -z/2at z/2a\/t
z/2aV1 z/2aV/T
= % e dr = —?7_];3 e dr (8.5.18)
~z/2aVt 0

=Ty erf (2;\/{> , (8.5.19)
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where erf is the error function.
o Example 8.5.2: Kelvin's estimate of the age of the earth

In the middle of the nineteenth century Lord Kelvin?® estimated
the age of the earth using the observed vertical temperature gradient at
the earth’s surface. He hypothesized that the earth was initially formed
at a uniform high temperature Ty and that its surface was subsequently
maintained at the lower temperature of T's. Assuming that most of the
heat conduction occurred near the earth’s surface, he reasoned that he
could neglect the curvature of the earth, consider the earth’s surface
planar, and employ our one-dimensional heat conduction model in the
vertical direction to compute the observed heat flux.

Following Kelvin, we model the earth’s surface as a flat plane with
an infinitely deep earth below (z > 0). Initially the earth has the tem-
perature Tp. Suddenly we drop the temperature at the surface to Ts.
We wish to find the heat flux across the boundary at z = 0 from the
earth into an infinitely deep atmosphere.

The first step is to redefine our temperature scale v(z,t) = u(z,t)+
Ts, where v(z,t) is the observed temperature so that u(0,t) = 0 at the
surface. Next, in order to use (8.5.14), we must define our initial state
for z < 0. To maintain the temperature u(0,t) = 0, f(z) must be an
odd function or

. Ts, z>0
f(z) = {Ts—To L <0, (8.5.20)

From (8.5.14)
To—Ts {° —2)?
u(z,t) = — 04 271-'5“ exp [— (£4aéi) ] d¢

— 2
T;ZaTTE exp [—( = 2‘;) ] de (8.5.21)

= (To — Ts) erf (2 \[> (8.5.22)

following the work in the previous example.
The heat flux ¢ at the surface z = 0 is obtained by differentiating
(8.5.22) according to Fourier’s law and evaluating the result at z = 0:

ov k(Ts — To)
—K— - " 8.5.23
1= Kaz avnt ( )

26 Thomson, W., 1863: On the secular cooling of the earth. Philos.
Mag., Ser. 4,25, 157-170.
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The surface heat flux is infinite at ¢ = 0 because of the sudden appli-
cation of the temperature Ts at ¢ = 0. After that time, the heat flux
decreases with time. Consequently, the time ¢ at which we have the
temperature gradient dv(0,t)/0z is

__ (h-T5)?
~ ma?[0v(0,t)/0z)%

(8.5.24)

For the present near-surface thermal gradient of 25 K/km, Ty — Ts =
2000 K and a®> = 1 mm?/s, the age of the earth from (8.5.24) is 65
million years.

Although Kelvin realized that this was a very rough estimate, his
calculation showed that the earth had a finite age. This was a direct
frontal assault on the contemporary geological principle of uniformitar:-
anism that the earth’s surface and upper crust had remained unchanged
in temperature and other physical quantities for millions and millions
of years. This debate would rage throughout the latter half of the nine-
teenth century and feature such luminaries as Kelvin, Charles Darwin,
Thomas Huxley, and Oliver Heaviside.2” Eventually Kelvin’s arguments
would prevail and uniformitarianism would fade into history.

Today, Kelvin’s estimate is of academic interest because of the dis-
covery of radioactivity at the turn of the twentieth century. The ra-
dioactivity was assumed to be uniformly distributed around the globe
and restricted to the upper few tens of kilometers of the crust. Then
geologists would use observed heat fluxes to discover the distribution of
radioactivity within the solid earth.?® Today we know that the interior
of the earth is quite dynamic; the oceans and continents are mobile and
interconnected according to the theory of plate tectonics. However, geo-
physicists still use measured surface heat fluxes to infer the interior?® of
the earth.

Problems

For problems 1-4, find the solution of the heat equation

ou_ o
ot — = 8z%’

27 See Burchfield, 3. D., 1975: Lord Kelvin and the Age of the Earth,
Science History Publ., 260 pp.

28 See Slichter, L. B., 1941: Cooling of the earth. Bull. Geol. Soc.
Am., 52, 561-600.

2% Sclater, J. G., Jaupart, C., and Galson, D., 1980: The heat flow
through oceanic and continental crust and the heat loss of the earth.
Rev. Geophys. Space Phys., 18, 269-311.

—o <z <oo,l<t
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subject to the stated initial conditions.

1.
1, |z] < b

u(z,0) = {0, lz| > b

Lovering3® has applied this solution to problems involving the cooling
of lava.

2.
u(z,0)= e~blel
3.
0, —c0o<e <0
u(:c,O):{To, 0<z<b
0, b<z <o
4.

u(z,0) = 6(x)

5. Solve the spherically symmetric equation of diffusion,3!

Ou 2(8211 2 du
a ool

i 2 r@r)’ 0<r<oo,0<t

with u(r,0) = uo(r).

Step 1: Assuming v(r,t) = ru(r,t), show that the problem can be recast
as

ov 0%

52(16—7.2' 0ST’<O0,0<t

with v(r,0) = ruo(r).

Step 2: Using (8.5.14), show that the general solution is

1 e r—p\°
,t - — _
u(r, t) 2a'l‘\/ﬁ/o uo(p){exp[ (2a\/t_) ]
2
r+p
—exp |- (ZX2 dp.
o |- (52) o
30 Lovering, T. S., 1935: Theory of heat conduction applied to geo-
logical problems. Bull. Geol. Soc. Am., 46, 69-94.
31 Prom Shklovskii, I. S. and Kurt, V. G., 1960: Determination of

atmospheric density at a height of 430 km by means of the diffusion of
sodium vapors. ARS J., 30, 662-667 with permission.
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Hint: What is the constraint on (8.5.14) so that the solution remains
radially symmetric.

Step 3: For the initial concentration of

Ng, 0<r<r
uo(r) = { 00 r_> ro ’

show that
o) = el (7)ot (37)
e (32 o [ ) M

Tﬁ
where erf 1s the error function.

+

8.6 THE SUPERPOSITION INTEGRAL

In our study of Laplace transforms, we showed that we may con-
struct solutions to ordinary differential equations with a general forcing
f(t) by first finding the solution to a similar problem where the forcing
equals Heaviside’s step function. Then we can write the general solution
in terms of a superposition integral according to Duhamel’s theorem. In
this section we show that similar considerations hold in solving the heat
equation with time-dependent boundary conditions or forcings.

Let us solve the heat condition problem

g—;‘:azg—i‘g, 0<z<L,0<t (8.6.1)
with the boundary conditions
u(0,t) =0, u(L,t)=f(t), 0<t (8.6.2)
and the initial condition
u(z,0)=0, O<z<L. (8.6.3)

The solution of (8.6.1)-(8.6.3) is difficult because of the time-de-
pendent boundary condition. Instead of solving this system directly, let
us solve the easier problem

dA  ,8%4

'—87—0 —8;2—, 0<z<L,0<t (864)
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with the boundary conditions
A(0,t) =0, A(L,t)=1, O0<t (8.6.5)
and the initial condition
A(z,0)=0, O<z<L. (8.6.6)

Separation of variables yields the solution

r 2<(-1)" . /nmz a?n?rit
A =T+ =" (—L—) exp (— — ) . (86.7)
n=1

n

Consider the following case. Suppose that we maintain the temper-
ature at zero at the end £ = L until ¢ = 7, and then raise it to the value
of unity. The resulting temperature distribution equals zero everywhere
when t < 7, and equals A(z,t — m1) for t > 7. We have merely shifted
our time axis so that the initial condition occurs at t = 7.

Consider an analogous, but more complicated, situation of the tem-
perature at the end position £ = L held at f(0) from¢t =0tot =7
at which time we abruptly change it by the amount f(r1) — f(0) to
the value f(71). This temperature remains until t = 7 when we again
abruptly change it by an amount f(r;) — f(71). We can imagine this
process continuing up to the instant t = 7,,. Because of linear superpo-
sition, the temperature distribution at any given time equals the sum of
these temperature increments:

u(z,t) = f(0)A(z,t) + [f(r1) — f(0)])A(z,t — 7)
+ [f(r2) = f(r)] Az, t = m2) + - -
() = F(ra_1)A(2,t = 7a), (8.6.8)

where 7, is the time of the most recent temperature change. If we write
Afk = f(Tk) - f(Tk_l) and ATk =Tk — Tk—1, (8.6.9)

(8.6.8) becomes

u(z,t) = f(0)A(z,t) + Z Azt — Tk)-i—"’_&'ATk. (8.6.10)
k=1 k

Consequently, in the limit of Ar, — 0, (8.6.10) becomes

w(z,t) = F0)A(z, 1) + /0 Azt — 1)f'(r) dr, (8.6.11)
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assuming that f(t) is differentiable. Equation (8.6.11) is the superpo-
sition integral. We can obtain an alternative form by integration by
parts:

u(z,t) = f(t)A(z,0) — /0 f(r)aA(x—éf__—T—) dr (8.6.12)
u(z,t):f(t)A(x,O)—i—/o f(T)% dr, (8.6.13)
because

0A(z,t—1)  O0A(z,t—T1)
or - ot '
To illustrate the superposition integral, suppose f(t) = ¢. Then, by

(8.6.11),
sm( ”)exp [—fgﬁ(t— 7')] }dr

u(z,t):/{
(8.6.15)

zt 202 S (-1)* . /nmx a’n’n?t
:f_a27r3z n3 sm(L)[l—exp<— L2 )]
n=1

(8.6.16)

(8.6.14)

hla

200
S

o Example 8.6.1: Temperature oscillations in a wall heated by an alternating
current

In addition to finding solutions to heat conduction problems with
time-dependent boundary conditions, we may also apply the superposi-
tion integral to the nonhomogeneous heat equation when the source is
time dependent. Jeglic3? used this technique in obtaining the tempera-
ture distribution within a slab heated by alternating electric current. If
we assume that the flat plate has a surface area A and depth L, then the
heat equation for the plate when electrically heated by an alternating
current of frequency w is

du 202 29 .,
— = t t 8.6.17
5 "% a2 pCpALsmw’ 0<z< L0<t, (8.6.17)

32 Jeglic, F. A., 1962: An analytical determination of temperature
oscillations in a wall heated by alternating current. NASA Tech. Note
No. D-1286.
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where ¢ is the average heat rate caused by the current, p is the density,
C, is the specific heat at constant pressure, and a? is the diffusivity of
the slab. We will assume that we have insulated the inner wall so that

ou(0,t)
=0, o<, (8.6.18)

while we allow the outer wall to radiatively cool to free space at the
temperature of zero

Ou(L,t)
"o

+hu(L,t)=0, 0<t, (8.6.19)

where & is the thermal conductivity and h is the heat transfer coefficient.
The slab is initially at the temperature of zero

u(z,0) =0, 0<z<L. (8.6.20)

To solve the heat equation, we first solve the simpler problem of

0A ,0%A
ik 67_1’ 0<z<L,0<t (8.6.21)

with the boundary conditions
BA(;(;:,t) =0 and na—A—é—i—’-ﬂ +hA(L,t)=0, 0<t (8.6.22)

and the initial condition
A(z,0) =0, O<az< L. (8.6.23)

The solution A(z,t) is the indicial admittance because it is the response
of a system to forcing by the step function H(t).

We will solve (8.6.21)-(8.6.23) by separation of variables. We begin
by assuming that A(z,t) consists of a steady-state solution w(z) plus a
transient solution v(z,t), where

dw'(z)=~1, w'(0)=0, sw'(L)+hw(L)=0,  (8.6:24)

ov(L, ¢)

2
du _ 8%  9w(01) _ 0, k=g +hv(L,1) =0 (8.6.25)

o =% 8z Oz

and

v(z,0) = —w(z). (8.6.26)

Solving (8.6.24),
L? —2* kL

s T (8.6.27)

w(z) =
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Table 8.6.1: The First Six Roots of the Equation k, tan(k,) = h*.

h* ky ko ks k4 ks ke

0.001 0.03162 3.14191 6.28334 9.42488 12.56645 15.70803
0.002 0.04471 3.14223 6.28350 9.42499 12.56653 15.70809
0.005 0.07065 3.14318 6.28398 9.42531 12.56677 15.70828
0.010 0.09830 3.14477 6.28478 9.42584 12.56717 15.70860
0.020 0.14095 3.14795 6.28637 9.42690 12.56796 15.70924
0.050 0.22176 3.15743 6.29113 9.43008 12.57035 15.71115
0.100 0.31105 3.17310 6.29906 9.43538 12.57432 15.71433
0.200 0.43284 3.20393 6.31485 9.44595 12.58226 15.72068
0.500 0.65327 3.29231 6.36162 9.47748 12.60601 15.73972
1.000 0.86033 3.42562 6.43730 9.52933 12.64529 15.77128
2.000 1.07687 3.64360 6.57833 9.62956 12.72230 15.83361
5.000 1.31384 4.03357 6.90960 9.89275 12.93522 16.01066
10.000 1.42887 4.30580 7.22811 10.20026 13.21418 16.25336
20.000 1.49613 4.49148 7.49541 10.51167 13.54198 16.58640
oo 1.57080 4.71239 7.85399 10.99557 14.13717 17.27876

Turning to the transient solution v(z,t), we use separation of variables
and find that

ood 27,2
v(z,t) = Z C, cos (IC"T:C) exp (-—afznt) , (8.6.28)
n=1

where k, is the nth root of the transcendental equation:

kntan(k,)=hL/k = h*. (8.6.29)

Table 8.6.1 gives the first six roots for various values of hL /.

Our final task is to compute C,. After substituting ¢ = 0 into
(8.6.28), we are left with a orthogonal expansion of —w(z) using the
eigenfunctions cos(kn,z/L). From (6.3.4),

[E—uw(e)cos(baz/L)dr  —L3sin(kn)/(a%k2)
Cn = [ cos?(knz/L)de  Llkn +sin(2kn)/2]/(2kn) (8.6.30)
- 272 sin(ky,) (8‘6‘31)

 a2k2[ky, + sin(2k,) /2]
Combining (8.6.28) and (8.6.31),

v(z,t) = _2 sin(kn) knz a?knt
T Ta B2k, +sin(2ka) /2] N ) PN )

(8.6.32)
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Consequently, A(z,t) equals
P2 sl

2a? ha?

207 & sin(ky,) knx a’k2t
T LB kn + Si0(260)/2] (T) xp (“ 12 ) '

n=1 "[

Az,t) =

We now wish to use the solution (8.6.33) to find the temperature
distribution within the slab when it is heated by a time-dependent source
F(t). Asin the case of time-dependent boundary conditions, we imagine
that we can break the process into an infinite number of small changes to
the heating which occur at the times ¢t = 7, t = 73, etc. Consequently,
the temperature distribution at the time ¢ following the change at t = 7,
and before the change at t = 7,41 is

u(z,t) = f(0)A(=z,t) + Z Az, t— Tk)%fATk, (8.6.34)
k=1
where
Afy=f(m)— f(m-1) and  An =7 —7m-1.  (8.6.35)

In the limit of Am, — 0,

t

u(z,t) = f(0)A(z,t) + /0 Az, t —7)f'(r)dr (8.6.36)

= f(t)A(z,0) + /0 f(r)?-A(”(;—_T)dr. (8.6.37)

In our present problem,

—_ 2‘] sa2 ! — qu :
f(t) = o, AL sin®(wt), @) = oC, AL sin(2wt). (8.6.38)
Therefore,
2qw v L? —z* &L
u(z,t) = P—C—pﬂ/o sm(2wr){——%2— + ha?
WIS sinlh) (e
a? k2[kn + sin(2k,)/2] L

n=1

con [ ZEC i (s
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distance time

Figure 8.6.1: The nondimensional temperature a?4pCpu(z,t)/qL
within a slab that we heat by alternating electric current as a func-
tion of position z/L and time a?t/L? when we insulate the £ = 0 end
and let the £ = L end radiate to free space at temperature zero. The
initial temperature is zero, hL/x = 1, and a?/(L%w) = 1.

q L? —2? kL .
t)=-— — 2
U(.’L‘, ) pCpAL ( 2(12 + ha2) COS( wT)lO

4L%qw = sin(k,) exp(—a®k2t/L?) cos knz
a2pCp AL —~ k2[kn, + sin(2k,)/2] L

t 212
x/ sin(2wr) exp (a Lk;T> dr (8.6.40)
0

4L L? —z? K
= azApCp{[ T + T [1 — cos(2wt)]

= 4sin(ky,) cos(knz/L)
T k2[k + sin(2kn)/2][4 + a%ki /(L4w?)]

dE

Figure 8.6.1 illustrates (8.6.41) for hL/k = 1 and a?/(L?w) = 1. The
oscillating solution, reflecting the periodic heating by the alternating
current, rapidly reaches equilibrium. Because heat is radiated to space
at z = L, the temperature is maximum at £ = 0 at any given instant as
heat flows from z =0 to z = L.

a?k2
2 sin(2wt) — 2 cos(2wt) + 2 exp ( Lk;t)] } (8.6.41)
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Problems

1. Solve the heat equation33

Ou _ zau

5 =05 0<z<L0<t

subject to the boundary conditions u(0,t) = u(L,t) = f(t), 0 < t and
the initial condition u(z,0)=0,0 <z < L.

Step 1: First solve the heat conduction problem

31—05?, O<ze<L,0<t

subject to the boundary conditions A(0,t) = A(L,t) =1, 0 <t and the
initial condition A(z,0) =0, 0 < £ < L. Show that

(2n - L

Step 2: Use Duhamel’s theorem and show that
(z,t) = 47“1 2(2" —1)sin [( )”] -a®(2n-1)°z%1/L?

X/ f(T)ea2(2n—1)27rzr/L"’ dr.
0

2. A thermometer measures temperature by the thermal expansion of
a liquid (usually mercury or alcohol) stored in a bulb into a glass stem
containing an empty cylindrical channel. Under normal conditions, tem-
perature changes occur sufficiently slow so that the temperature within
the liquid is uniform. However, for rapid temperature changes (such as
those that would occur during the rapid ascension of an airplane or me-
teorological balloon), significant errors could occur. In such situations
the recorded temperature would lag behind the actual temperature be-
cause of the time needed for the heat to conduct in or out of the bulb.

33 From Tao, L. N., 1960: Magnetohydrodynamic effects on the for-
mation of Couette flow. J. Aerosp. Sci., 27, 334-338 with permission.
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d34

During his investigation of this question, McLeod®* solved

Ou  ,10 ( Ou
E—G;E(T-é;‘-), 0ST’<b,0<t

subject to the boundary conditions lim,_q |u(r,t)] < oo and u(b,t) =
¢(t), 0 < t and the initial condition u(r,0) = 0, 0 < » < b. The analysis
was as follows:

Step 1: First solve the heat conduction problem

94  ,10 [ 04
a‘t _arar(r—a—;), 057‘<b,0<t

subject to the boundary conditions lim,_.¢ |A(r,t)] < co and A(b,¢) =1,
0 < t and the initial condition A(r,0) =0, 0 < r < b. Show that

Jo(k T/b) a?k21/b2?
rt)_1—2zk Tk Y

where Jo(k,) = 0.
Step 2: Use Duhamel’s theorem and show that

gg N kn Jo(knr/b)

—a?k3(t-7)/b%
710k (T)e dr.

u(r,t) =

n=1
Step 3: If p(t) = Gt, show that

Jo(k T‘/b b2 —a?k2t/b2
T't)—2GZk Jl(k) [ Zk?l (e nt/ —1) .

McLeod found that for a mercury thermometer of 10-cm length a
lag of 0.01°C would occur for a warming rate of 0.032°C s™! (a warming
gradient of 1.9°C per thousand feet and a descent of one thousand feet
per minute). Although this is a very small number, when he included

34 Reproduced with acknowledgement to Taylor and Francis, Publish-
ers, from McLeod, A. R., 1919: On the lags of thermometers with spher-
ical and cylindrical bulbs in a medium whose temperature is changing at
a constant rate. Philos. Mag., Ser. 6, 37, 134-144. See also Bromwich,
T. J. ’A., 1919: Examples of operational methods in mathematical
physics. Philos. Mag., Ser. 6, 37, 407-419; McLeod, A. R., 1922: On
the lags of thermometers. Philos. Mag., Ser. 6, 43, 49-70.
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the surface conductance of the glass tube, the lag increased to 0.85°C.
Similar problems plague bimetal thermometers3® and thermistors3® used
in radiosondes (meteorological sounding balloons).

3. A classic problem?®” in fluid mechanics is the motion of a semi-infinite
viscous fluid that results from the sudden movement of the adjacent wall
starting at ¢ = 0. Initially the fluid is at rest. If we denote the velocity
of the fluid parallel to the wall by u(z,t), the governing equation is

o _ o
- Voz2

with the boundary conditions

0<z<o0,0<t

u(0,t) = V(¢), Iim u(z,t) — 0, 0<t
T=—=00
and the initial condition u(z,0) =0, 0 < z < 0.

Step 1: Find the step response by solving

04 _ 0%
ot _Va.’cz’

subject to the boundary conditions

A(0,t)=1 and zlinolo A(z,t) — 0, 0<t

0<z<o0,0<t

and the initial condition A(z,0) = 0, 0 < £ < co. Show that
z 2 [

A(z,t) = erfc (————) = —

( ) 2yt \/7—I' z/2V/vi

where erf is the error furiction. Hint: Use Laplace transforms.

e dn,

Step 2: Use Duhamel’s theorem and show that the solution is

z exp(—2?/4vT)

t
u(:c,t):[) V(t—T)——T\/;rT—T.é——dT
(e o] 2 2
:—2—/ V(t—- x2>€—n dn
T Jo /Aot 4vn

35 Mitra, H. and Datta, M. B., 1954: Lag coefficient of bimetal ther-
mometer of chronometric radiosonde. Indian J. Meteorol. Geophys., 5,
257-261.

36 Badgley, F. 1., 1957: Response of radiosonde thermistors. Rev. Sci.
Instrum., 28, 1079-1084.

37 This problem was first posed and partially solved by Stokes, G. G.,
1850: On the effect of the internal friction of fluids on the motions of
pendulums. Proc. Cambridge Philos. Soc., 9, Part II, [8]-[106].
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8.7 NUMERICAL SOLUTION OF THE HEAT EQUATION

In the previous chapter we showed how we may use finite difference

techniques to solve the wave equation.

In this section we show that

similar considerations hold for the heat equation.

Starting with the heat equation

ou _
at

,0%u
=% 2

(8.7.1)

we must first replace the exact derivatives with finite differences. Draw-

ing upon our work in Section 7.6,

ou(zm,tn) _ uptl —ul
5t = Y, + O(At) (8.7.2)
and
%u (xm; n) _ ur';l+1 - 2unm + u:ln—l 2
o = e +0[(Az)?), (8.7.3)

where the notation u], denotes u(zm,tn

). Figure 8.7.1 illustrates our

numerical scheme when we hold both ends at the temperature of zero.
Substituting (8.7.2)—(8.7.3) into (8.7.1) and rearranging,

a?At

m = (Az)? (un Umn41

up Tt = Uy 4 ——

- 2un +ul,

(8.7.4)

-1)-

The numerical integration begins with n = 0 and the value of u2,,, u),

and u2,_, are given by f(mAxz).

Once again we must check the convergence, stability and consistency

of our scheme. We begin by writing u, ., uy,_; and up;

n+1 i terms of the

exact solution u and its derivatives evaluated at the pomt T, = mAzx

and t, = nAt. By Taylor’s expansion,

ou|™ 02u m
up 1 = up +A1‘6—z +1 (A:c)2
n Ou|™ 62u m
unm—l =Uy — Al‘(—?—; . %(A )2
and
n+1 +1 2v v
at +2(AY) 8t2

3 |m

%(A:c)sa - , (8.7.5)
Bu|™

- %(Axf'é;c—3 + .- (8.7.6)
Bul™

+1(At)3aT;‘ +... (8.7.7)
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Figure 8.7.1: Schematic of the numerical solution of the heat equation
when we hold both ends at a temperature of zero.

Substituting into (8.7.4), we obtain

n+1 n n n n
um+ —u . a2 Um+1 — 2um + Uy

At (Az)?
Ou o2u\|™ o2u|™ otu|™
= <§ - azw) i, + %Atav . - TIE(GAZ)La—ZZ n+ e
(8.7.8)

The first term on the right side of (8.7.8) vanishes because u(z, t) satisfies
the heat equation. Thus, in the limit of Az — 0, At — 0, the right side
of (8.7.8) vanishes and the scheme is consistent.

To determine the stability of the explicit scheme, we again use the
Fourier method. Assuming a solution of the form:

u™ = 'mPeinA (8.7.9)

we substitute (8.7.9) into (8.7.4) and find that
et —1 26i0—2+e‘i9

= 8.7.10

At YT (Ao ( )
or 20 ;
ix _q_g0°8t . 5[0

et =1 4—_—(A:c)2 sin <2> . (8.7.11)
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The quantity e** will grow exponentially unless

a’At 4
-1<1- 2= . 7.
1<1 4(Ax) sin (2) <1 (8.7.12)

The right inequality is trivially satisfied if a?At/(Az)? > 0 while the
left inequality yields
a’At < 1
(Az)? = 2sin?(6/2)’

(8.7.13)

leading to the stability condition 0 < a®*At/(Az)? < L. This is a
rather restrictive condition because doubling the resolution (halfing Az)
requires that we reduce the time step by a quarter. Thus, for many
calculations the required time step may be unacceptably small. For
this reason, many use an implicit form of the finite differencing (Crank-
Nicolson implicit method®®):

uptl —u?  a? [u’,:,_H -l 4+, u',:;H ulFl 4yt th
At 2 (Az)? (Az)? ’
(8.7.14)
although it requires the solution of a simultaneous set of linear equations.
However, there are several efficient methods for their solution.

Finally we must check and see if our explicit scheme converges to the
true solution. If we let e} denote the difference between the exact and
our finite differenced solution to the heat equation, we can use (8.7.8)
to derive the equation governing e}, and find that

ntl a’At

€m =em+ (o) (ems1 — 2em + ep_1) + O[(A1)? + At(Az)?],
(8.7.15)
for m=1,2,..., M. Assuming that a®At/(Az)? < 1, then
nal a’At a’At a’At
1] < Fa sl + 1= 2555 ] el + G et
+ A[(At)? + At(Az)? (8.7.16)
< |lenll + A[(AY)? + At(Az)?, (8.7.17)
where |len|| = maxm=0,1,  m |e}|. Consequently,
llent1ll < lleall + Al(A1)? + At(Az)?). (8.7.18)

38 Crank, J. and Nicoison, P., 1947: A practical method for numeri-
cal evaluation of solutions of partial differential equations of the heat-
conduction type. Proc. Cambridge. Philos. Soc., 43, 50-67.
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a’t
Figure 8.7.2: The growth of error ||e,]|| as a function of a?t for various

resolutions. For the top line, Az = 0.1; for the middle line, Az = 0.01;
and for the bottom line, Az = 0.001.

Because ||eg]| = 0 and nAt <t,, we find that
llens1l] < An[(At)? + At(Az)?] < At,[At + (Az)?). (8.7.19)

As Az — 0, At — 0, the errors tend to zero and we have convergence.
We have illustrated (8.7.19) in Figure 8.7.2 by using the finite difference
equation (8.7.4) to compute ||e,|| during a numerical experiment that
used a?At/(Az)? = 0.5 and f(z) = sin(wz). Note how each increase of
resolution by 10 results in a drop in the error by 100.

The following examples illustrate the use of numerical methods.

o Example 8.7.1

For our first example, we redo Example 8.3.1 with a?At/(Az)? =
0.499 and 0.501. As Figure 8.7.3 shows, the solution with a2At/(Az)? <
1/2 performs well while small-scale, growing disturbances occur for
a’At/(Az)? > 1/2. This is best seen at ¢ = 0.2. It should be noted
that for the reasonable Az = L/100, it takes approximately 20,000 time
steps before we reach a®t/L? = 1.

o Example 8.7.2

In this example, we redo the previous example with an insulated
end at x = L. Using the centered differencing formula,

UZ_H - u'i_l = 0, (8.7.20)
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06 F t,=0.05_ .. t’=0.1
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Figure 8.7.3: The numerical solution u(z,t) of the heat equation with
a’At/(Az)? = 0.499 (solid line) and 0.501 (jagged line) at various posi-
tions ' = «/L and times t’ = a®t/L? using (8.7.4). The initial temper-
ature u(z,0) equals 4z’(1 — z’) and we hold both ends at a temperature
of zero.

because u;(0,t) = 0. Also, at i =L,

u"+1—u"+-—-—a2At(" —2u} +u}_,) (8.7.21)
L UL (Az)? UL+1 Urp T Uur_a)- -l

Eliminating u} ; between the two equations,

n n a’At n n
uL+1 =uy + (K;)—z (2UL_1 - 2UL) . (8722)

Figure 8.7.4 illustrates our numerical solution at various positions and
times.
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Figure 8.7.4: Same as Figure 8.7.3 except we have an insulated end at
z = L. We have not plotted the jagged line in the bottom two frames
because the solution has grown very large.

Project: Implicit Numerical Integration of the Heat Equation

The difficulty in using explicit time differencing to solve the heat
equation is the very small time step that must be taken at moderate
spatial resolutions to ensure stability. This small time step translates
into an unacceptably long execution time. In this project you will in-
vestigate the Crank-Nicolson implicit scheme which allows for a much
more reasonable time step.

Step 1: Develop code to use the Crank-Nicolson equation (8.7.14) to
numerically integrate the heat equation. To do this, you will need a
tridiagonal solver to find u?t!. This is explained at the end of Section
11.1. However, many numerical methods books®® actually have code
already developed for your use. You might as well use this code.

Step 2: Test out your code by solving the heat equation given the
initial condition u(z,0) = sin(rz) and the boundary conditions u(0,t) =

39 For example, Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Vetterling, W. T., 1986: Numerical Recipes: The Art of Scientific Com-
puting, Cambridge University Press, Cambridge, Section 2.6.
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Figure 8.7.5: The numerical solution u(z,t) of the heat equation
u; = a®ug, using the Crank-Nicolson method. The solid line gives the
numerical solution with a?At = 0.0005 while the dashed line gives the
solution for a?At = 0.005. Both ends are held at zero with an initial
condition of u(z,0) = 0 for 0 < = < { and u(z,0) = 1 for j<z<l

u(1,t) = 0. Find the solution for various At’s with Az = 0.01. Compare
this numerical solution against the exact solution which you can find.
How does the error (between the numerical and exact solutions) change
with At? For small At, the errors should be small. If not, then you
have a mistake in your code.

Step 3: Once you have confidence in your code, discuss the behavior
of the scheme for various values of Az and At for the initial condition
u(z,0) = 0 for 0 < z < 3 and u(z,0) = 1 for 1 < = < 1 with the
boundary conditions u(0,t) = u(1,t) = 0. Although you can take quite
a large At, what happens? Did a similar problem arise in Step 27
Explain your results.



Chapter 9

Laplace’s Equation

In the previous chapter we solved the one-dimensional heat equa-
tion. Quite often we found that the transient solution died away, leav-
ing a steady state. The partial differential equation that describes the
steady state for two-dimensional heat conduction is Laplace’s equation:

Pu  O%u
322 + £l =0. (9.0.1)

In general, this equation governs physical processes where equilibrium
has been reached. It also serves as the prototype for a wider class of
elliptic equations:

%u 0%u 0%u Oou Bu
a(:c,t)é—:;:—z + b(x,t)éza—t + C(IL‘,t)—aF =f (l‘,t, u, -a;, 5?) s (902)

where b2 < 4ac. Unlike the heat and wave equations, there are no initial
conditions and the boundary conditions completely specify the solution.
In this chapter we present some of the common techniques for solving
this equation.
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9.1 DERIVATION OF LAPLACE’S EQUATION

Let us imagine a thin, flat plate of heat-conducting material be-
tween two sheets of insulation. A sufficient time has passed so that
the temperature depends only on the spatial coordinates x and y. We
now apply the law of conservation of energy (in rate form) to a small
rectangle with sides Az and Ay.

Let ¢:(x,y) and gy(z,y) denote the heat flow rates in the z- and
y-direction, respectively. Conservation of energy requires that the heat
flow into the slab must equal the heat flow out of the slab if there is no
storage or generation of heat. Now

rate in = ¢, (z,y + Ay/2)Ay + ¢y (= + Az /2,y)Az (9.1.1)
and
rate out = ¢z(z+ Az, y+Ay/2)Ay+qy(z+ Az/2,y+ Ay)Az. (9.1.2)
If the plate has unit thickness,

l9:(2,y + Ay/2) — gz(z + Az, y + Ay/2)]Ay
+[gy(z + Az/2,y) — qy(z + Az /2,y + Ay)]Az = 0. (9.1.3)

Upon dividing through by AzAy, we obtain two differences quotients
on the left side of (9.1.3). In the limit as Az and Ay tend to zero, they
become partial derivatives, giving

04z | Ogy

+

e By =0 (9.1.4)

for any point (z,y).
We now employ Fourier’s law to eliminate the rates ¢, and gy,

yielding
0 [ ,0u 0 ( ,0u\ _
a—l' (a 6—1‘) + ay (a 8y) = 0, (915)

if we have an isotropic (same in all directions) material. Finally, if a2 is
constant, (9.1.5) reduces to

0%u  O%u

which is the two-dimensional, steady-state heat equation (i.e., u; ~ 0 as
t — 00).

Solutions of Laplace’s equation (called harmonic functions) differ
fundamentally from those encountered with the heat and wave equa-
tions. These latter two equations describe the evolution of some phe-
nomena. Laplace’s equation, on the other hand, describes things at
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Figure 9.1.1: Today we best remember Pierre-Simon Laplace (1749-
1827) for his work in celestial mechanics and probability. In his five
volumes Traité de Mécanique céleste (1799-1825), he accounted for the
theoretical orbits of the planets and their satellites. Laplace’s equation
arose during this study of gravitational attraction. (Portrait courtesy
of the Archives de I’Académie des sciences, Paris.)

equilibrium. Consequently, any change in the boundary conditions will
affect to some degree the entire domain because a change to any one
point will cause its neighbors to change in order to reestablish the equi-
librium. Those points will, in turn, affect others. Because all of these
points are in equilibrium, this modification must occur instantaneously.

Further insight follows from the mazimum principle. If Laplace’s
equation governs a region, then its solution cannot have a relative max-
imum or minimum inside the region unless the solution is constant.! If

1 See Courant, R. and Hilbert, D., 1962: Methods of Mathematical
Physics, Vol. II: Partial Differential Equations, Interscience, New York,
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we think of the solution as a steady-state temperature distribution, this
principle is clearly true because at any one point the temperature cannot
be greater than at all other nearby points. If that were so, heat would
flow away from the hot point to cooler points nearby, thus eliminating
the hot spot when equilibrium was once again restored.

It is often useful to consider the two-dimensional Laplace’s equation
in other coordinate systems. In polar coordinates, where ¢ = r cos(f),
y = rsin(f), and z = 2, Laplace’s equation becomes

8%u  10u 8%u

if the problem possesses axisymmetry. On the other hand, if the solution
is independent of z, Laplace’s equation becomes

u  10u 1 8%

In spherical coordinates, & = rcos(p)sin(d), y = rsin(p)sin(8),
and z = rcos(f), where r2 = 22 + y? + 22, 0 is the angle measured
down to the point from the z-axis (colatitude) and ¢ is the angle made
between the z-axis and the projection of the point on the zy plane. In
the case of axisymmetry (no ¢ dependence), Laplace’s equation becomes

8 [ ,0u 1 o0 1]. oul _
™ (r 5-;) + Sn(@) 56 [sm(ﬁ)—a—a] =0. (9.1.9)

9.2 BOUNDARY CONDITIONS

Because Laplace’s equation involves time-independent phenomena,
we must only specify boundary conditions. As we discussed in Section
8.2, we may classify these boundary conditions as follows:

1. Dirichlet condition: u given

du

on

2. Neumann condition: given, where n is the unit normal

direction

3. Robin condition: u + oz?E given

on

along any section of the boundary. In the case of Laplace’s equation,
if all of the boundaries have Neumann conditions, then the solution is

326-331 for the proof.
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not unique. This follows from the fact that if u(z, y) is a solution, so is
u(z,y) + ¢, where ¢ is any constant.

Finally we note that we must specify the boundary conditions along
each side of the boundary. These sides may be at infinity as in problems
with semi-infinite domains. We must specify values along the entire
boundary because we could not have an equilibrium solution if any por-
tion of the domain was undetermined.

9.3 SEPARATION OF VARIABLES

As in the case of the heat and wave equations, separation of vari-
ables is the most popular technique for solving Laplace’s equation. Al-
though the same general procedure carries over from the previous two
chapters, the following examples fill out the details.

e Example 9.3.1: Groundwater flow in a valley

Over a century ago, a French hydraulic engineer named Henri-
Philibert-Gaspard Darcy (1803-1858) published the results of a labo-
ratory experiment on the flow of water through sand. He showed that
the apparent fluid velocity q relative to the sand grains is directly pro-
portional to the gradient of the hydraulic potential —kV¢, where the
hydraulic potential ¢ equals the sum of the elevation of the point of
measurement plus the pressure potential (p/pg). In the case of steady
flow, the combination of Darcy’s law with conservation of mass V-q = 0
yields Laplace’s equation V2 = 0 if the aquifer is isotropic (same in all
directions) and homogeneous.

To illustrate how separation of variables may be used to solve La-
place’s equation, we shall determine the hydraulic potential within a
small drainage basin that lies in a shallow valley. See Figure 9.3.1. Fol-
lowing Té6th,? the governing equation is the two-dimensional Laplace
equation

%u  0%u
52 o

along with the boundary conditions

0, O0<z<L,0<y<az (9.3.1)

u(z, z0) = gzo + gcx, (9.3.2)

ur(0,y) = uz(L,y) =0 and uy(2,0) =0, (9.3.3)

where u(z, y) is the hydraulic potential, g is the acceleration due to grav-
ity, and c gives the slope of the topography. The conditions uz(L,y) = 0

2 Téth, J., J. Geophys. Res., 67, 4375-4387, 1962, copyright by the
American Geophysical Union.
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Figure 9.3.1: Cross section of a valley.

and u,(z,0) = 0 specify a no-flow condition through the bottom and
sides of the aquifer. The condition u,(0, y) = 0 ensures symmetry about
the z = 0 line. Equation (9.3.2) gives the fluid potential at the water
table, where zg is the elevation of the water table above the standard
datum. The term gex in (9.3.2) expresses the increase of the potential
from the valley bottom toward the water divide. On average it closely
follows the topography.

Following the pattern set in the previous two chapters, we assume
that u(z,y) = X(¢)Y (y). Then (9.3.1) becomes

X"Y + XY” =0. (9.3.4)

Separating the variables yields

XII Y/l

~ =7 (9.3.5)
Both sides of (9.3.5) must be constant, but the sign of that constant is
not obvious. From previous experience we anticipate that the ordinary
differential equation in the z-direction will lead to a Sturm-Liouville
problem because it possesses homogeneous boundary conditions. Pro-
ceeding along this line of reasoning, we consider three separation con-
stants.

Trying a positive constant (say, m?), (9.3.5) separates into the two

ordinary differential equations

X"-m?!X=0 and Y"+m’Y =0, (9.3.6)
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which have the solutions
X(z) = Acosh(mz) + Bsinh(mz) (9.3.7)

and
Y (y) = C cos(my) + Dsin(my). (9.3.8)
Because the boundary conditions (9.3.3) imply X'(0) = X'(L) = 0,
both A and B must be zero, leading to the trivial solution u(z, y)=0.
When the separation constant equals zero, we find a nontrivial so-
lution given by the eigenfunction Xo(z) =1 and Yo(y) = %Ao + Boy.
However, because Yg(0) = 0 from (9.3.3), Bo = 0. Thus, the particular

solution for a zero separation constant is uo(z,y) = Ao/2.
Finally, taking both sides of (9.3.5) equal to —k?,

X" +k2X =0 and Y'-kY=0 (9.3.9)
The first of these equations, along with the boundary conditions X’(0) =
X'(L) = 0, gives the eigenfunction Xy, (z) = cos(knz), with k, = nw/L,
n=1,2,3,... The function Y, (y) for the same separation constant is
Yo (y) = An cosh(kny) + Bn sinh(kny). (9.3.10)

We must take By, = 0 because Y, (0) = 0.
We now have the product solution X, (2)Y»(y), which satisfies La-

place’s equation and all of the boundary conditions except (9.3.2). By
the principle of superposition, the general solution is

u(z,y) = %2 + i Ap cos (E%E) cosh (Z‘_Zﬂ) . (9.3.11)
n=1

Applying (9.3.2), we find that

nmwzo

u(z, z0) = gzo+gcx = %0- +nZ=1An cos (%ﬂb—) cosh ( ) , (9.3.12)

which we recognize as a Fourier half-range cosine series such that

9 (L
Ao = -E/ (g20 + gex) dz (9.3.13)
0

and

9 (L
cosh (m;zo) Ap = f/ (920 + gex) cos (2%{) de. (9.3.14)
0
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Figure 9.3.2: Two-dimensional potential distribution and flow patterns
for different depths of the horizontally impermeable boundary.

Performing the integrations,
Ao = 29z9 + geL (9.3.15)
and

2gcL[l - (-1)"]

An = T n2g2 cosh(nmzo /L)’

(9.3.16)
Finally, the final solution is

_ gcL  4gclL cos[(2m — 1)mz /L] cosh[(2m — 1)7y/ L]
u(=,y) = 920 +_——-— Z (2m - 1)2cosh{(2m — 1)wzo/L]

(9.3.17)
Figure 9.3.2 presents two graphs by Téth for two different aquifers. We
see that the solution satisfies the boundary condition at the bottom and
side boundaries. Water flows from the elevated land (on the right) into
the valley (on the left), from regions of high to low hydraulic potential.

o Example 9.3.2

In the previous example, we had the advantage of homogeneous
boundary conditions along £ = 0 and z = L. In a different hydraulic
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problem, Kirkham?® solved the more difficult problem of

8%u  O%u

W+8—1/2=0 O<z<LO<y<h

subject to the Dirichlet boundary conditions
u(z,0) = Re, u(z,h) = RL, u(L,y) = RL

and

b—a

0, O0<y<a
u(O,y)={RL(y—a), a<y<b
RL, b<y<h.

473

(9.3.18)

(9.3.19)

(9.3.20)

This problem arises in finding the steady flow within an aquifer resulting
from the introduction of water at the top due to a steady rainfall and
its removal along the sides by drains. The parameter L equals half of
the distance between the drains, k is the depth of the aquifer, and R is

the rate of rainfall.

The point of this example is We need homogeneous boundary con-
ditions along either the = or y boundaries for separation of variables to
work. We achieve this by breaking the original problem into two parts,

namely
u(z,y) = v(z,y) + w(z,y) + RL,
where ) ,
8%v  0%v
L = h
6x2+6y2 0 0<z<L,0<ky<
with i
v(0,y) =v(L,y) =0,  v(z,h)=0
and
v(z,0) = R(z — L);
FPw  Pw
W—FW—O, O<z<LO<y<h
with
w(;c,O):w(:c,h):O, u)(L,y):O
and
—RL, O<y<a
w(O,y):{b}iLa(y—a)—RL, a<y<hb
0, b<y<h.

(9.3.21)

(9.3.22)

(9.3.23)

(9.3.24)

(9.3.25)

(9.3.26)

(9.3.27)

3 Kirkham, D., Trans. Am. Geophys. Union, 39, 892-908, 1958,

copyright by the American Geophysical Union.
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Employing the same technique as in Example 9.3.1, we find that

= . (nmz\ sinh[nw(h - y)/L]
v(z,y) = ;An sin ( T ) snh(n7h/L) (9.3.28)
where
2 L . (nTE 2RL
Similarly, the solution to w(z,y) is found to be
= . (nwy\ sinh[nm(L — z)/h]
w(z,y) = ";B,, sin ( - ) by R (9.3.30)
where
B, =2 -RL/asiﬁ(m) d +RL/b 22 —1)sin (M) d
"% ; h )Y L \b-a ST Y
(9.3.31)

= QiL{(b _ Z)n%r [sin ("T"b) — sin ("hﬂ)] - %} (9.3.32)

The final answer consists of substituting (9.3.28) and (9.3.30) into (9.3.
21).

e Example 9.3.3

The electrostatic potential is defined as the amount of work which
must be done against electric forces to bring a unit charge from a refer-
ence point to a given point. It is readily shown* that the electrostatic
potential is described by Laplace’s equation if there is no charge within
the domain. Let us find the electrostatic potential u(r, z) inside a closed
cylinder of length L and radius a. The base and lateral surfaces have
the potential 0 while the upper surface has the potential V.

Because the potential varies in only r and z, Laplace’s equation in
cylindrical coordinates reduces to

2
1a<au)+au 0, 0<r<al<z<L  (9.3.33)

ror\'or) " 922

4 For static fields, V x E = 0, where E is the electric force. From
Section 10.4, we can introduce a potential ¢ such that E = V. From
Gauss’ law, V- E = VZp = 0.
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subject to the boundary conditions
u(a, z) = u(r, 0)=0 and wu(r,L)=V. (9.3.34)
To solve this problem by separation of variables, let u(r, z) = R(r)Z(z)

and
1 d(dR) ldzZ__k2

ity Stk IS 3.
rRdr rdr Z dz? a? (9.3.35)

Only a negative separation constant yields nontrivial solutions in the
radial direction. In that case, we have that

1d [/ dR k2
o (rﬁ-> + -a—zR =0. (9.3.36)

The solutions of (9.3.36) are the Bessel functions Jo(kr/a) and Yo(kr/a).
Because Yy(kr/a) becomes infinite at r = 0, the only permissible solu-
tion is Jo(kr/a). The condition that u(a,z) = R(a)Z(z) = 0 forces us
to choose k’s such that Jo(k) = 0. Therefore, the solution in the radial
direction is Jo(knr/a), where ky is the nth root of Jo(k) = 0.

In the z direction,

d*Z, k2
) + 2 =0. (9.3.37)

The general solution to (9.3.37) is
n kn
Z(2) = Apsinh ('%Z) + B, cosh (Tz) . (9.3.38)

Because u(r,0) = R(r)Z(0) = 0 and cosh(0) = 1, B, must equal zero.
Therefore, the general product solution is

u(r,z) = Z Apdo (lc;,_r> sinh <%) . (9.3.39)
n=1

The condition that u(r, L) = V determines the arbitrary constant
A,. Along 2 =1L,

- knr\ . (kL
u(r,L)y=V = Z ApJo (—a—) sinh ( A ) , (9.3.40)
n=1

where

o (kaL 2V L knr
sinh (T) An = a-zJ_f(—k,,_) A r Jo (—a—) dr (9341)
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Figure 9.3.3: The steady-state potential within a cylinder of equal
radius and height a when the top has the potential V while the lateral
side and bottom are at potential 0.

from (6.5.35) and (6.5.43). Thus,

(kL 2 [kar kr\[* oV
sinh (T) An = k272 (k) ( ) I (T) o kndi(kn)’
(9.3.42)
The solution is then
Jo(knr/a) sinh (knz/a)
u(r,z) = QVZ tTs () Smh (ke Lja)" (9.3.43)

Figure 9.3.3 illustrates (9.3.43) for the case when L = a where we
have included the first 20 terms of the series. Of particular interest is
the convergence of the isolines in the upper right corner. At that point,
the solution must jump from 0 along the line » = a to V along the
line z = a. For that reason our solution suffers from Gibbs phenomena
near the top boundary. Outside of that region the electrostatic potential
varies smoothly.
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o Example 9.3.4

Let us now consider a similar, but slightly different, version of ex-
ample 9.3.3, where the ends are held at zero potential while the lateral
side has the value V. Once again, the governing equation is (9.3.33)
with the boundary conditions

u(r,0)=u(r,L)=0 and u(a,z)=V. (9.3.44)
Separation of variables yields

1 d [ dR 1d’Z  k?
rRdr ( dr) T Zd:2 T L2 (9.3.45)
with Z(0) = Z(L) = 0. We have chosen a positive separation constant
because a negative constant would give hyperbolic functions in z which
cannot satisfy the boundary conditions. A separation constant of zero
would give a straight line for Z(z). Applying the boundary conditions
gives a trivial solution. Consequently, the only solution in the 2 direction
which satisfies the boundary conditions is Z,(z) = sin(nwz/L).
In the radial direction, the differential equation is

1d dR, n2n?
;‘-671: (T‘—‘F) - Tz—Rn =0. (9346)
As we showed in Section 6.5, the general solution is
nwr . (/n7T
Ra(r) = Anlo (2 z ") + BaKo (-L—) , (9.3.47)

where I and K; are modified Bessel functions of the first and second
kind, respectively, of order zero. Because Ko(z) behaves as —In(z)
as £ — 0, we must discard it and our solution in the radial direction
becomes R, (r) = Io(nwr/L). Hence, the product solution is

up(r,2) = Anlo (%C) sin ("L_ﬂ) (9.3.48)

and the general solution is a sum of these particular solutions, namely

(r,2) = Z Anly ( )sin (EZ—Z) . (9.3.49)

Finally, we use the boundary conditions that u(a,z) = V to compute
A, . This condition gives

w(a,z) =V = i Anlo (ﬁz—a) sin (%f) (9.3.50)
n=1
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Figure 9.3.4: Potential within a conducting cylinder when the top and
bottom have a potential 0 while the lateral side have a potential V.

so that

L —(_1\n
Io (."%‘3) A, = %/ Vsin (ﬁz_z) dz = W (9.3.51)
0

Therefore, the final answer is

4V f: I[(2m — 1)7r/L]sin[(2m — 1)72/ L)

u(r,z) = (2m — 1) Io[(2m ~ 1)wa/L]

(9.3.52)

m=1

Figure 9.3.4 illustrates the solution (9.3.52) for the case when L =
a. Once again, there is a convergence of equipotentials at the corners
along the right side. If we had plotted more contours, we would have
observed Gibbs phenomena in the solution along the top and bottom of
the cylinder.

o Example 9.3.5

Let us find the potential at any point P within a conducting sphere
of radius a. At the surface, the potential is held at V; in the hemisphere
0<f#<m/2and -V, forn/2 <8< .
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Laplace’s equation in spherical coordinates 18

0 [ ,0u 1 o0 1. Ou

or (’" ar) * Sn(6) 66 [S“‘( )ao] 0, 0<r<al<f<x
(9.3.53)

To solve (9.3.53) we use the separation of variables u(r,8) = R(r)0(6).
Substituting into (9.3.53), we have that

%Ed’—_ (rz%l—j-) = "si_n(19')6d_dé [sin(e)ff%] =k? (9.3.54)

or
r*R’" 4+ 2rR' —k*R=0 (9.3.55)

and
ﬁa’)d% [sin(ﬂ)%%] + k0 =0. (9.3.56)

A common substitution replaces 8 with g = cos(#). Then, as 6 varies
from 0 to m, p varies from 1 to —1. With this substitution (9.3.56)
becomes

d do
— |1 -p?)5| +k©=0. 9.3.57
Llo-m3] (9:3.57)
This is Legendre’s equation which we examined in Section 6.4. Con-
sequently, because the solution must remain finite at the poles, k=
n(n + 1) and

On(0) = Pa(p) = Pplcos()], (9.3.58)

where n =10,1,2,3,...

Turning to (9.3.55), this equation is the equidimensional or Euler-
Cauchy linear differential equation. One method of solving this equation
consists of introducing a new independent variable s so that r = e* or
s = In(r). Because

d dsd _sd
% = azl; =€ 'C'l;, (9359)

it follows that

@ _d(d_ad (d) a4
dr?2 ~ dr ds) ds ds) — ds? ds)’

(9.3.60)
Substituting into (9.3.55),
d’R, dR,
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Equation (9.3.61) is a second-order, constant coefficient ordinary differ-
ential equation which has the solution

R, (s) = Cpe™ + Dpe~(n+1)s (9.3.62)
Rn(r) = Chexp[nln(r)] + D, exp[—(n+ 1)In(r)] (9.3.63)
= Cy exp[In(r™)] + D, exp[ln(r~1~")] (9.3.64)
= Cpr* + Dpr17m, (9.3.65)

A more convenient form of the solution is
r n r =1l-n
Rn(r) = An (E) + B, (;) : (9.3.66)

where A, = a”C, and B, = D,,/a™*!. We introduced the constant a,
the radius of the sphere, to simplify future calculations.

Using the results from (9.3.58) and (9.3.66), the solution to La-
place’s equation in axisymmetric problems is

u(r,0) = i [An (E)n + B, (2)—1—71] P, [cos(8)]. (9.3.67)

n=0

In our particular problem we must take B, = 0 because the solution
becomes infinite at » = 0 otherwise. If the problem had involved the
domain @ < r < oo, then A, = 0 because the potential must remain
finite as r — oo.

Finally, we must evaluate A,. Finding the potential at the surface,

o0
Vo, O<p<l
w(a, p) =Y AnPalp) = {_;’/o, ) S"”—< 0 (9.3.68)

Upon examing (9.3.68), it is merely an expansion in Legendre polyno-
mials of the function

Vo, 0<pu<l
flw) = { Sh e (9.3.69)
Consequently, from (9.3.69),
2n + 1
An / £ (1) Pr(w) d (9.3.70)

Because f(u) is an odd function, A, = 0 if n is even. When = is odd,
however,

1
A= (2n41) /O Vo Pa(u) dp. (9.3.71)
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Figure 9.3.5: Electrostatic potential within a conducting sphere when
the upper hemispheric surface has the potential 1 and the lower surface
has the potential —1.

We can further simplify (9.3.71) by using the relationship that

1
i
'/; Pn(t) dt = m [Pn—l(m) - Pn+1(I)] , (9372)
where n > 1. In our problem, then,

A = {VO[Pn—l(O)O_ Pay1(0)), nodd (9.3.73)

, n even.

This first few terms are A; = 3V,/2, Az = —7Vu/8, and A5 = 11V,/16.

Figure 9.3.5 illustrates our solution. Here we have the convergence
of the equipotentials along the equator and at the surface. The slow rate
at which the coefficients are approaching zero suggests that the solution
will suffer from Gibbs phenomena along the surface.

o Example 9.3.6

We now find the steady-state temperature field within a metallic
sphere of radius a, which we place in direct sunlight and allow to radia-
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tively cool. This classic problem, first solved by Rayleigh,® requires the
use of spherical coordinates with its origin at the center of sphere and
its z-axis pointing toward the sun. With this choice for the coordinate
system, the incident sunlight is

D(0) cos(#), 0<6< /2

D(6):{ 0 rd<fen (9.3.74)

If the heat dissipation takes place at the surface r = a according
to Newton’s law of cooling and the temperature of the surrounding
medium is zero, the solar heat absorbed by the surface dA must balance
the Newtonian cooling at the surface plus the energy absorbed into the
sphere’s interior. This physical relationship is

0 6
(1-p)D(0)dA = eu(a,f)dA + nlg%——)- dA, (9.3.75)
where p is the reflectance of the surface (the albedo), € is the surface
conductance or coefficient of surface heat transfer, and « is the thermal
conductivity. Simplifying (9.3.75), we have that

Ou(a,6) 1
or

;”D(e) - %u(a,ﬂ) (9.3.76)

for r = a.

If the sphere has reached thermal equilibrium, Laplace’s equation
describes the temperature field within the sphere. In the previous exam-
ple, we showed that the solution to Laplace’s equation in axisymmetric
problems is

r

u(r,8) = i [An (;)" + B, (2)'1'"] Pacos(9)].  (9.3.77)

In this problem, B,, = 0 because the solution would become infinite at
r = 0 otherwise. Therefore,

[} .
u(r, 8) = ';)A,, (E) Pa[cos(8))]. (9.3.78)
Differentiation gives
du  — nrr—1
5= gOA,, —— Palcos(0)]. (9.3.79)

5> Rayleigh, J. W., 1870: On the values of the integral fol QnQn du,
Qn, Qn' being Laplace’s coefficients of the orders n, n’, with application
to the theory of radiation. Philos. Trans. R. Soc., London, 160, 579-
590.
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Figure 9.3.6: The difference (in °C) between the temperature field
within a blackened iron surface of radius 0.1 m and the surrounding
medium when we heat the surface by sunlight and allow it to radiatively

cool.

Substituting into the boundary conditions leads to

i:An (S + %) Py [cos(9)] = (l:c-_p) D(6)
D(p) = i [:(Kl—iepa)] AnPp(p) = i CrnPa(p),
where

nKk + €a
a(l-p)

We determine the coefficients by

Cp, = [ ] An, and p = cos(d).

_2n+1 2n

Cn 5

/ D()Pa()du = - -p() [ P

(9.3.80)

(9.3.81)

(9.3.82)

)dp.

(9.3.83)
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Evaluation of the first few coefficients gives

_ (1=p)D(0) _ a(l=p)D(0) _ 5a(1-p)D(0)
Ao = 4e A= 2(k +ea) ’ Az = 16(2x + €a) '’
(9.3.84)

3a(l — p)D(0)
32(4k +ea)

Figure 9.3.6 illustrates the temperature field within the interior of
the sphere with D(0) = 1200 W/m?, k = 45 W/m K, ¢ = 5 W/m?
K, p =0, and a = 0.1 m. This corresponds to a cast iron sphere with
blackened surface in sunlight. The temperature is quite warm with the
highest temperature located at the position where the solar radiation is
largest; the coolest temperatures are located in the shadow region.

A3 =0 and Ay4=-— (9.3.85)

e Example 9.3.7

In this example we will find the potential at any point P which
results from a point charge +g¢ placed at z = a on the z-axis when we
introduce a conducting, grounded sphere at z = 0. See Figure 9.3.7.
From the principle of linear superposition, the total potential u(r,6)
equals the sum of the potential from the point charge and the potential
v(r,8) due to the induced charge on the sphere

u(r,8) = "; + o(r, ). (9.3.86)

In common with the first term ¢/s, v(r, §) must be a solution of Laplace’s
equation. In Example 9.3.5 we showed that the general solution to
Laplace’s equation in axisymmetric problems is

o(r,0) = i [A,, (%)n + B, <%)_1_H]Pn[cos(0)]. (9.3.87)

n=0

Because the solutions must be valid anywhere outside of the sphere,
A, = 0; otherwise, the solution would not remain finite as r — 0.
Hence,

o0 -1-n
o(r,6) =S Bn (}) Pa[cos(6)]. (9.3.88)
n=0 0
We determine the coefficient B, by the condition that u(ro,#) = 0 or
q [e ]
= B, P, )] = 0. 9.3.89
S lon sphere + '; n[COS( )] ( )

We need to expand the first term on the left side of (9.3.89) in terms
of Legendre polynomials. From the law of cosines,

s = y/r2 4+ a? — 2arcos(f). (9.3.90)
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Figure 9.3.7: Point charge +¢ in the presence of a grounded conducting

sphere.
Consequently, if @ > r, then

1 1 r ry2] 712
S== [1 - 2cos(6’); + (;) ]
In Section 6.4, we showed that
00
(1-2zz422)"Y2 = Z Pp(x)z".
n=0

Therefore,
[e]

1= 23 Pafeos(®)] (&)

n=0

From (9.3.89),

i [2(2)" + Ba] Palcos(@)] = 0.

n=0

(9.3.91)

(9.3.92)

(9.3.93)

(9.3.94)
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We can only satisfy (9.3.94) if the square-bracketed term vanishes iden-
tically so that

B, = —% (2—°)n (9.3.95)

On substituting (9.3.95) back into (9.3.88),

v(r,6) = —q—ai::( )n . [cos(8)]. (9.3.96)

The physical interpretation of (9.3.96) is as follows. Consider a
point, such as a’ (see Figure 9.3.7) on the z-axis. If » > a’, the expression
of 1/¢' is

1 1 a\" ,
g_;r;)Pn[cos(B)] (7> , r>d. (9.3.97)

Using (9.3.97), we can rewrite (9.3.96) as

v(r,f) = —— (9.3.98)

u(r,0) =1L (9.3.99)
$

provided that ¢’ equals rog/a. In other words, when we place a ground-
ed conducting sphere near a point charge +¢, it changes the potential
in the same manner as would a point charge of the opposite sign and
magnitude ¢’ = roq/a, placed at the point @’ = rZ/a. The charge ¢’ is
the image of q.

Figure 9.3.8 illustrates the solution (9.3.96). Because the charge is
located above the sphere for any fixed r, the electrostatic potential is
largest at the point # = 0 and weakest at § = 7.

o Example 9.3.8: Poisson’s integral formula

In this example we find the solution to Laplace’s equation within a
unit disc. The problem may be posed as

u 10u 1 0%

el —— - —_ = < < < O,
3r2+r6r+r23g02 0, Osr<lbsesim (9:3.100)

with the boundary condition u(1, ¢) = f(y).
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Figure 9.3.8: Electrostatic potential outside of a grounded conducting
sphere in the presence of a point charge located at a/ro = 2. Contours
are in units of ¢/ro.

We begin by assuming the separable solution u(r,¢) = R(r)®(p)

so that
7"2R” + T'RI (DN

I =-3 k2. (9.3.101)
The solution to ®” + k*® =0 is
®(p) = Acos(kp) + Bsin(kyp). (9.3.102)
The solution to R(r) is
R(r) = Cr¥ + Dr7F. (9.3.103)

Because the solution must be bounded for all » and periodic is ¢, we
must take D = 0 and k£ = n, where n = 0,1,2,3,.... Then, the most
general solution is

u(r, ) = 3a0 + Z [an cos(ng) + by sin(np)] 7™, (9.3.104)

n=1

where a, and b, are chosen to satisfy

u(l,p) = f(p) = a0 + Z a, cos(ny) + b, sin{ny). (9.3.105)

n=1
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Because
1 [7 1 [ .
an =~ [ flp)eos(np)dp, bo=— [ flp) sin(ne) de,

7r -7
(9.3.106)
we may write u(r, p) as

u(r,p) = -}[_ﬁ flp) {% + Z r™ cos[n(f — go)]} deb. (9.3.107)

If we let @ = @ — p and z = r[cos(a) + isin(e)], then

g%rn cos(na) = Re (i zn) - Re (1 1 z) (9.3.108)

n=0

= Re [1 = rcos(a)l = irsin(a)] (9:3.109)

_ q. [L=rcos(a) + irsin(a)
=Re [ 1 — 2rcos(a) + r? (9.3.110)

for all r such that |r| < 1. Consequently,

= 1—rcos(a)
" = 3.111
nz_%r cos(na) 1 - 2rcos(a) + r? ® )
1 & 1 —rcos(a) 1
= " = - = 9.3.112
2 + ; " cos(na) 1-2rcos(a)+7% 2 ( )
2
L L-r (9.3.113)

Ta1- 2rcos(a) + r?’
Substituting (9.3.113) into (9.3.107), we finally have that

1—r2

1 T
u(r,p) = o . o) 13, R de. (9.3.114)

This solution to Laplace’s equation within the unit circle is referred to
as Poisson’s integral formula.®

6 Poisson, S. D., 1820: Mémoire sur la maniére d’exprimer les fonc-
tions par des séries de quantités périodiques, et sur l'usage de cette
transformation dans la résolution de différens problémes. J. Ecole Poly-
tech., 18, 417-489.
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Problems

Solve Laplace’s equation over the rectangular region 0 < £ < a,0 <y <
b with the following boundary conditions:

1. u(z,0) = u(z,b) = u(a,y) = 0,u(0,y) =1
2. u(z,0) =u(0,y) = u(a,y) = 0,u(z,b) =2
3. u(z,0) =u(0,y) = u(a,y) = 0,u(z,b) =2z —a
4. u(z,0) = u(0,y) = u(a,y) =0,
u(z, b) = {2(a2f/;l),/a, 2/3 o Z/Z
5. uz(0,y) = u(a,y) = u(z,0) = 0,u(z,b) =1
6. uy(x,0) = u(z,b) = u(a,y) = 0,u(0,y) =1
7. uy(z,0) = uy(x,b) = 0,u(0,y) = u(a,y) =1
8. uz(a,y) = uy(z,b) =0,u(0,y) = u(z,0) =1
9. uy(z,0) = u(z,b) = 0,u(0,y) = u(a,y) = 1
10. u(a,y) = u(z,b) = 0,u(0,y) = u(x,0) =1
11. u-(0,y) = 0,u(e,y) = u(z,0) = u(z,b) =1
12. uz(0,y) = uz(a,y) = 0,u(z,d) = uy,
weo={ 6 (LS
13. Variations in the earth’s surface temperature can arise as a result of
topographic undulations and the altitude dependence of the atmospheric
temperature. These variations, in turn, affect the temperature within
the solid earth. To show this, solve Laplace’s equation with the surface
boundary condition that
u(z,0) = Ty + AT cos(2mz/A),
where A is the wavelength of the spatial temperature variation. What

must be the condition on u(z, y) as we go towards the center of the earth
(i.e., y — 00)?
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14. T6th” generalized his earlier analysis of groundwater in an aquifer
when the water table follows the topography. Find the groundwater
potential if it varies as

u(z, 20) = g[zo0 + cx + asin(bz))
at the surface y = 2o while u;(0,y) = uz(L,y) = uy(z,0) = 0, where

g is the acceleration due to gravity. Assume that bL # nm, where
n=123,...

15. Solve
62“ 1 6u aZu
2t ta2 =0 0sr<a-l<z<li
e du(r,—L) _ Ou(r,L)
ulr,—L)  oulr, _
u(a,z)=0  and 5 =5 "= 1.
16. Solve
8u 10u O%u
gu, v Ju_ <
52 T rar T 5 0, 0<r<a0<z<h
with ou(a, )
u(a,z) _
——-ar—_u(r,h)_o
and
u(r,0) [1, 0<r<mo
0z 10, ro<r<a.
17. Solve
8%u  10u 0%u
gu, tou 0Ju_ <
orZ Ty or T 822 0, 0<r<1l0<z<d
with
du(l,z) _ Ou(r,0) _ 0
or - Oz -
and
d) = -1, 0<r<a, b<r<l
U(ra )— 1/(b2_(12)_1’ a<’r'<b‘

7 Téth, J., J. Geophys. Res., 68, 4795-4812, 1963, copyright by the
American Geophysical Union.
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18. Solve

%u 10u u O*u

vu,_ Ou u OJu_ <
az T rar 2t a2 0, 0<r<a0<z<h

with ; \
u(r,0) = u(a,2) =0 and u(r, h) — Ar.
0z
19. Solve
u 10u u  O%u
gu 0u u Ju_ <
87°2+T'67' ,,,2+6z2 0) 0_7‘<a,0<z<1
with
u(r,0) =u(r,1)=0 and u(a, z) = z.
20. Solve
v 10u u Ou
gu vu uw 0ou_ <
5r2+r8r r2+6z2 0, 0<r<al<z<h
with 5 , \
M ( 0) and u(a—rzi)‘ -
21. Solve®

v 10u  O%°u  Ou

guy 10y ou OJu_ <
6r2+r6r+622 b8z 0, 0<sr<1,0<z<00

with the boundary conditions

. Ou(l,2) _
ll_l}(l) Ju(r, 2)| < oo, —5 = —Bu(l, z), z> 0,
and
u(r,0) =1, lim |u(r, 2)| < oo, 0<r<1,

where B 1s a constant.

8 Reprinted from Int. J. Heat Mass Transfer, 19, Kern, J., and J.
O. Hansen, Transient heat conduction in cylindrical systems with an
axially moving boundary, 707-714, (©1976, with kind permission from
Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5
1GB, UK.
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22. Find the steady-state temperature within a sphere of radius a if the
temperature along its surface is maintained at the temperature u(a, §) =
100[cos(6) — cos®(6)].

23. Find the steady-state temperature within a sphere if the upper half
of the exterior surface at radius a is maintained at the temperature 100
while the lower half is maintained at the temperature 0.

24. The surface of a sphere of radius a has a temperature of zero every-
where except in a spherical cap at the north pole (defined by the cone
6 = a) where it equals Tp. Find the steady-state temperature within
the sphere.

25. Using the relationship

2%
dy 27
= , bl <1
/0 1—b cos(p) 1-82 11

and Poisson’s integral formula, find the solution to Laplace’s equation
within a unit disc if u(1, ¢) = f(¢) = Tp, a constant.

9.4 THE SOLUTION OF LAPLACE’S EQUATION ON THE UPPER
HALF-PLANE

In this section we shall use Fourier integrals and convolution to find
the solution of Laplace’s equation on the upper half-plane y > 0. We
require that the solution remains bounded over the entire domain and
specify it along the z-axis, u(z,0) = f(z). Under these conditions, we
can take the Fourier transform of Laplace’s equation and find that

o0 02 o0 02
g—%e‘i“’” dz + —a——;e"i“’” dz =0. (9.4.1)
oo O oo OV

If everything is sufficiently differentiable, we may successively integrate
by parts the first integral in (9.4.1) which yields

* 82u —twz Ou —ilwr ® . < u —-iwT
. de = ——e » + iw /_Oo 55 e (9.4.2)
. 00 o0 .
= iw u(z, y)e'“‘”‘l_oo - wz/ u(z,y)e " da
—o00
(9.4.3)
= —wU(w,y), (9.4.4)
where -

Uw,y) = / u(z, y)e ™7 dz. (9.4.5)
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The second integral becomes
® §u _,; d2 [ [* : d*U(w,y)
—e "Wdp = — T e = ———"2 (9.4.6
=g | [ e ””] ar 049

along with the boundary condition that
oQ

Fw)=U(w,0) = / f(z)e™ ™" dz. (9.4.7)
—00

Consequently we have reduced Laplace’s equation, a partial differential
equation, to an ordinary differential equation in y, where w is merely a
parameter:
?U(w,y)
—ar
with the boundary condition U (w,0) = F(w). The solution to (9.4.8) is

wiU(w,y) =0, (9.4.8)

U(w,y) = Aw)e“lV + Bw)e Iy >0. (9.4.9)

We must discard the e/“!¥ term because it becomes unbounded as we go
to infinity along the y-axis. The boundary condition results in B(w) =
F(w). Consequently,

U(w,y) = Fw)e v, (9.4.10)

The inverse of the Fourier transform e~1“l¥ equals

1 o0 ) 1 0 . o0 .
— emllvgive gy = — / eVe'T dw + — e wYerT dw
27 J_owo 27 J_ o 2 Jy
(9.4.11)
- i oo e—wye-—iwx dw 4 - oo e—wyeiwr dw
2% 0 2w 0
(9.4.12)
1 /> _,
= — e cos(wz) dw (9.4.13)
T Jo
1 [ exp(—wy) . =
= ;{W [~y cos(wz) + z sin(wz)] .
(9.4.14)
1y
= ——. 9.4.15
mzl +y? ( )

Furthermore, because (9.4.10) is a convolution of two Fourier trans-
forms, its inverse is

u(z,y) = %/: -(;—_—y{)—(:z_:?dt. (9.4.16)
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Equation (9.4.16) is Poisson’s integral formula® for the half-plane y > 0
or Schwarz’ integral formula.l®

e Example 9.4.1

As an example, let u(z,0) = 1 if 2| < 1 and u(xz,0) = 0 otherwise.
Then,

1t Y
= 1[tan—1 (1"—””) + tan~! (1 "'x)]. (9.4.18)
T ) y
Problems

Find the solution to vLaplace’s equation in the upper half-plane for the
following boundary conditions:

1.
1, Ol<exl
u(z,0) = {0, otherwise
2.
1, x>0
we0={1 120
3.
To, z<0
“(“”’0):{00 z>0
4.
275, r< -1
u(z,O):{To, ~l<z<l1
0, z>1

® Poisson, S. D., 1823: Suite du’ mémoire sur les intégrales définies
et sur la sommation des séries. J. Ecole Polytech., 19, 404-509. See pg.
462.

10 Gchwarz, H. A., 1870: Uber die Integration der partiellen Differ-
entialgleichung 82u/8z% + ?u/0y? = 0 fiir die Flache eines Kreises,
Vierteljahrsschr. Naturforsch. Ges. Zirich, 15, 113-128.
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5.
To, -1<z<0
u(x,O):{To+(T1—To):v, 0<exl1
0, otherwise
6.
To, r<a
T, a1 <z < as
u(z,0) = T3, az < r<as
Tﬂy an < z

9.5 POISSON’S EQUATION ON A RECTANGLE

Poisson’s equation!! is Laplace’s equation with a source term:

?u  8%u
—t = , Y)- 951
302 T a2 f(z,y) ( )
It arises in such diverse areas as groundwater flow, electromagnetism,
and potential theory. Let us solve it if u(0,y) = u(a,y) = u(z,0) =
u(z,b) =0.
We begin by solving a similar partial differential equation:

%y O%u

W+6_112:Au’ 0<z<al<y<d (9.5.2)

by separation of variables. If u(z,y) = X(z)Y (y), then

XII YII
Sy = (9.5.3)

Because we must satisfy the boundary conditions that X(0) = X(a) =
Y (0) = Y(b) = 0, we have the following eigenfunction solutions:

Xn(z) =sin (E-ZE) , Y (z) = sin (m;ry) (9.5.4)
with Apm = —n%72/a? —m?n?/b%; otherwise, we would only have trivial

solutions. The corresponding particular solutions are

ntr

- . [mmy
Upm = Apm sin | —— ) sin
a

(T) , (9.5.5)

11 Poisson, S. D., 1813: Remarques sur une équation qui se présente
dans la théorie des attractions des sphéroides. Nouv. Bull. Soc. Philo-
math. Paris, 3, 388-392.
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Figure 9.5.1: Siméon-Denis Poisson (1781-1840) was a product as
well as a member of the French scientific establishment of his day. Ed-
ucated at the Ecole Polytechnique, he devoted his life to teaching, both
in the classroom and with administrative duties, and to scientific re-
search. Poisson’s equation dates from 1813 when Poisson sought to
extend Laplace’s work on gravitational attraction. (Portrait courtesy of
the Archives de I’Académie des sciences, Paris.)

where n=1,2,3,...and m=1,2,3,...
For a fixed y, we can expand f(z,y) in the half-range Fourier sine
series:

flz,y) = i An(y)sin (%f) , (9.5.6)
n=1

where

An(y) = é‘/oa f(z,y)sin (ﬁj—:-:f-) dz. (9.5.7)
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However, we can also expand A,(y) in a half-range Fourier sine series:

o0

An(®) = Y anmsin (T2, (9.5.8)
where "~
am =1 [ An(g)sin ("”’y) dy (059)
/ / f(z,y)sin (P22 sin (72 dzdy (9.5.10)
and

flz,y) = Z Z Qnm sin ( ) sin (r_n#) . (9.5.11)

n=1m=1

In other words, we have reexpressed f(z,y) in terms of a double Fourter
serzes.
Because (9.5.2) must hold for each particular solution,

nrx

52 2 . .
Unm | Pnm _ (_) sin (Z"_bﬂi) , (9.5.12)
a

Ox2 Oy?

if we now associate (9.5.1) with (9.5.2). Therefore, the solution to Pois-
son’s equation on a rectangle where the boundaries are held at zero is
the double Fourier series:

. nwr\ . mny
u(z,y) = nzzlmz:l nzﬂ,z/az + m27r2/b2 ( a )sm( b ) '
(9.5.13)

Problems

1. The equation

Ou  0*u_ R 5 5

W—i-gy—z——f, —a<r<a -b<y<
describes the hydraulic potential (elevation of the water table) u(z,y)
within a rectangular island on which a recharging well is located at (0, 0).
Here R is the rate of recharging and T is the product of the hydraulic
conductivity and aquifer thickness. If the water table is at sea level
around the island so that u(—a,y) = u(a,y) = u(z, —b) = u(z,d) = 0,
find u(z,y) everywhere in the island. [Hint: Use symmetry and redo
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the above analysis with the boundary conditions: u;(0,y) = u(a,y) =
uy(z,0) = u(z,b) = 0.]

2. Let us apply the same approach that we used to find the solution
of Poisson’s equation on a rectangle to solve the axisymmetric Poisson
equation inside a circular cylinder

19 [ Ou 0%u
v or (’"g)+g—f(r,z), 0<r<a-b<z<b

subject to the boundary conditions
lirrtl) lu(r, 2)| < oo, u(a,z) =0, —b<z<b
r—

and
u(r,~b) = u(r,b)=0, 0<r<a

Step 1. Replace the original problem with

19 [ Ou 0%u
FE(TE>+5§*’\“» 0<r<a,-b<z<b

subject to the same boundary conditions. Use separation of variables
to show that the solution to this new problem is

(m+ %) Wz] ,

Unm (7, 2) = AnmJo (Ic,,g) cos ;

where k, is the nth zero of Jo(k) =0,n=1,2,3,...and m=0,1,2,...

Step 2. Show that f(r, z) can be expressed as

f(r,2) = Z Z anmJo ( ) cos [M] ,

n=1m=0

where
_ (m+3) 7z
a"m—aQszk)/ / fero )cos[ 5 rdrdz.

Step 3. Show that the general solution is

N - Jo (knr/a)cos [(m + 1) mz/b]
TR g+ (m s D

u(r,z) =
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9.6 THE LAPLACE TRANSFORM METHOD

Laplace transforms are useful in solving Laplace’s or Poisson’s equa-
tion over a semi-infinite strip. The following problem illustrates this
technique.

Let us solve Poisson’s equation within an semi-infinite circular cyl-
inder

19 ( du\ 0% _ 2
ror (’"5;)+@—3"(z)6(r—b) 0<r<a0<z<oo (9.6.1)

subject to the boundary conditions

u(r,0) =0 and lim |u(r,z)|<oo, 0<r<a (9.6.2)

and
u(a,2) =0, 0<z<o0, (9.6.3)

where 0 < b < a. This problem gives the electrostatic potential within
a semi-infinite cylinder of radius a that is grounded and has the charge
density of n(z) within an infinitesimally thin shell located at r = b.

Because the domain is semi-infinite in the z direction, we introduce
the Laplace transform

U(r,s)= /000 u(r,z)e”** dz. (9.6.4)

Thus, taking the Laplace transform of (9.6.1), we have that

%%‘ [r%:_’fl] + s2U(r, s) — su(r,0) — u,(r,0) = %N(s)&(r - b).

(9.6.5)
Although u(r,0) = 0, u,(r,0) is unknown and we denote its value by
f(r). Therefore, (9.6.5) becomes

rdr

d
14 [rfd—[]((l%s—)] + sU(r,s) = f(r) + %N(s)&(r —-b), 0<r<a
(9.6.6)
with lim,_o |U(r, s)} < oo and U(a,s) = 0.
To solve (9.6.6) we first assume that we can rewrite f(r) as the
Fourier-Bessel series:

f(ry =" Ando(kar/a), (9.6.7)
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where ky, is the nth root of the Jo(k) = 0 and

2 a
An = 53—~ kn dr. 9.6.8
77 [, O trfayrdr. (068)
Similarly, the expansion for the delta function is

N Jo(knb/a)Jo(knr/a)

6( - b) J2(kn) y

(9.6.9)

n:l

because
/a 6(r — b)Jo(knr/a)rdr = b Jo(knb/a). (9.6.10)

Why we have chosen this particular expansion will become apparent
shortly.
Thus, (9.6.6) may be rewritten as

F ) v = 5 3o OGSt )

(9.6.11)
where a; = [} f(r) Jo(knr/a)rdr.
The form of the right side of (9.6.11) suggests that we seek solutions
of the form

(r,s) = Z B,Jo(k,r/a), O0<r<a. (9.6.12)

n=1

We now understand why we rewrote the right side of (9.6.6) as a Fourier-
Bessel series; the solution U(r, s) automatically satisfies the boundary
condition U(a, s) = 0. Substituting (9.6.12) into (9.6.11), we find that

> s)Jo(knb a

(r,8) = —2—2 Z )'],:2/(12)/;3(4- )k Jo(knr/a), 0<r<a.

(9.6.13)

We have not yet determined ar. Note, however, that in order for

the inverse of (9.6.13) not to grow as e*»?/¢, the numerator must vanish
when s = ky/a. Thus, ax = —2N(k,/a)Jo(knb/a) and

0<r<a.

4 & ~ N(kn/a))Jo(knb/a
(r,s)= '_22_: 152/(:2))}1 (Sc ) / )Jo(k,,r/a),
B (9.6.14)
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The inverse of U(r,s) then follows directly from simple inversions, the
convolution theorem, and the definition of the Laplace transform. The

final solution is

u(r,2) =7 kn J2(kn)

n=1

2 i Jo(knb/a)Jo(knr/a)

x [/ n('r)ek"(‘")/“ dr —/ n(r)e'k"(””)/“ dr
0 )

o0} (o]
—/ n(f)e"k’"/“ek"”/“ dr+/ n(T)e’k"T/“e_k"z/“ dr]
0

2 & Jolknb/a)Jo(knr/a
:EZ (knb/a)Jo(knr/a)

kn 2 (kn)

n=1

o0 V-4

X [/ n(r)e‘k"("“"")/“ dr — / n(r)e'k"(“f)/“ dr
0

—/ n(T)e_k"(T")/“ dr].

2

0

0

Problems

1. Use Laplace transforms to solve

o,
8z?  Oy?

subject to the boundary conditions

u(0,9) =1,  lim u(z,y)| <oo,

and

u(z,0) = u(z,a) =0,

2. Use Laplace transforms to solve

1o (o0, P
ror \"or 822 —

subject to the boundary conditions

=0, I<z<oo,0<y<a

0<z < o0.

0<r<agl<z<

u(r,0) =1, lim |u(r, z)| < oo, 0<r<a
=00

0<y<a

(9.6.15)

(9.6.16)
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and
lin(l) lu(r,z)] < o0 and wu(a,z) =0, 0<2z< o0

9.7 NUMERICAL SOLUTION OF LAPLACE’S EQUATION

As in the case of the heat and wave equations, numerical methods
can be used to solve elliptic partial differential equations when analytic
techniques fail or are too cumbersome. They are also employed when
the domain differs from simple geometries.

The numerical analysis of an elliptic partial differential equation
begins by replacing the continuous partial derivatives by finite-difference
formulas. Employing centered differencing,

2
0%u _Umtin — 2um,n + Un—1,n

0x2 ~ (Az)? +0[(Az)?] (9.7.1)

and ) 4
_6_2 _Umny1 — 2um,n + Um -1
oy (Ay)?
where u,, , denote the solution value at the grid point m, n. If Az = Ay,
Laplace’s equation becomes the difference equation

+ 0[(Ay)Y], (9.7.2)

Untin + Un—1n + Unny1 + Um,n—-1 — 4um,n =0. (973)

Thus, we must now solve a set of simultaneous linear equations that
yield the value of the solution at each grid point.

The solution of (9.7.3) is best done using techniques developed by
algebraist. Later on, in Chapter 11, we will show that a very popu-
lar method for directly solving systems of linear equations is Gaussian
elimination. However, for many grids at a reasonable resolution, the
number of equations are generally in the tens of thousands. Because
most of the coefficients in the equations are zero, Gaussian elimination
Is unsuitable, both from the point of view of computational expense and
accuracy. For this reason alternative methods have been developed that
generally use successive corrections or iterations. The most common of
these point iterative methods are the Jacobi method, unextrapolated
Liebmann or Gauss-Seidel method, and extrapolated Liebmann or suc-
cessive over-relaxation (SOR). None of these approaches is completely
satisfactory because of questions involving convergence and efficiency.
Because of its simplicity we will focus on the Gauss-Seidel method.

We may illustrate the Gauss-Seidel method by considering the sys-
tem:

10z+y+2=39 (9.7.4)

2z + 10y + 2z = 51 (9.7.5)
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2¢ + 2y + 10z = 64. (9.7.6)

An important aspect of this system is the dominance of the coefficient
of z in the first equation of the set and that the coefficients of y and z
are dominant in the second and third equations, respectively.

The Gauss-Seidel method may be outlined as follow:

e Assign an initial value for each unknown variable. If possible, make
a good first guess. If not, any arbitrarily selected values may be cho-
sen. The initial value will not affect the convergence but will affect the
number of iterations until convergence.

e Starting with (9.7.4), solve that equation for a new value of the un-
known which has the largest coefficient in that equation, using the as-
sumed values for the other unknowns.

e Go to (9.7.5) and employ the same technique used in the previous
step to compute the unknown that has the largest coefficient in that
equation. Where possible, use the latest values.

e Proceed to the remaining equations, always solving for the unknown
having the largest coefficient in the particular equation and always us-
ing the most recently calculated values for the other unknowns in the
equation. When the last equation (9.7.6) has been solved, you have
completed a single iteration.

e Iterate until the value of each unknown does not change within a
predetermined value.

Usually a compromise must be struck between the accuracy of the solu-
tion and the desired rate of convergence. The more accurate the solution
is, the longer it will take for the solution to converge.

To illustrate this method, let us solve our system (9.7.4)-(9.7.6)
with the initial guess = y = z = 0. The first iteration yields z = 3.9,
y = 4.32, and z = 4.756. The second iteration ylelds ¢ = 2.9924,
y = 4.02592, and 2 = 4.996336. As can be readily seen, the solution is
converging to the correction solution of z = 3, y =4, and z = 5.

Applying these techniques to (9.7.3),

k+1 _ 1 k k+1 k k+1
Unn = 3 (um+1,n + Um—-1,n + Um,nt1 + um,n—l) ) (9'7'7)

where we have assumed that the calculations occur in order of increasing
m and n.



504 Advanced Engineering Mathematics

e Example 9.7.1

To illustrate the numerical solution of Laplace’s equation, let us
redo Example 9.3.1 with the boundary condition along y = H simplified
tou(z, H)=1+1z/L.

We begin by finite-differencing the boundary conditions. The condi-
tion u.(0,y) = uz(L,y) = 0 leads to uy,, = u_y , and ULtln = UL—1n
if we employ centered differences at m = 0 and m = L. Substituting
these values in (9.7.7), we have the following equations for the left and
right boundaries:

ug,:l = 4l (2ulf,n + U'&,n+1 + u’é’:l_l) (9.7.8)

and
k41 _ 1 E+1 k E+1
Urn = 3 (2“L-1,n Ft UL py1 T "L,n_1) . (9.7.9)

On the other hand, uy(x,0) = 0 yields um ; = Um,-1 and
“fn+01 =3 (ufn+1,o + “fntll,o + 2ufn,1) . (9.7.10)
At the bottom corners, (9.7.8)-(9.7.10) simplify to
ughl = 1 (uk o+ ub ;) (9.7.11)

and
k
=4 (uft o+ ub,). (9.7.12)

These equations along with (9.7.7) were solved using the Gauss-
Seidel method. The initial guess everywhere except along the top bound-
ary was zero. In Figure 9.7.1 we illustrate the numerical solution after
100 and 300 iterations where we have taken 101 grid points in the z and
y directions.

Project: Successive Over-Relaxation

The fundamental difficulty with relaxation methods used in solving
Laplace’s equation is the rate of convergence. Assuming Az = Ay, the
most popular method for accelerating convergence of these techniques
is successive over-relaration:

uk+1

I
mmn um,n + WRm,ny

where
1 k k+1 k k41
Rm," = 3 (um+1,n + um—l,n + um,n+1 + um,n—l) .
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0 1 1 1 L L 1 1 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

/L

Figure 9.7.1: The solution to Laplace’s equation by the Gauss-Seidel
method after 100 (top) and 300 (bottom) iterations. The boundary
conditions are uz(0,y) = uz(L,y) = uy(2,0) = 0 and u(z, H) = 1+z/L.
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number of iterations
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w

Figure 9.7.2: The number of iterations required so that | R, ,| < 1073
as a function of w during the iterative solution of the problem posed in
the project. We used Az = Ay = 0.01 and L = 25 = 1. The iteration
count for the boundary conditions stated in Step 1 are given by the solid
line while the iteration count for the boundary conditions given in Step
2 are shown by the dotted line. The initial guess equaled zero.

Most numerical methods dealing with partial differential equations will
discuss the theoretical reasons behind this technique;'? the optimum
value always lies between one and two.

Step 1: Solve Laplace’s equation numerically 0 < z < L, 0 < y < 29
with the following boundary conditions:

u(z,0) = 0,u(x,20) =1 +2/L,u(0,y) = y/20, and u(L,y) = 2y/ 2.

Count the number of iterations until |Ry, ,| < 1073 for all m and n.
Plot this number of iterations as a function of w. How does the curve
change with resolution Az?

Step 2: Redo Step 1 with the exception of u(0,y) = u(L,y) = 0. How
has the convergence rate changed? Can you explain why? How sensitive
are your results to the first guess?

12 For example, Young, D. M., 1971: Iterative Solution of Large Linear
Systems, Academic Press, New York.



Chapter 10
Vector Calculus

Physicists invented vectors and vector operations to facilitate their
mathematical expression of such diverse topics as mechanics and elec-
tromagnetism. In this chapter we focus on multivariable differentiations
and integrations of vector fields, such as the velocity of a fluid, where
the vector field is solely a function of its position.

10.1 REVIEW

The physical sciences and engineering abound with vectors and
scalars. Scalars are physical quantities which only possess magnitude.
Examples include mass, temperature, density, and pressure. Vectors are
physical quantities that possess both magnitude and direction. Exam-
ples include velocity, acceleration, and force. We shall denote vectors
by boldface letters.

Two vectors are equal if they have the same magnitude and direc-
tion. From the limitless number of possible vectors, two special cases
are the zero vector 0 which has no magnitude and unspecified direction
and the unit vector which has unit magnitude.

The most convenient method for expressing a vector analytically
is in terms of its components. A vector a in three-dimensional real
space is any order triplet of real numbers (components) a1, a2, and as
such that a = aii + asj + ask, where a;i, azj, and azk are vectors
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which lie along the coordinate axes and have their origin at a common
initial point. The magnitude, length, or norm of a vector a, |a|, equals
\/aE1 + ag + ag. A particularly important vector is the position vector,
defined by r = 2i+ yj + zk.

As in the case of scalars, certain arithmetic rules hold. Addition
and subtraction are very similar to their scalar counterparts:

a+b = (a1 +b1)i+ (az+b2)j+ (as + ba)k (10.1.1)

and
a—b = (a; —b)i+ (a2 —b2)j + (as — b3)k. (10.1.2)

In contrast to its scalar counterpart, there are two types of multi-
plication. The dot produci is defined as

a-b = |a||b|cos(f) = a1y + azbs + a3bs, (10.1.3)

where # is the angle between the vector such that 0 < § < 7. The
dot product yields a scalar answer. A particularly important case is
a-b = 0 with |a| # 0 and |b] # 0. In this case the vectors are orthogonal
(perpendicular) to each other.

The other form of multiplication is the cross product which is de-
fined by a x b = |a||b| sin(f)n, where 6 is the angle between the vectors
such that 0 < @ < 7 and n is a unit vector perpendicular to the plane of
a and b with the direction given by the right-hand rule. A convenient
method for computing the cross product from the scalar components of
aand b is

i j ok
_ _laz2 a3 s a; as|. a; asq
axb = a, az ag|= b2 b3 1 b1 b3 J+ bl bz k. (1014)
by b2 b3

Two nonzero vectors a and b are parallel if and only if a x b = 0.

Most of the vectors that we will use are vector-valued functions.
These functions are vectors that vary either with a single parametric
variable ¢ or multiple variables, say z, y, and z.

The most commonly encountered example of a vector-valued func-
tion which varies with a single independent variable involves the tra-
Jjectory of particles. If a space curve is parameterized by the equations
z = f(t), y = g(t), and z = h(t) with @ < t < b, the position vector
r(t) = f(t)i+ g(t)j + h(t)k gives the location of a point P as it moves
from its initial position to its final position. Furthermore, because the
increment quotient Ar/At is in the direction of a secant line, then the

limit of this quotient as At — 0, r/(t), gives the tangent to the curve at
P.
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o Example 10.1.1: Foucault pendulum

One of the great experiments of mid-nineteenth century physics
was the demonstration by J. B. L. Foucault (1819-1868) in 1851 of
the earth’s rotation by designing a (spherical) pendulum, supported by
a long wire, that essentially swings in an nonaccelerating coordinate
system. This problem demonstrates many of the fundamental concepts
of vector calculus.

The total force! acting on the bob of the pendulum is F = T +mG,
where T is the tension in the pendulum and G is the gravitational
attraction per unit mass. Using Newton’s second law,

d%r T
- == +G, (10.1.5)

inertial "M

where r is the position vector from a fixed point in an inertial coordi-
nate system to the bob. This system is inconvenient because we live in
a rotating coordinate system. Employing the conventional geographic
coordinate system,? (10.1.5) becomes

d’r Q dr Q T G

dt2+2 x ot x(Qxr)= —+G, (10.1.6)
where € is the angular rotation vector of the earth and r now denotes
a position vector in the rotating reference system with its origin at the
center of the earth and terminal point at the bob. If we define the
gravity vector g = G — Q2 x (2 x r), then the dynamical equation is

d’r dr T

E X ==tg, (10.1.7)
where the second term on the left side of (10.1.7) is called the Coriolis
force.

Because the equation is linear, let us break the position vector r
into two separate vectors: rog and r;, where r = ro + r;. The vector rg
extends from the center of the earth to the pendulum’s point of support
and r; extends from the support point to the bob. Because rp is a
constant in the geographic system,

d? d°ry dr1 _ T
—m FAx L= — g (10.1.8)

1 From Broxmeyer, C., 1960: Foucault pendulum effect in a Schuler-
tuned system. J. Aerosp. Sci., 27, 343-347 with permission.

2 For the derivation, see Marion, J. B., 1965: Classical Dynamics of
Particles and Systems, Academic Press, New York, Sections 12.2-12.3.
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If the length of the pendulum is L, then for small oscillations rq =
zi+ yj + Lk and the equations of motion are

dzl' dy z
— 4+ 2Qsin(A)— = — 10.1.9
gz T (NG =0 ( )
d?y ) Ty
-dt—z' - 2Q ln(/\)a = E (10110)
and p T
Yy z
A= —g = -2 10.1.11
20 cos (N g = =, (10.1.11)

where A denotes the latitude of the point and Q is the rotation rate
of the earth. The relationships between the components of tension are

Ty =2T,/L and T, = yT, /L. From (10.1.11),

T,
‘m

+9=2Q cos(/\)% =~ 0. (10.1.12)

Substituting the definitions of T, T, and (10.1.12) into (10.1.9) and
(10.1.10),

d’z g . dy
d—t,[+ fx+2Qsm(/\)Ez- =0 (10.1.13)
and 2 d
Yy g9 . z
— 4 Ly — =0. 10.1.14
F7p + Ly 2Qsin(A) 7 0 ( )

The approximate solution to these coupled differential equations is
z(t) = Ag cos[Q2sin(A)¢t] sin ( g/L t) (10.1.15)

and
y(t) = Ao sin[Qsin(A)t]sin ( g/L t) (10.1.16)

if 22 « g/L. Thus, we have a pendulum that swings with an angular
frequency +/g/L. However, depending upon the latitude ), the direc-
tion in which the pendulum swings changes counterclockwise with time,
completing a full cycle in 27 /[Q2sin(A)]. This result is most clearly seen
when A = m/2 and we are at the North Pole. There the earth is turning
underneath the pendulum. If initially we set the pendulum swinging
along the 0° longitude, the pendulum will shift with time to longitudes
east of the Greenwich median. Eventually, after 24 hours, the process
will repeat itself.

Consider now vector-valued functions that vary with several vari-
ables. A wector function of position assigns a vector value for every value
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Figure 10.1.1: A graphical example of the gradient: A vector that
is perpendicular to the isotherms T'(z,y) = constant and points in the
direction of most rapidly increasing temperatures.

of z, y, and z within some domain. Examples include the velocity field
of a fluid at a given instant:

v = u(z,y, 2)i+ v(z,y,2)j + w(z,y, 2)k. (10.1.17)

Another example arises in electromagnetism where electric and magnetic
fields often vary as a function of the space coordinates. For us, how-
ever, probably the most useful example involves the vector differential
operator, del or nabla, '
8. 0. 0

V= %l + '6_y.] + b—zk
which we apply to the multivariable differentiable scalar function
F(z,y,z) to give the gradient VF.

An important geometric interpretation of the gradient — one which
we shall use frequently — is the fact that V f is perpendicular (normal)
to the level surface at a given point P. To prove this, let the equation
F(z,y,z) = c describe a three-dimensional surface. If the differentiable
functions £ = f(t), y = g(t), and z = h(t) are the parametric equations
of a curve on the surface, then the derivative of F(f(t), g(t), h(t)] = cis

O0Fdzx OFdy OFd:z
em Ty a =" (10.1.19)

(10.1.18)

or

VF.r'=0. (10.1.20)
When r' # 0, the vector VF is orthogonal to the tangent vector.
Because our argument holds for any differentiable curve that passes

through the arbitrary point (z,y,z), then VF is normal to the level
surface at that point.
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Figure 10.1.1 gives a common application of the gradient. Consider
a two-dimensional temperature field T(z, y). The level curves T(z,y) =
constant are lines that connect points where the temperature is the
same (isotherms). The gradient in this case V7T is a vector that is
perpendicular or normal to these isotherms and points in the direction
of most rapidly increasing temperature.

e Example 10.1.2

Let us find the gradient of the function f(z,y,z) = z22%sin(4y).
Using the definition of gradient,

2,2 2,2 2,2
Olz?z sm(4y)]i+ O[22z sm(4y)].i + O[z*2? sin(4y)]
Oz Oy 0z
= 2z2%sin(4y)i + 42222 cos(4y)j + 2222 sin(4y)k. (10.1.22)

Vf=

k (10.1.21)

o Example 10.1.3

Let us find the unit normal to the unit sphere at any arbitrary point

(2,9, 2).
The surface of a unit sphere is defined by the equation f(z,y, z) =
2? + y* + z? = 1. Therefore, the normal is given by the gradient

N=Vf=2zi+2yj+ 22k (10.1.23)
and the unit normal
Vf _ 2ri42yj+ 22k

n-=— = = .’L‘i+ .+Zk,
IVl \/4z? + 4y2 + 422 .

because 2% + y? + 22 = 1.

(10.1.24)

A popular method for visualizing a vector field F is to draw space
curves which are tangent to the vector field at each z,y,z. In fluid
mechanics these lines are called streamlines while in physics they are
generally called lines of force or fluz lines for an electric, magnetic, or
gravitational field. For a fluid with a velocity field that does not vary
with time, the streamlines give the paths along which small parcels of
the fluid move.

To find the streamlines of a given vector field F with components
P(z,y,2),Q(x,y,2), and R(z,y, z), we assume that we can parameterize
the streamlines in the form r(t) = z(t)i+y(¢)j+2(t)k. Then the tangent
line is r'(t) = 2'(¢)i + ¥/ (1)j + 2’(t)k. Because the streamline must be
parallel to the vector field at any ¢, r'(t) = AF or

dz _
dt —

AP(z,y,2), %’- = AQ(z,y,2) and Z—;— = AR(z,y,2) (10.1.25)
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or
dz dy dz

P(z,y,z)  Qz,y4,2) R(z,y,2)
The solution of this system of differential equations yields the stream-
lines.

(10.1.26)

o Example 10.1.4

Let us find the streamlines for the vector field F = sec(z)i—cot(y)j+
k that passes through the point (v/4,7,1). In this particular example,
F represents a measured or computed fluid’s velocity at a particular
instant.

From (10.1.26),

dr dy dz

= - = —. 10.1.27
sec(z) cot(y) 1 ( )
This yields two differential equations:
sin(y) sin(y)
cos(z)dr = ——dy and dz=-——Ldy (10.1.28)

cos(y) cos(y)

Integrating these equations yields
sin(z) = In|cos(y)| + c1 and =z =In]|cos(y)| + ca. (10.1.29)
Substituting for the given point, we finally have that

sin(z) = In| cos(y)| + Vv2/2 and z=In]|cos(y)|+1. (10.1.30)

o Example 10.1.5

Let us find the streamlines for the vector field F = sin(z)j + e’k
that passes through the point (2,0, 0).

From (10.1.26),
de dy _dz

—_— = —= —. 10.1.31
0 sin(z) ¥ ( )

This yields two differential equations:
dz =0 and sin(z) dz = e¥ dy. (10.1.32)

Integrating these equations gives

r=c and €Y = —cos(z) + ca. (10.1.33)
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Substituting for the given point, we finally have that
z=2 and e¥ =2 — cos(z). (10.1.34)
Note that (10.1.34) only applies for a certain strip in the yz-plane.
Problems

Given the following vectors a and b, verify that a-(a x b) = 0 and
b-(axb)=0:

l.a=4i-2j+5k, b=3i+j-k

2.a=i-3j+k, b=2i+4k

3.a=i+j+k b=-5i+2+3k

4. a=8i+j—6k, b=i—2j+10k

5. a=2i+7]—4k, b=i4+j—k.

6. Prove a x (b x¢c) =(a-c)b - (a-b)c.

7. Proveax (bxc)+bx (cxa)+ecx(axb)=0.

Find the gradient of the following functions:

8. f(z,y,2) = zy*/23 9. f(z,y,z) = zycos(yz)
10. f(z,y,2) =In(z? + 42 +2%) 1L f(z,y,2) = 22y*(2z + 1)?
12. f(z,y,2) = 2z — y% + 22,

Sketch the following surfaces. For each of these surfaces, find a mathe-
matical expression for the unit normal and then sketch it.

13.2=3 14. 22 + 42 =4 15. z =22 4+ ¢°
16. z = /22 + 2 17.2=y 8.z+y+z=1
19. z = z2.

Find the streamlines for the following vector fields that pass through
the specified point:

20. F=i+j+k; (0,1,1)
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21. F = 2i — y?j + 2k; (1,1,1)

22. F = 3z% — y%j + 22k; (2,1,3)

23. F = 2%+ y%j — 2%k; (1,1,1)

24. F = (1/z)i+e¥j—k; (2,0,4)

25. Solve the differential equations (10.1.13)-(10.1.14) with the initial
conditions z(0) = y(0) = ¢/ (0) = 0 and z'(0) = Ao\/g/L assuming that
02 <« g/L.

26. If a fluid is bounded by a fixed surface f(z,y, z) = ¢, show that the
fluid must satisfy the boundary condition v - Vf = 0, where v is the
velocity of the fluid.

27. A sphere of radius a is moving in a fluid with the constant velocity u.
Show that the fluid satisfies the boundary condition (v —u)-(r—ut) =0
at the surface of the sphere, if the center of the sphere coincides with
the origin at t = 0 and v denotes the velocity of the fluid.

10.2 DIVERGENCE AND CURL

Consider a vector field v defined in some region of three-dimensional
space. The function v(r) can be resolved into components along the i,
Jj, and k directions or

v(r) = u(z,y, 2)i + v(z,y, 2)j + w(z,y, 2)k. (10.2.1)

If v is a fluid’s velocity field, then we can compute the flow rate through a
small (differential) rectangular box defined by increments (Az, Ay, Az)
centered at the point (z,y, z). See Figure 10.2.1. The flow out from the
box through the face with the outwardly pointing normal n = —j is

v-(=j) = —v(z,y — Ay/2,2)AzAz (1.0.2.2)

and the flow through the face with the outwardly pointing normaln = j
is
v-j=uv(z,y+ Ay/2,2)ArAz. (10.2.3)

The net flow through the two faces is

[v(z,y + Ay/2,2) — v(z,y — Ay/2, 2)|AzAz = vy(z,y, 2) Az AyAz.
(10.2.4)
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Figure 10.2.1: Divergence of a vector function v(z,y, ).

A similar analysis of the other faces and combination of the results give
the approximate total flow from the box as

[uz(z,y, 2) + vy(2, ¥, 2) + w; (2, y, 2)]AzAyAz. (10.2.5)

Dividing by the volume AzAyAz and taking the limit as the dimensions
of the box tend to zero yield u; +vy +w, as the flow out from (z, y, z) per
unit volume per unit time. This scalar quantity is called the divergence
of the vector v:

div(v) =V -v= (B%H- %j+ (%k) (i + vj + wk) = up + vy + w,.

(10.2.6)
Thus, if the divergence is positive, either the fluid is expanding and its
density at the point is falling with time, or the point is a source at which
fluid is entering the field. When the divergence is negative, either the
fluid is contracting and its density is rising at the point, or the point is
a negative source or sink at which fluid is leaving the field.

If the divergence of a vector field is zero everywhere within a do-
main, then the flux entering any element of space exactly equals that
leaving it and the vector field is called nondivergent or solenoidal (from
a Greek word meaning a tube). For a fluid, if there are no sources or
sinks, then its density cannot change.

Some useful properties of the divergence operator are

V(F+G)=V.F+V.G, (10.2.7)
V- (¢F) =V -F+F Vyp (10.2.8)

and
V2=V -Vo =, + Pyy + Paz- (10.2.9)

The expression (10.2.9) is very important in physics and is given the
special name of the Laplacian.3

3 Some mathematicians write A instead of V2.
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no divergence divergence no divergence divergence

no curl no curl curl and curl

Figure 10.2.2: Examples of vector fields with and without divergence
and curl.

e Example 10.2.1

If F = 2221 — 24°2%j + zy®zk, compute the divergence of F.

=9 0 3,2 0 2
VF= (@) + 5 (-2 + 5o (ev's) - (10210)
=22z - 6y°2% + 2y’ (10.2.11)

o Example 10.2.2

If r = zi + yj + zk, show that r/|r|® is nondivergent.

. (_) _ 9 [ z Lo y
e[/~ Oz (z2 + y? + z2)3/2 Oy [ (22 + 2 + 22)3/2
4 z
+ oz [(z-z +y? + z2)3/2] (10.2.12)
3 32?2 + 3y? + 322

= - =0. (10.2.13
(22 + 12+ 22)3/2 (22 + y? + 22)5/2 0. ( )

Another important vector function involving the vector field v is
the curl of v, written curl(v) or rot(v) in some older textbooks. In fluid
flow problems it is proportional to the instantaneous angular velocity of
a fluid element. In rectangular coordinates,

curl(v) = V x v = (wy — v,)i + (u, — wz)j + (vo — uy)k, (10.2.14)

where v = ui + v) + wk as before. However, it is best remembered in
the mnemonic form:

i j k
VxF = % (,;9—y % = (wy—v; )i+ (u, —wg)j+(vz —uy)k. (10.2.15)
u v ow

If the curl of a vector field is zero everywhere within a region, then the
field is irrotational.



518 Advanced Engineering Mathematics

Figure 10.2.2 illustrates graphically some vector fields that do and
do not possess divergence and curl. Let the vectors that are illustrated
represent the motion of fluid particles. In the case of divergence only,
fluid is streaming from the point, at which the density is falling. Alter-
natively the point could be a source. In the case where there is only curl,
the fluid rotates about the point and the fluid is incompressible. Finally,
the point that possesses both divergence and curl is a compressible fluid
with rotation.

Some useful computational formulas exist for both the divergence
and curl operations:

Vx(F+G)=VxF+VxG, (10.2.16)
V x Vo =0, (10.2.17)
V.-VxF=0, (10.2.18)
Vx(pF)=¢VXxF+VpxF, (10.2.19)

V(F-G)=(F-V)G+(G-V)F+Fx(VxG)+Gx (V xF), (10.2.20)
Vx(FxG)=(G-V)F-(F-V)G+F(V-G)-G(V-F), (10.2.21)
Vx(VxF)=V(V-F)—(V-V)F (10.2.22)

and
V- (FxG)=G-VxF-F-VxG. (10.2.23)

In this book the operation VF is undefined.
e Example 10.2.3

If F = 223 — 22%yzj + 2y2*k, compute the curl of F and verify that
V-VxF=0.
From the definition of curl,

i J k
VxF=|%& = 2 (10.2.24)
rz3 —2z%yz 2yt
= [& (2v2*) - & (-20%2) | i - [& (202%) - & (22%)]
+ :a% (—2%yz) — & (1723)] k (10.2.25)
= (2z* + 22%y)i — (0 — 3z2%)j + (—4zyz — 0)k (10.2.26)
= (2z* 4 22%y)i + 322%j — 4zyzk. (10.2.27)

From the definition of divergence and (10.2.27),

_ 0 a0 2y, 0 2 O _ _
V.VxF = e (22 +2z y)+6y (3xz )+6z (—4:cyz) = 4zy+0—-4zy = 0.
(10.2.28)
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o Example 10.2.4: Potential flow theory

One of the topics in most elementary fluid mechanics courses is the
study of irrotational and nondivergent fluid flows. Because the fluid
1s irrotational, the velocity vector field v satisfies V x v .= 0. From
(10.2.17) we can introduce a potential ¢ such that v = Vy. Because
the flow field is nondivergent, V - v = VZp = 0. Thus, the fluid flow
can be completely described in terms of solutions to Laplace’s equation.
This area of fluid mechanics is called potential flow theory.

Problems

Compute V-F,VxF,V-(V xF) and V(V - F) for the following vector
fields:

1. F = 2%z + y22j + 2’k

2. F =42+ (2z + 2y2)j + 3z + *)k

3. F=(z—y)li+e "¥j+z2e¥k

4. F = 3zyi+2x2%j+ 4%k

5. F = 5yzi + z22j + 323k

6. F = Pi+ (23y? — zy)j — (3yz —z2)k

7. F=ze ¥i+yz?j+3e %k

8. F = yln(z)i + (2 — 3yz)j + zyz°k

9. F = zyzi + z3yze*j + zye’k

10. F = (z3® — 2%)i + 4z%y?zj — y*25k.

11. F = z¢%i 4 zy2%) + zycos(z)k

12. F = zy?i 4 zy2?j + zysin(2)k

13. F = zy?%i 4 zyzj + zy cos(z)k.

14. (a) Assuming continuity of all partial derivatives, show that
V x(VxF)=V(V-F)- V?F.

(b) Using F = 3zyi + 4yzj + 2zzk, verify the results in part (a).
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15. If E = E(z,y,z,t) and B = B(z,y, z,t) represent the electric and
magnetic fields in a vacuum, Maxwell’s field equations are

10B

10E

. = B=-—
vV-B=90 V x Pl

where ¢ is the speed of light. Using the results from Problem 14, show
that E and B satisfy

1 6?E 1 6°B

L) i B —

VE = = 52 and V°B RETOR

16. If f and g are continuously differentiable scalar fields, show that
Vf x Vg is solenoidal. Hint: Show that Vf x Vg =V x (fVyg).

17. An inviscid (frictionless) fluid in equilibrium obeys the relation-
ship Vp = pF, where p denotes the density of the fluid, p denotes the
pressure, and F denotes the body forces (such as gravity). Show that
F-VxF=0.

10.3 LINE INTEGRALS

Line integrals are ubiquitous in physics. In mechanics they are
used to compute work. In electricity and magnetism, they provide sim-
ple methods for computing the electric and magnetic fields for simple
geometries.

The line integral most frequently encountered is an oriented one
in which the path C is directed and the integrand is the dot product
between the vector function F(r) and the tangent of the path dr. It is
usually written in the economical form

/F'dr:/ P(z,y,2)dz+ Q(z,y,2)dy+ R(z,y,z)dz, (10.3.1)
(o} C

where F = P(zx,y,2)i+ Q(z,y,2)j + R(z,y,2)k. If the starting and
terminal points are the same so that the contour is closed, then this
closed contour integral will be denoted by §C. In the following examples
we show how to evaluate the line integrals along various types of curves.

o Example 10.3.1
If F = (322 +6y)i— 14yzj+ 20227k, let us evaluate the line integral

Jo F - dr along the parametric curves z(t) = ¢t, y(t) = t?, and z(t) = 13
from the point (0,0,0) to (1,1,1). See Figure 10.3.1.
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(1,1,1)

X

Figure 10.3.1: Diagram for the line integration in Example 10.3.1.

We begin by finding the values of ¢ which give the corresponding
end points. ‘A quick check shows that ¢t = 0 gives (0,0,0) while ¢t = 1
yields (1,1,1). It should be noted that the same value of ¢ must give
the correct coordinates in each direction. Failure to do so suggests an
error in the parameterization. Therefore,

/ F.dr= /1(3t2 + 6t%) dt — 148%(t%) d(¢?) + 20¢(¢3)2d(¢3) (10.3.2)
C 0

1
=/ 9t2 dt — 28t° dt + 60t° dt (10.3.3)
0
= (3% — 47 4+ 611} = 5. (10.3.4)

o Example 10.3.2

Let us redo the previous example with a contour that consists of
three “dog legs”, namely straight lines from (0,0,0) to (1,0,0), from
(1,0,0) to (1,1,0), and from (1,1,0) to (1,1,1). See Figure 10.3.2.

In this particular problem we break the integration down into three
distinct integrals:

/F-dr:/ F-dr+/ F-dr+/ F -dr. (10.3.5)
C Cl Cg CS
ForCy,y=2=dy=dz=0 and

1 1
/ F-dr:/ (3x2+6-0)dz——14~0-0'0+201:-02-O:/ 3z2dz = 1.
Cy 0 0
(10.3.6)
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A,

(1,1,1)

(0,0,0)

(1,0,0)

(1,1,0)
x

Figure 10.3.2: Diagram for the line integration in Example 10.3.2.
ForCQ,:c:Iandz;:dz_—.dz:Osothat
1
/ F-dr:/ (3-1246y)-0—14y-0-dy+20-1-0%-0=0. (10.3.7)
Cg 0]
For C3, 2 = y =1 and do = dy = 0 so that

1 1
/ F-dr:/ (3-12+6-1)-0-14.1-z-0+20-1-z2dz:/ 2022 dz = 2.
Ca 0

0
(10.3.8)
Therefore,

/ F.dr=2. (10.3.9)
C

e Example 10.3.3

For our third calculation, we redo the first example where the con-

tour is a straight line. The parameterization in thiscaseisz =y =2z =1
with 0 <¢ < 1. See Figure 10.3.3. Then,

/F~dr=/1(3t2+6t)dt—14(t)(t)dt+20t(t)2 dt  (10.3.10)
C 0

1
= / (3% + 6t — 14t 4 20¢%) dt = 13, (10.3.11)
0

An interesting aspect of these three examples is that, although we
used a common vector field and moved from (0, 0,0) to (1,1, 1) in each
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X

Figure 10.3.3: Diagram for the line integration in Example 10.3.3.

case, we obtained a different answer in each case. Thus, for this vector
field, the line integral is path dependent. This is generally true. In the
next section we will meet conservative vector fields where the results
will be path independent.

e Example 10.3.4

If F = (224 y?)i — 2zyj + zk, let us evaluate fC F - dr if the contour
is that portion of the circle 2 + y* = a? from the point (a,0,3) to
(—a,0,3). See Figure 10.3.4.

The parametric equations for this example are z = acos(d), y =
asin(f), z = 3 with 0 < 8 < . Therefore,

/ F.dr= /W[az cos?(0) + a? sin?(8)][~asin(8) db]
c 0
— 2a? cos(8) sin(8)[a cos(0) df] + a cos(d) -0 (10.3.12)

(
=-d® / sin(f) d6 — 2a® / cos?()sin(f)dé  (10.3.13)
0 0
=a° cos(0)|;r + 243 coss(t9)l(7)r (10.3.14)
=-2d° - %a3 = - 143 (10.3.15)

e Example 10.3.5: Circulation

Let v(z,y, z) denote the velocity at the point (z,y, z) in a moving
fluid. If it varies with time, this is the velocity at a particular instant
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(a,0,3) =~

X

Figure 10.3.4: Diagram for the line integration in Example 10.3.4.

of time. The integral §. v - dr around a closed path C is called the
circulation around that path. The average component of velocity along

the path is
d -d
g, = Jeveds _ fov dr (10.3.16)

s — - y
S S

where s is the total length of the path. The circulation is thus §, v-dr =
u,s, the product of the length of the path and the average velocity
along the path. When the circulation is positive, the flow is more in
the direction of integration than opposite to it. Circulation is thus an
indication and to some extent a measure of motion around the path.

Problems
Evaluate [ F - dr for the following vector fields and curves:

1. F = ysin(wz)i+ z2e¥j + 3zzk and C is the curve z = ¢, y = t? and
z =t from (0,0, 0) to (1,1, 1).

2. F = yi+ zj + zk and C consists of the line segments (0,0,0) to
(2,3,0) and from (2, 3,0) to (2,3,4).

3. F = €1+ ze®Y) + zye®¥’k and C is the curve £ = ¢, y = t* and
z=13with0<t<2.

4. F = yzi+zzj+zyk and C is the curve z = t3, y = t? and z = ¢ with
1<t
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5. F = yi — zj + 3zyk and C consists of the semicircle 2% + y* = 4,
z =0, y > 0 and the line segment from (-2,0,0) to (2,0, 0).

6. F = (z + 2y)i+ (6y — 2z)j and C consists of the sides of the triangle
with vertices at (0,0,0), (1,1,1) and (1,1,0). Proceed from (0,0, 0) to
(1,1,1) to (1,1,0) and back to (0,0,0).

7. F = 2221+ 4y%j + 2%k and C is taken counterclockwise around the
ellipse z2/4 +y?/9=1,2= 1.

8. F = 2zi+ yj + zk and C is the contour z = ¢, y = sin(t) and
z = cos(t) + sin(t) with 0 <t < 27.

9. F = (2y* + 2)i + 4zyj + zk and C is the spiral z = cos(t), y = sin(t)
and z =t with 0 <t < 27 between the points (1,0,0) and (1,0, 27).

10. F = 2% + 3%j + (22 + 2zy)k and C consists of the edges of the
triangle with vertices at (0,0,0), (1,1,0), and (0,1,0). Proceed from
(0,0,0) to (1,1,0) to (0,1,0) and back to (0,0,0).

10.4 THE POTENTIAL FUNCTION

In Section 10.2 we showed that the curl operation applied to a
gradient produces the zero vector: V x Vo = 0. Consequently, if we
have a vector field F such that ¥V x F = 0 everywhere, then that vector
field is called a conservative field and we may compute a potential ¢
such that F = V.

o Example 10.4.1

Let us show that the vector field F = ye®¥ cos(z)i + ze™¥ cos(z)j —
%Y sin(z)k is conservative and then find the corresponding potential
function.

To show that the field is conservative, we compute the curl of F or

1 J k
VxF= = o Z =0. (104.1)
ye®¥ cos(z) xe®™¥ cos(z) —e®¥sin(z)

To find the potential we must solve three partial differential equa-
tions:
pr = ye®¥ cos(z) = F - i, (10.4.2)

py =ze"¥cos(z)=F-j (10.4.3)

and
p, = —€"¥sin(z) = F - k. (10.4.4)
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We begin by integrating any one of these three equations. Choosing
(10.4.2),
p(x,y,z) = e™ cos(z) + f(y, 2). (10.4.5)

To find f(y, z) we differentiate (10.4.5) with respect to y and find that
py = ze™ cos(z) + fy(y, z) = ze™ cos(z) (10.4.6)

from (10.4.3). Thus, f, = 0 and f(y, z) can only be a function of z, say
g(2). Then,
e(z,y,2) = ¥ cos(z) + g(z). (10.4.7)

Finally,
. = —€"¥sin(z) + ¢'(z) = —e*¥ sin(2) (10.4.8)

from (10.4.4) and g¢’(z) = 0. Therefore, the potential is

e(z,y, z) = €™ cos(z) + constant. (10.4.9)

Potentials can be very useful in computing line integrals because

/F'dr=/ <pxd:c+<pydy+gozdz:/ dp = p(B)—¢(A), (10.4.10)
C C C

where the point B is the terminal point of the integration while the
point A is the starting point. Thus, any path integration between any
two points is path independent.

Finally, if we close the path so that A and B coincide, then

f{ F-dr=0. (10.4.11)
C

It should be noted that the converse is not true. Just because §, F-dr =
0, we do not necessarily have a conservative field F.

 In summary then, an irrotational vector in a given region has three
fundamental properties: (1) its integral around every simply connected
circuit is zero, (2) its curl equals zero, (3) it is the gradient of a scalar
function. For continuously differentiable vectors these properties are
equivalent. For vectors which are only piece-wise differentiable, this is
not true. Generally the first property is the most fundamental and taken
as the definition of irrotationality.

o Example 10.4.2

Using the potential found in Example 10.4.1, let us find the value
of the line integral f. F - dr from the point (0,0,0) to (=1, 2, 7).
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From (10.4.9),

(-1,2,m)
/ F - dr = ["Y cos(z) + constant] =-1-¢"2. (10.4.12)
C (0,0,0)

Problems

Verify that the following vector fields are conservative and then find the
corresponding potential:

1. F=2zyi+ (2% + 2y2)j + (y% + 1)k

2. F = (2z + 22e)i + (2y — 1)j + ek

3.F =yzi+z2j+ xyk 4. F = 2zi+ 3y%) + 425k
5. F = [2zsin(y) + €3?])i + 2% cos(y)j + (3ze3* +4)k

6.F =(2c45)i+3y%+(1/2)k 7. F =e¥i+ 3y’ + 2ze¥°k

8.F=yi+(z+2)j+vk 9.F=(z+yi+zj+zk.
10.5 SURFACE INTEGRALS

Surface integrals appear in such diverse fields as electromagnetism
and fluid mechanics. For example, if we were oceanographers we might
be interested in the rate of volume of seawater through an instrument
which has the curved surface S. The volume rate equals ffs v -ndo,
where v is the velocity and n do is an infinitesimally small element on
the surface of the instrument. The surface element nde must have
an orientation (given by n) because it makes a considerable difference
whether the flow is directly through the surface or at right angles. More
generally, if the surface encloses a three-dimensional volume, then we
have a closed surface integral.

To illustrate the concept of computing a surface integral, we will
do three examples with simple geometries. Later we will show how to
use surface coordinates to do more complicated geometries.
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(0,1,1)

(1,0,1

! [

X
Figure 10.5.1: Diagram for the surface integration in Example 10.5.1.
e Example 10.5.1

Let us find the flux out the top of a unit cube if the vector field is
F = zi + yj + zk. See Figure 10.5.1.

The top of a unit cube consists of the surface z = 1 with0< 2 < 1
and 0 < y < 1. By inspection the unit normal to this surface is n = k
or n = —k. Because we are interested in the flux out of the unit cube,
n =k, and

1 1
//F-nda:/ /(:ci+yj+k)-kd:cdy=1 (10.5.1)
S 0 0

because z = 1.
e Example 10.5.2

Let us find the flux out of that portion of the cylinder y? + 22 =4
in the first octant bounded by = 0, z = 3, y = 0, and z = 0. The
vector field is F' = z1 4 2zj + yk. See Figure 10.5.2.

Because we are dealing with a cylinder, cylindrical coordinates are
appropriate. Let y = 2cos(6), z = 2sin(f), and z = z with 0 < 8 < /2.
To find n, we use the gradient in conjunction with the definition of the
surface of the cylinder f(z,y,2) = y* + 2% = 4. Then

Vi _ 2yi+2k _y

z
= = =Zj+ -k 5.2
agi VAay? + 422 2?2 (10.5.2)
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Figure 10.5.2: Diagram for the surface integration in Example 10.5.2.

because y2 + z2 = 4 along the surface. Because we want the flux out
of the surface, then n = yj/2 + zk/2 whereas the flux into the surface
would require n = —yj/2 — zk/2. Therefore,

Fon=(ai+ 25+ k) (%54 5k) = 3% = 6 cos(6) sin(6). (10.5.3)

What is do? Our infinitesimal surface area has a side in the z
direction of length dz and a side in the # direction of length 2 df because
the radius equals 2. Therefore, do = 2dz df.

Bringing all of these elements together,

/AF.nda=/03/0”/2 12 cos(0) sin(8) df dz (10.5.4)

3 /2 3
:6/ [sin2(0)|0 ] dz=6/ dz = 18. (10.5.5)
0 1]

As counterpoint to this example, let us find the flux out of the pie-
shaped surface at £ = 3. In this case, y = rcos(f) and z = rsin(f)
and

w/2 p2
// F.-ndo= / / [3i + 2rsin(8)j + rcos(8)k] -irdrdf (10.5.6)
5 0 0

/2 p2
= 3/ / rdrdf = 3. - (10.5.7)
0 0 :
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Figure 10.5.3: Diagram for the surface integration in Example 10.5.3.
o Example 10.5.3

Let us find the flux of the vector field F = y?i + z%j + 52k out of
the hemispheric surface ? + y? + 22 = a®, z > 0. See Figure 10.5.3.

We begin by finding the outwardly pointing normal. Because the

surface is defined by f(z,y,z) = 2% + y* + 2% = a2,

2zi+ 2yj + 22k
= Vf _ ‘o4 2y +2zk £i+ gJ+ 2 (10.5.8)
VAl 42+ 42 +4:2 a  a  a

because =% + y? + 22 = a2. This is also the outwardly pointing normal
because n = r/a, where r is the radial vector.

Using spherical coordinates, z = a cos() sin(8), y = asin(p) sin(8),
and z = acos(#), where ¢ is the angle made by the projection of the
point onto the equatorial plane, measured from the z-axis, and @ is
the colatitude or “cone angle” measured from the z-axis. To compute
do, the infinitesimal length in the 8 direction is adf while in the ¢
direction it is a sin(f) dyp, where the sin(8) factor takes into account the
convergence of the meridians. Therefore, do = a®sin(#) df dp and

2% pw/2
//F.nda:/ / , (y2i+x2j+5zk)
) 0 0

: (fi+ Yi+ fk) a’sin(f)dfdp  (10.5.9)

2T y 5 2
/ / ( +- )a sin(6) df de(10.5.10)
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]/5 F -ndo = /OW/Z ‘/027r [a* cos() sin?(¢) sin*()

+ a* cos?(¢p) sin(p) sin*(8) + 5a® cos®(6) sin(9)] dyp db

(10.5.11)
/2 a? 271 at 21
= / [— sin?(p)| sin*(8) — — cos3(p)| sin*(0)
0 3 0 3 0
+ 5a3 cos?(6) sin(ﬁ)golzw] dé (10.5.12)
w/2
= 107ra3/ cos?(#) sin(9) df (10.5.13)
0
3 /2 3
= _10ma 0y = 10§a . (10.5.14)
0

Although these techniques apply for simple geometries such as a
cylinder or sphere, we would like a general method for treating any
arbitrary surface. We begin by noting that a surface is an aggregate of
points whose coordinates are functions of two variables. For example,
in the previous example, the surface was described by the coordinates
¢ and 0. Let us denote these surface coordinates in general by u and v.
Consequently, on any surface we can reexpress z, y, and z in terms of u
and v: ¢ = z(u,v), y = y(u,v), and z = 2(u, v).

Next, we must find an infinitesimal element of area. The position
vector to the surface is r = z(u, v)i+ y(u,v)j + z(u, v)k. Therefore, the
tangent vectors along v = constant, ry, and along u = constant, ry,
equal

Ty = Tul+ YuJ + 20k (10.5.15)

and
r, = Ty1+ YuJ + 2k (10.5.16)

Consequently, the sides of the infinitesimal area is ry du and r, dv.
Therefore, the vectorial area of the parallelogram that these vectors
form is

ndo =1y X rydudv (10.5.17)

and is called the vector element of area on the surface. Thus, we may
convert F - ndo into an expression involving only u and v and then
evaluate the surface integral by integrating over the appropriate domain
in the uv-plane. Of course, we are in trouble if r, xr, = 0. Therefore, we
only treat regular points where ry xr, # 0. In the next few examples, we
show how to use these surface coordinates to evaluate surface integrals.
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* (2,0,0)

Figure 10.5.5: Diagram for the surface integration in Example 10.5.4.
o Example 10.5.4

Let us find the flux of the vector field F = zi + yj + zk through
the top of the plane 3z + 2y + z = 6 which lies in the first octant. See
Figure 10.5.5.

Our parametric equations are £ = u, y = v, and z = 6 — 3u — 2v.
Therefore,

r=ut+vj+(6—-3u—2v)k (10.5.18)
so that
r,=1-3k, r,=j-2k (10.5.19)
and
ry xr, =3i+2j+k. (10.5.20)

Bring all of these elements together,

2 p3-3u/2
//F~nd0'=/ / (Bu+2v+6—3u—2v)dvdu (10.5.21)
5 o Jo

2 3-3u/2 2
- 6/ / dvdu = 6/ (3—3u/2)du  (10.5.22)

0o Jo 0
=6 (3u— 3u?)|2 =18, (10.5.23)
To set up the limits of integration, we note that the area in u, v space

corresponds to the zy-plane. On the zy-plane, z = 0 and 3u + 2v = 6,
along with boundaries u = v = 0.
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Figure 10.5.6: Diagram for the surface integration in Example 10.5.5.
o Example 10.5.5

Let us find the flux of the vector field F = zi + yj + zk through
the top of the surface z = zy + 1 which covers the square 0 < z < 1,
0 < y < 1 in the zy-plane. See Figure 10.5.6.

Our parametric equations are z = u, y = v, and z = uv + 1 with
0<u<1and0<wv< 1 Therefore,

r=ui+vj+ (uv+ 1)k (10.5.24)
so that
ry =1+ vk, r, =j+uk (10.5.25)
and
ry X r, = —vi—uj+k (10.5.26)

Bring all of these elements together,

//SF-nda-:/01/01[Ui+vj+(uv+1)k]‘("vi—uj-i-k)dudv
(10.5.27)

=/01 /01(1—uv)dudv:/ (v — Lu2v) | dv(10.5.28)

1
0

|

1
- / (1=1o) dv = (v—3o?)| = 2. (10.5.29)
0
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Figure 10.5.7: Diagram for the surface integration in Example 10.5.6.
o Example 10.5.6

Let us find the flux of the vector field F = 4zzi+zyz2j+3zk through
the exterior surface of the cone 2?2 = z2 + y? above the zy-plane and
below z = 4. See Figure 10.5.7.

A natural choice for the surface coordinates is polar coordinates r
and 6. Because & = rcos(d) and y = rsin(f), z = r. Then

r = rcos(f)i+ rsin(8)j + rk (10.5.30)
with 0 < r <4 and 0 < 8 < 27 so that
r, = cos(0)i+ sin(6)j + k,rg = —rsin()i + r cos(h)j (10.5.31)

and
r, X rg = —rcos(f)i — rsin(9)j + rk. (10.5.32)

This is the unit area inside the cone. Because we want the exterior sur-
face, we must take the negative of (10.5.32). Bring all of these elements
together,

//5 F -ndo = A4 /OEW{[41' cos()]r[r cos(8)] + [r? sin(8) cos(8)]r2[r sin(8)]

—3r?} dfdr (10.5.33)
4
- / {w [0+ Lsin(26)] 2" + r3L sin(6) 2" — 3r"’9|§"} dr
0
(10.5.34)

4
= /o (4wr® — 6mr?) dr = (mr* — 27rr3)|3 = 1287.(10.5.35)
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Problems

Compute the surface integral [[ F -ndo for the following vector fields
and surfaces:

1. F = zi— zj+ yk and the surface is the top portion of the z = 1 plane
where 0<z<land0<y< 1

2. F = zi + yj + xzk and the surface is the top side of the cylinder
224942 =9,z=0,and z = 1.

3. F = zyi + zj + zzk and the surface consists of both exterior ends of
the cylinder defined by z% + y>’=4,z=0,and 2 =2.

4. F = zi + zj + vk and the surface is the lateral and exterior side of
the cylinder defined by 22 +y* =4, 2 = =3, and z =3.

5. F = zyi + z2j + yk and the surface is the curved exterior side of the
cylinder y? + 22 = 9 in the first octant bounded by z =0,z =1,y =0,
and z = 0.

6. F = yj + z°k and the surface is the exterior of the semicircular
cylinder y? + 22 = 4, 2 > 0 cut by the planes z =0 and z = 1.

7. F = zi + zj + yk and the surface is the curved exterior side of the
cylinder z% + y? = 4 in the first octant cut by the planes z = 1 and
z=2. .

8. F = z2i— z%j + yzk and the surface is the exterior of the hemispheric
surface of 22 + y® + 22 = 16 above the plane z = 2.

9. F=yi+zj + yk and the surface is the top of the surface z =z + 1
where —1 <z <land -1<y< L

10. F = zi+zj—3zk and the surface is the top of the plane z+y+2z = 2a
that lies above the square 0 < z < a, 0 <y < ain the zy-plane.

11. F= (g2 + 22)i+ (22 + 29)j+ (22 + y?)k and the surface is the top
of the surface z=1—z2 with -1 <z<land -2<y <2

12. F = 3*i+ zzj — k and the surface is the cone z = /z2+y?,
0 < z < 1 with the normal pointing away from the z-axis.

13. F = y%i+ 2% + 52k and the surface is the top of the plane z = y+1
where ~1 <z <land -1<y<1.
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14. F = —yi + zj + zk and the surface is the exterior or bottom of the
paraboloid z = z? + y? where 0 < z < 1.

15. F = —y1+:cJ+6z2k and the surface is the exterior of the paraboloids
z=4—-22 —y? and z = 2% + 2.

10.6 GREEN'S LEMMA

Consider a rectangle in the zy-plane which is bounded by the lines
r=a,z=0b,y=c and y = d. We assume that the boundary of the
rectangle is a piece-wise smooth curve which we denote by C. If we have
a continuously differentiable vector function F = P(z,y)i + Q(z,y)j at
each point of enclosed region R, then

/ 99 44 = / [/ }dy (10.6.1)

d
=/ Q(b,y)dy—/ Qa,y)dy  (10.6.2)
- }iQ(x,y) dy, (10.6.3)

where the last integral is a closed line integral counterclockwise around
the rectangle because the horizontal sides vanish since dy = 0. By
similar arguments,

oP
/ 3y 4= —]i P(z,y)dz (10.6.4)
so that
0Q 0P
//R (8:6 y) A = jip(l‘,y) dz + Q(z,y) dy. (10.6.5)

This result, often known as Green’s lemma, may be expressed in vector
form as

fF-dr=// V x F-kdA. (10.6.6)
C R

Although this proof was for a rectangular area, it can be general-
1zed to any simply closed region on the zy-plane as follows. Consider
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y A
(1:1)

Figure 10.6.1: Diagram for the verification of Green’s lemma in Ex-
ample 10.6.1.

an area which is surrounded by simply closed curves. Within the closed
contour we can divide the area into an infinite number of infinitesimally
small rectangles and apply (10.6.6) to each rectangle. When we sum up
all of these rectangles, we find [z V x F -k dA, where the integration is
over the entire surface area. On the other hand, away from the bound-
ary, the line integral along any one edge of a rectangle cancels the line
integral along the same edge in a contiguous rectangle. Thus, the only
nonvanishing contribution from the line integrals arises from the outside
boundary of the domain §, F - dr.

o Example 10.6.1

Let us verify Green’s lemma using the vector field F = (3z?—8y%)i+
(4y — 6zy)j and the enclosed area lies between the curves y = /7 and
y = 2. The two curves intersect at z = 0 and z = 1. See Figure 10.6.1.

We begin with the line integral:
1
% F.-dr= / (322 — 8z*)dx + (42?2 — 62%)(2z dz)
c 0
0
+ / (3z% — 8z)dz + (4z'/? — 6.1'3/2)(%91:‘1/2 d£10.6.7)
1

1
= ] (—20z% + 82 + 11z — 2)dz = &. (10.6.8)
0
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In (10.6.7) we used y = z? in the first integral and y = \/Z in our return
integration. For the areal integration,

1 pJT 1 JE
// VXF-de:/ / 10ydydz:/ 5y°|7; dz (10.6.9)
R 0 z? 0

1
= 5/0 (¢ —a*)de =2 (10.6.10)
and Green’s lemma is verified in this particular case.

e Example 10.6.2

Let us redo Example 10.6.1 except that the closed contour is the
triangular region defined by the linesz =0, y=0,and z + y = 1.
The line integral is

. .
}{F-drz/ (32> —8-0%)dz+(4-0—62-0)-0
C 0
1
+ [ 180 = 07 = 871 (~d) + b4y = 601 ~ ol dy
+/0(3-02—8y2)-0+(4y—-6-0-y)dy (10.6.11)
1

1 1 1
:/ 3z? dz—/ 4ydy+/ (-3 +4y+ 11y*)dy (10.6.12)
0 0 0

22|y — 2020 + (<3y+ 2" + L)) = &, (10.6.13)

On the other hand, the areal integration is

1 l1-z 1
// VXF-de:/'/ 10ydydx:/ 5yzl;" dz  (10.6.14)
R 0 0 0

1
= 5/ (1-z)’de=— (1 —x)3|(1) =% (10.6.15)
0

and Green’s lemma is verified in this particular case.
o Example 10.6.3

Let us verify Green’s lemma using the vector field F = (3z +4y)i+
(2z — 3y)j and the closed contour is a circle of radius two centered at
the origin of the zy-plane. See Figure 10.6.2.
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Figure 10.6.2: Diagram for the verification of Green’s lemma in Ex-
ample 10.6.3.

Beginning with the line integration,

fc F.dr= /0 " 16 cos(8) + 8 sin(8)][~2sin(0) df]
+ [4 cos(8) — 6sin(6)][2 cos(8) d6] (10.6.16)

_ / 24 cos(6) sin(8) — 16sin?(6) + 8 cos*(8)] dB

(10.6.17)
— 12 cos?(6)]" - 8 [0 — Lsin(20)] |27 + 4 [0 + $sin(26)] |

(10.6.18)
= —87. (10.6.19)

For the areal integration,

2 p2m
// VxF-de:/ / —-2rdfdr=—87 (10.6.20)
R o Jo

and Green’s lemma is verified in the special case.
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Problems

Verify Green’s lemma for the following two-dimensional vector fields and
contours: '

1. F = (2% + 4y)i + (y — z)j and the contour is the square bounded by
thelinesz =0, y=0,z=1,andy=1.

2. F = (z — y)i + zyj and the contour is the square bounded by the
linesz=0,y=0,z=1,and y = 1.

3. F = —y*i+ %] and the contour is the triangle bounded by the lines
z=1y=0,and y = .

4. F = (e¢y—z?)i+ z%yj and the contour is the triangle bounded by the
liney=0,z=1,and y = z.

5. F = sin(y)i + z cos(y)j and the contour is the triangle bounded by
z+y=1l,y—z=1,and y =0.

6. F = y%i + 22j and the contour is the same contour used in problem
4.

7. F = —y%i + z?j and the contour is the circle z2 + y? =4.
8. F = —z?i + zy?j and the contour is the closed circle of radius a.

9. F = (6y+z)i+ (y+2z)j and the contour is the circle (z — 1)2+ (y —
2)2 = 4.

10. F = (z + y)i + (222 — y?)j and the contour is the boundary of the
region determined by the graphs of y = z? and y = 4.

11. F = 3yi + 2zj and the contour is the boundary of the region deter-
mined by the graphs of y = 0 and y = sin(z) with 0 < z < 7.

12. F = —16yi + (4e¥ + 3z%)j and the contour is the pie wedge defined
by the lines y =z, y = —z, 2+ y? =4, and y > 0.
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10.7 STOKES’ THEOREM

In Section 10.2 we introduced the vector quantity V x v which gives
a measure of the rotation of a parcel of fluid lying within the velocity
field v. In this section we show how the curl may be used to simplify
the calculation of certain closed line integrals.

This relationship between a closed line integral and a surface inte-
gral involving the curl is

Stokes’ Theorem: The circulation of F = Pi+ Qj + Rk around the
closed boundary C of an orienied surface S in the direction counter-
clockwise with respect 1o the surface’s unit normal vector n equals the
integral of V. x F -n over S or

fF-dr://VxF-nda. (10.7.1)
C S

Stokes’ theorem requires that all of the functions and derivatives be
continuous.

The proof of Stokes’ theorem is as follows: Consider a finite surface
S whose boundary is the loop C. We divide this surface into a num-
ber of small elements n do and compute the circulation dI' = fL F-dr
around each element. When we add all of the circulations together, the
contribution from an integration along a boundary line between two ad-
joining elements cancels out because the boundary is transversed once
in each direction. For this reason, the only contributions that survive
are those parts where the element boundaries form part of C. Thus, the
sum of all circulations equals §, F - dr, the circulation around the edge
of the whole surface.

Next, let us compute the circulation another way. We begin by
finding the Taylor expansion for P(z,y,z) about the arbitrary point

(1:0) Yo, ZO):

OP(z0, vo,
P(z,y,2) = P(z0, Y0, 20) + (¢ — xo)_ﬁfz@;yﬂ

OP(zq, yo, 0P (zo, Yo,
+ (y - yo)——-———(x%yyo zo) +(z— zo)————-(mézy0 20) + -

(10.7.2)
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Figure 10.7.1: Sir George Gabriel Stokes (1819-1903) was Lucasian
Professor of Mathematics at Cambridge University from 1849 until his
death. Having learned of an integral theorem from his friend Lord
Kelvin, Stokes included it a few years later among his questions on
an examination that he wrote for the Smith prize. It is this integral
theorem that we now call Stokes’ theorem. (Portrait courtesy of the
Royal Society of London.)

with similar expansions for Q(z,y, z) and R(z,y, z). Then

dF:fF-dr:P(xo,yo,zo)fdz+ 3P_(-7«‘06,!/0_,20)f(z_z0)dx
L L

OP(z0, yo,
_<zoy_020) }{ v—yo)dy+--
N QMO_) f{ (z — zo)dy + - (10.7.3)

where L denotes some small loop located in the surface S. Note that
integrals such as §; dr and §, (z — zo)dz will vanish.
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If we now require that the loop integrals be in the clockwise or
positive sense so that we preserve the right-hand screw convention, then

n-kéo= }i(z’ —zo)dy = — ﬁ(y - yo) dz, (10.7.4)
n-jéa:ﬁ(z—zo)dr:—f;(x—zo)dz, (10.7.5)
n-iéazi(y—yo)dz:—%L(z—zo)dy (10.7.6)

and

dI‘:(a—R BQ) néoc +(8P 6R)J nébo

dy Oz 0z Oz
0Q 0P _
+<%—a—y>k-néo’_VxF-néo' (10.7.7)

Therefore, the sum of all circulations in the limit when all elements are
made infinitesimally small becomes the surface integral [[sV xF-ndos
and Stokes’ theorem is proven.

In the following examples we first apply Stokes’ theorem to a few
simple geometries. We then show how to apply this theorem to more
complicated geometries.*

o Example 10.7.1

Let us verify Stokes’ theorem using the vector field ¥ = z H42zj+
22k and the closed curve is a square with vertices at (0,0,3), (1,0,3),
(1,1,3) and (0,1,3). See Figure 10.7.2.

We begin with the line integral:

fF'dr:/ F-dr+/ F-dr+/ F-dr+/ F-dr, (10.7.8)
C Cl C: Cs Cd

where C;, C2, Cs, and Cy tepresent the four sides of the square. Along
C1, ¢ varies while y = 0 and z = 3. Therefore,

1
/ F.dr:/x2d1'+2:c-0+9-0=§, (10.7.9)
C 0

because dy = dz = 0 and z = 3. Along Cs, y varies with z = 1 and
z = 3. Therefore,

1
/F-dr:/ 12.042-1-dy+9-0=2. (10.7.10)
Ca 0

4 Thus, different Stokes for different folks.



544 Advanced Engineering Mathematics

X

Figure 10.7.2: Diagram for the verification of Stokes’ theorem in Ex-
ample 10.7.1.

Along Cs, = again varies with y = 1 and z = 3, and so,
0 .
/ F-dr:/xzd:c+2:c-0+9'0=-—%. (10.7.11)
C3 1

Note how the limits run from 1 to 0 because z is decreasing. Finally,
for C4, y again varies with # = 0 and z = 3. Hence,

0
/ F-dr=/02-0+2'0-dy+9-0=0. (10.7.12)
04 1
Hence,
'7{ F.dr=2. (10.7.13)
c
Turning to the other side of the equation,

1 ) k

5 2 @
VxF=|5 3y 9| = 2k. (10.7.14)

2 2z 22

Our line integral has been such that the normal vector must be n = k.
Therefore,

1 1
//VxF-nda:/ / 2%k - kde dy = 2 (10.7.15)
S 0 0
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X

Figure 10.7.3: Diagram for the verification of Stokes’ theorem in Ex-
ample 10.7.2.

and Stokes’ theorem is verified for this special case.
e Example 10.7.2

Let us verify Stokes’ theorem using the vector field F = (22 — y)i+
42j + 2%k, where the closed contour consists of the z and y coordinate
axes and that portion of the circle 22 + y?> = @ that lies in the first
quadrant with z = 1. See Figure 10.7.3.

The line integral consists of three parts:

fF-dr:/ F'dr+/ F~dr+/ F.dr. (10.7.16)
C C, Ca Cs

Along Cy, z varies while y = 0 and 2z = 1. Therefore,

a a3
/ F-dr:/ (z2=0)dz+4-1-0+22-0= T (10.7.17)
Cy 0

Along the circle Cy, we use polar coordinates with ¢ = acos(t), y =
asin(t) and z = 1. Therefore,

/2
/ F.dr= / [a® cos®(t) — asin(t)][—asin(?) dt]
Cz 0

+4-1-acos(t)dt + a®cos®(t) - 0
(10.7.18)
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w/2
/ F . dr= / —a cos?(t) sin(t) dt + a® sin(t) dt + 4a cos(t) dt
Ca 0

(10.7.19)
wf2 w/2
= f cos3(t) / + -(i [t - lsin(2t)] / + 4a sin(t)lg/2
3 o 2 2 o
(10.7.20)
A S S (10.7.21)
3 4 ’

because dr = —asin(t)dt and dy = acos(t)dt. Finally, along C3, y
varies with ¢ = 0 and z = 1. Therefore,

0
/ F-dr:/(Oz—y)-0+4-1-dy+02-0=—4a. (10.7.22)
C3 a

so that \
f F.dr=2" (10.7.23)
g 1

Turning to the other side of the equation,

i i k
VxF=| & & &|=-4i-2zj+k (10.7.24)
2 -y 4z 2?

From the path of our line integral, our unit normal vector must be
n = k. Then,

iy

a pmf2 2
//VxF-nda:/ / [—4i—2rcos(0)j+k]-krdt9dr:4i
s o Jo
(10.7.25)
and Stokes’ theorem is verified for this case.

o Example 10.7.3

Let us verify Stokes’ theorem using the vector field F = 2yzi— (2 +
3y — 2)j + (2% + 2)k, where the closed triangular region is that portion
of the plane z + y + z = 1 that lies in the first octant.

As shown in Figure 10.7.4, the closed line integration consists of
three line integrals:

}{F-drz/ F-dr+/ F-dr+/ F - dr. (10.7.26)
(o} C, C2 Cs
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(0,1,0)
|

(1,0,0)

X

Figure 10.7.4: Diagram for the verification of Stokes’ theorem in Ex-
ample 10.7.3.

Along Cy, z = 0 and y = 1 — #. Therefore, using « as the independent
variable,

0
F-dr:/ 21— 2)-0-dz — (2 + 3 — 3z — 2)(—dz) + (z* +0) - 0
Ch 1
= —z?|] + 2] =0. (10.7.27)

Along Cy, z = 0 and y = 1 — z. Thus,

1
/F-dr:/ 2(1 = 2)z-0—(0+3—32—2)(—dz) + (0* + z) dz
C2 0

=— 32424122 =0 (10.7.28)

Finally, along C3, y = 0 and z = 1 — z. Hence,

1
/ F.dr=/ 2.0 (1—2)de—(z+0—-2) -0+ (2% +1 - z)(—dz)
Cs 0
= —lo® g4 Lo = -3 (10.7.29)

Thus,
]{CF dr= -2 (10.7.30)



548 Advanced Engineering Mathematics

On the other hand,

S|wtm.

1 k
VxF=|2% Z | =(-2z+2y)j+(-1-22)k
2yz —w-—3y+2 2 42
(10.7.31)
To find ndeo, we use the general coordinate system z = u, y = v, and
z=1—u—v. Therefore, r = ui+vj+ (1l —u — v)k and

i j k
ry Xxr,=|1 0 —-1|=i+j+k. (10.7.32)
01 -1
Thus,
1-— u
//VXF nda'__/ / (—2u+2v)j+ (-1 -2+ 2u + 2v)k]
S
fi+j+k]dvdu (10.7.33)
1 1-u
=/ / (4v — 3) dv du (10.7.34)
0 0
1
:/ 2(1 - )2 —3(1 — w)] du (10.7.35)
0
1
=/0 (=1 —u+2u?)du=—3 (10.7.36)

and Stokes’ theorem is verified for this case.
Problems

Verify Stokes’ theorem using the following vector fields and surfaces:
1. F = 5yi — 5zj + 3zk and the surface S is that portion of the plane

= 1 with the square at the vertices (0,0,1), (1,0,1), (1,1,1), and
(0,1,1).
2. F = z%i + y*j + 2%k and the surface S is the rectangular portion of
the plane z = 2 defined by the corners (0,0,2), (2,0,2), (2,1,2), and
(0,1,2).

3. F = zi+ zj + yk and the surface S is the triangular portion of the
plane z = 1 defined by the vertices (0,0, 1), (2,0, 1), and (0,2,1).

4. F = 2z1 — 3zj + 4yk and the surface S is that portion of the plane
z = 5 within the cylinder z2 4 y? = 4.
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5. F = zi+ zj+ yk and the surface S is that portion of the plane z = 3
bounded by the lines y = 0, = 0, and z? + y* = 4.

6. F=(2z+2)i+ (y— 2)j + (¢ + y)k and the surface S is the interior
of the triangularly shaped plane with vertices at (1,0,0), (0,1,0), and
(0,0,1).

7. F = zi+ zj + yk and the surface S is that portion of the plane
2z + y + 2z = 6 in the first octant.

8. F = zi+xzj+ yk and the surface S is that portion of the paraboloid
z =9 — 2% — y? within the cylinder z? + y% = 4.

10.8 DIVERGENCE THEOREM

Although Stokes’ theorem is useful in computing closed line inte-
grals, it is usually very difficult to go the other way and convert a surface
integral into a closed line integral because the integrand must have a
very special form, namely V x F -n. In this section we introduce a the-
orem that allows with equal facility the conversion of a closed surface
integral into a volume integral and vice versa. Furthermore, if we can
convert a given surface integral into a closed one by the introduction of
a simple surface (for example, closing a hemispheric surface by adding
an equatorial plate), it may be easier to use the divergence theorem and
subtract off the contribution from the new surface integral rather than
do the original problem.

This relationship between a closed surface integral and a volume
integral involving the divergence operator is

The Divergence or Gauss’ Theorem: Let V be a closed and bounded
region in three dimensional space with a piece-wise smooth boundary S
that is oriented outward. LetF = P(z,y,2)i+Q(z,y, 2)j+ R(z,y, 2)k be
a vector field for which P, ), and R are continuous and have continuous

first partial derivatives in a region of three dimensional space containing
V. Then

i[éF.nda://vv-de. (10.8.1)
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Figure 10.8.1: Carl Friedrich Gauss (1777-1855), the prince of math-
ematicians, must be on the list of the greatest mathematicians who ever
lived. Gauss, a child prodigy, is almost as well known for what he did
not publish during his lifetime as for what he did. This is true of Gauss’
divergence theorem which he proved while working on the theory of grav-
itation. It was only when his notebooks were published in 1898 that his
precedence over the published work of Ostrogradsky (1801-1862) was
established. (Portrait courtesy of Photo AKG, London.)

Here, the circle on the double integral signs denotes a closed surface
integral.

A nonrigorous proof of Gauss’ theorem is as follows. Imagine that
our volume V is broken down into small elements dr of volume of any
shape so long as they include all of the original volume. In general, the
surfaces of these elements are composed of common interfaces between
adjoining elements. However, for the elements at the periphery of V,
part of their surface will be part of the surface S that encloses V. Now
d® = V - Fdr is the net flux of the vector F out from the element dr.
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Figure 10.8.2: Diagram for the verification of the divergence theorem
in Example 10.8.1.

At the common interface between elements, the flux out of one element
equals the flux into its neighbor. Therefore, the sum of all such terms

yields
@:/// V.Fdr (10.8.2)
Vv

and all the contributions from these common interfaces cancel; only the
contribution from the parts on the outer surface S will be left. These
contributions, when added together, give ffF - ndo over S and the
proof is completed. D

e Example 10.8.1

Let us verify the divergence theorem using the vector field F =
4zi — 2y?j + 2%k and the enclosed surface is the cylinder z% + y? = 4,
z =0, and z = 3. See Figure 10.8.2.

We begin by computing the volume integration. Because

0(4z)  9(=2*)  9(z%) _
oz + By + 57 =4—4y+ 22z, (10.8.3)

//Vv'FdV:///‘,(4‘4y+22)dV (10.8.4)

V-F=
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3 2 o
// V-FdV = / / / [4 — 4rsin(f) + 2z]dér drdz (10.8.5)
v o Jo Jo

3 p2
:/ / [49|§"+4rcos(e)|§"+2za|§”]rdrdz (10.8.6)
¢ Jo

3 p2
=/ /(87r+47rz)rdrdz (10.8.7)
o Jo
8 2
:/ 47r(2+z)%r2|0dz (10.8.8)
0

3
= 47r/ 22+ z)dz = 87(22 + %zz)ré =84r. (10.8.9)
0

Turning to the surface integration, we have three surfaces:

#F-nda’:// F~nda’+// F-nda’-}-// F-ndo. (10.8.10)
S 5, Sz Sa

The first integral is over the exterior to the cylinder. Because the surface
is defined by f(z,y,2) =22 +y? =4,

_Vf  2zi+2yj

T
|Vf| \A4z? + 4y2 T2

i+ %j. (10.8.11)

Therefore,

//F ndo'—//s1 (22% — y*)do (10.8.12)

= / ” {2[2 cos(8))? — [25in(0)]*} 2dfdz (10.8.13)

=8 /03 /027r {%[1 + cos(26)] — sin(8) + cos?(8) sin(0)}2 dfdz

(10.8.14)
3 2
= 16/ [%0 + 5 sin(26) + cos(f) — %—coss(ﬁ)] dz
0 0
(10.8.15)
3
= 1671'/ dz = 48, (10.8.16)
0

because z = 2cos(f), y = 2sin(f) and do = 2df dz in cylindrical coor-
dinates.

Along the top of the cylinder, z = 3, the outward pointing normal
isn =k and do = rdrdf. Then,

2n 2
// F~nd0':// zzda':/ /9rdrd6’=27rx9x2=367r.
Sa Sz o Jo

(10.8.17)
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However, along the bottom of the cylinder, z = 0, the outward pointing
normal is n = —k and do = rdr df. Then,

27 p2
// F-nda’:// z2d0'=/ /0rdrd€=0. (10.8.18)
Ss Sa 0 0

Consequently, the flux out the entire cylinder is
#F-nda:487r+367r+0 = 84r (10.8.19)
s

and the divergence theorem is verified for this special case.
o Example 10.8.2

Let us verify the divergence theorem given the vector field F =
3z%y%i + yj — 6zy°zk and the volume is the region bounded by the
paraboloid z = 2% + y? and the plane z = 2y. See Figure 10.8.3.

Computing the divergence,

d(3z%y?) O —6zy?2)

. = 2 - 2: . .0,
V-F= o By P 6zy*+1—-6xy” = 1. (10.8.20)
Then,
// V-FdV:/// dv (10.8.21)
v
2sin(8) p2rsin(8)
:/ / / dzrdrdf (10.8.22)
2sin(9)
:/ / [2rsin(f) — r?] rdrdf (10.8.23)
2sin() 2sin(8)
:/ [% sin(f) — 3r ]d0 (10.8.24)
0
.—./ [42 sin*(6) — 4sin*(6)] db (10.8.25)
= / 1 sin*(0) d6 (10.8.26)
0
=1 /0 (1 — 2 cos(26) + cos®(20)] df (10.8.27)

T L

—sin(20)| +16
0

v

+ £ sin(46)
0

=

k:
=z
=z
0

(10.8.28)

L

0
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Figure 10.8.3: Diagram for the verification of the divergence theorem
in Example 10.8.2. The curve r = 2sin(#) is denoted by a dashed line.

The limits in the radial direction are given by the intersection of the
paraboloid and plane: 7?2 = 2rsin(f) or » = 2sin(f) and y is greater
than zero.

Turning to the surface integration, we have two surfaces:

#F-nda:// F-ndcr+// F -ndo, (10.8.29)
S 51 52

where S; is the plane 2 = 2y and S; is the paraboloid. For either
surface, polar coordinates are best so that = rcos(d), y = rsin(f).
For the integration over the plane, z = 2rsin(f#). Therefore,

r = rcos(#)i + rsin(8)j + 2rsin(f)k (10.8.30)
so that
r, = cos(6)i + sin(#)j + 2sin()k (10.8.31)
and
ry = —rsin()i + rcos(8)j + 2r cos(d)k. (10.8.32)
Then,
i J k
r, X rg =| cos(f) sin(f) 2sin(f) | = -2rj+rk. (10.8.33)

—rsin(8) rcos(8) 2rcos(f)
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This is an outwardly pointing normal so that we can immediately set
up the surface integral:

T p2sin(8)
// F-ndo= / / {3r* cos®(0) sin®(8)i + rsin(6)j
S 0o Jo

— 6[2rsin(8)][r cos(8)][r* sin?(0)]k} - (—2rj + rk) drd6

(10.8.34)
2sin(8)
= / / [—2r?sin(8) — 12r° sin®(6) cos(6)] dr df
0
(10.8.35)
= / -2 3|25m(0) in(6) — 2r |§Sm(€)sm ) cos(&)]
oL
(10.8.36)
= / ——sm4(0) — 128sin°(0) cos(ﬁ)] de (10.8.37)
oL
= —2 65 —sin(26)|7 + 10|7 + § sin(46)|] ] 8 sin'%(9)|
(10.8.38)
s (10.8.39)
For the surface of the paraboloid,
r = rcos(f)i + rsin(8)j + r’k (10.8.40)
so that
r, = cos(0)i +sin(8)j + 2rk (10.8.41)
and
rg = —rsin(f)i + rcos(f)]. (10.8.42)
Then,
i J k
r. Xrg = | cos(f) sin(d) 2r (10.8.43)
—rsin(f) rcos(d) 0

= —2r% cos(8)i — 2r? sin(8)j + rk. (10.8.44)

This is an inwardly pointing normal so that we must take the negative
of it before we do the surface integral. Then,

7 p2sin(f)
// F -ndo = / / ' {3r* cos?(6) sin®(8)i + rsin(8)j
S2 0 Jo

— 6r2[r cos(8)][r? sin?(8)]k }
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- [2r? cos(8)i + 2r?sin(6)j — rk| dr df
(10.8.45)

_//SF ndo'—/ /QSm(O)[GT cos>(0) sin?() + 2r3sin?(0)

+ 67 cos(8) sin?(9)] dr df
(10.8.46)

:/ [6 7|2$m(9)c053(49) sin?(6) + 1 4|25m( ) sin? )
0
+ 207|257 cos(6) sinz(B)} de (10.8.47)

= /OW{Z%§ sin®(8)[1 — sin?(8)] cos(d) + 8sin®(0)

+ Z85in®(0) cos(G)} do (10.8.48)
= 2 s1n1°(9)| — Zsin?(0)|, + / [1— cos(26)}® d
0
(10.8.49)
= / {1 — 3 cos(20) + 3 cos?(28) — cos(20)[1 — sin2(20)]} de
0
(10.8.50)
= (9|:)r — 3 sin( 20)|;r + 300+ %sin(4t9)]|:)r
-5 sm(20)|0 Lsin 26)[0 (10.8.51)
=n+3r=3m (10.8.52)
Consequently,

# F-ndo=-2r+3r=1ir (10.8.53)
S

and the divergence theorem is verified for this special case.

o Example 10.8.3: Archimedes’ Principle

Consider a solid® of volume V and surface S that is immersed in a

vessel filled with a fluid of density p. The pressure field p in the fluid is
a function of the distance from the liquid/air interface and equals

p=po— p9z, (10.8.54)

5 Adapted from Altintas, A., 1990: Archimedes’ principle as an appli-
cation of the divergence theorem. IEEE Trans. Educ., 33,222. (©IEEE.
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where g is the gravitational acceleration, z is the vertical distance mea-
sured from the interface (increasing in the k direction), and po is the
constant pressure along the liquid/air interface.

If we define F = —pk, then F - ndo is the vertical component of
the force on the surface due to the pressure and ffF -ndo is the total
lift. Using the divergence theorem and noting that V- F = pg, the total
lift also equals

// V- -FdV = pg // dV = pgV, (10.8.55)
v \%

which is the weight of the displaced liquid. This is Archimedes’ principle:
the buoyant force on a solid immersed in a fluid of constant density
equals the weight of the fluid displaced.

o Example 10.8.4: Conservation of charge

Let a charge of density p flow with an average velocity v. Then the
charge crossing the element dS per unit time is pv - dS = J - dS, where
J is defined as the conduction current vector or current density vector.
The current across any surface drawn in the medium is @SJ - dS.

The total charge inside the closed surface is [[f,, pdV. If there are
no sources or sinks inside the surface, the rate at which the charge is
decreasing is — [[f,, p: dV. Because this change is due to the outward

flow of charge,
/// o gy = # J.ds. (10.8.56)

Applying the divergence theorem,

J[(&+v-3)av =0 (108.57)

Because the result holds true for any arbitrary volume, the integrand
must vanish identically and we have the equation of continuity or the
equation of conservation of charge:

op

5 TV I=0. (10.8.58)

Problems

Verify the divergence theorem using the following vector fields and vol-
umes:

1. F = 2% + ¥*j + z’k and the volume V is the cube cut from the first
octant by the planes =1, y =1, and z = 1.
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2. F = zyi+ yzj + xzk and the volume V is the cube bounded by
0<z<1,0<y<l,and0<2< 1.

3. F=(y—2)i+ (2 - y)j+ (y— )k and the volume V is the cube
bounded by -1 <z <1, -1<y<1l,and -1 <2< 1.

4. F = 221+ yj + zk and the volume V is the cylinder defined by the
surfaces 22 +y> =1, 2=0, and z = 1.

5. F = 2% + y?j + 2%k and the volume V is the cylinder defined by the
surfaces 22 +y> =4, 2 =0, and z = 1.

6. F = y?%i+z23j+ (2 — 1)’k and the volume V is the cylinder bounded
by the surface ? + y?> = 4 and the planes z = 1 and z = 5.

7. F = 6zyi +4yzj + ze~ Yk and the volume V is that region created by
the plane £ + y + z = 1 and the three coordinate planes.

8. F = yi+ zyj — 2k and the volume V is that solid created by the
paraboloid z = z? + y? and plane z = 1.



Chapter 11
Linear Algebra

Linear algebra involves the systematic solving of linear algebraic or
differential equations. These equations arise in a wide variety of situa-
tions. They usually involve some system, either electrical, mechanical,
or even human, where two or more components are interacting with each
other. In this chapter we present efficient techniques for expressing these
systems and their solution.

11.1 FUNDAMENTALS OF LINEAR ALGEBRA

In this chapter we shall study the solution of m simultaneous linear
equations in n unknowns z, s, 23, ..., &, of the form:

a2y + a122a + -+ a1ntp = b
a1 + @22%2 + - -+ AT, = by

(11.1.1)

Am121 + am2z2 + - -+ GmnTn = by,
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where the a’s and b’s are known real or complex numbers. Matriz algebra
allows us to solve these systems. First, succinct notation is introduced
so that we can replace (11.1.1) with rather simple expressions. Then
a set of rules is used to manipulate these simple expressions. In this
section we focus on developing these simple expressions.

The fundamental quantity in linear algebra is the matriz. A matrix
is an ordered rectangular array of numbers or mathematical expressions.
We shall use upper case letters to denote them. The m x n matrix

11 a2 a3 - : * Q1in

a1 @22 azz - : © Q2n
A= (11 1 .2)
. . . . aij . .
mi1 Gm2 Q4m3 : * Qmn

has m rows and n columns. The order (or size) of a matrix is determined
by the number of rows and columns; (11.1.2) is of order m by n. If
m = n, the matrix is a square matrix; otherwise, A is rectangular. The
numbers or expressions in the array a;; are the elements of A and may
be either real or complex. When all of the elements are real, A is a real
matriz. If some or all of the elements are complex, then A is a complez
matriz. For a square matrix, the diagonal from the top left corner to
the bottom right corner is the principal diagonal.

From the limitless number of possible matrices, certain ones appear
with sufficient regularity that they are given special names. A zero
matrix (sometimes called a null matrix) has all of its elements equal to
zero. It fulfills the role in matrix algebra that is analogous to that of zero
in scalar algebra. The unit or identity matrix is a n x n matrix having 1’s
along its principal diagonal and zero everywhere else. The unit matrix
serves essentially the same purpose in matrix algebra as does the number
one in scalar algebra. A symmetric matrix is one where a;; = a;; for all
1 and j.

o Example 11.1.1

Examples of zero, identity, and symmetric matrices are

0 00 10 3 2 4
O=]0 0 0 ’I=<0 1),andA: 21 0], (111.3)
0 00 4 0 5

respectively.
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A special class of matrices are column vectors and row vectors:

I

T2
x=| ., y=(n v - ). (11.1.4)

Im

We denote row and column vectors by lower case, boldface letters. The
length or norm of the vector x of n elements is

n 1/2
1x|| = <Z z§> . (11.1.5)
k=1

Two matrices A and B are equal if and only if a;; = b;; for all
possible ¢ and j and they have the same dimensions.

Having defined a matrix, let us explore some of its arithmetic prop-
erties. For two matrices A and B with the same dimensions (con-
formable for addition), the matrix C = A + B contains the elements
cij = a;j+b;j. Similarly, C = A— B contains the elements ¢;; = a;; —b;;.
Because the order of addition does not matter, addition is commutative:
A+B=B+A

Consider now a scalar constant k. The product kA is formed by
multiplying every element of A by k. Thus the matrix ¥4 has elements
k'a,:j.

So far the rules for matrix arithmetic have conformed to their scalar
counterparts. However, there are several possible ways of multiplying
two matrices together. For example, we might simply multiply together
the corresponding elements from each matrix. As we will see, the mul-
tiplication rule is designed to facilitate the solution of linear equations.

We begin by requiring that the dimensions of A be m x n while
for B they are n x p. That is, the number of columns in A must equal
the number of rows in B. The matrices A and B are then said to be
conformable for multiplication. If this is true, then C = AB will be a
matrix m X p, where its elements equal

n

cij = Eaik by;j - (11.1.6)
k=1

The right side of (11.1.6) is referred to as an inner product of the ith
row of A and the jth column of B. Although (11.1.6) is the method
used with a computer, an easier method for human computation is as
a running sum of the products given by successive elements of the ith
row of A and the corresponding elements of the jth column of B.

The product AA is usually written A?; the product AAA, A%, and
so forth.
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o Example 11.1.2

-1 4 1 2
A_(2 _3) and B_(3 4>, (11.1.7)

If

then

_ (=DM +@E) (D) + (@)
AB = <[(2)(1) +(=3)(3)] [(2)(2) + (=3)(4)] ) (11.1.8)

- (2 i‘;) (11.1.9)

Matrix multiplication is associative and distributive with respect to ad-
dition:

(kA)B = k(AB) = A(kB), (11.1.10)
A(BC) = (AB)C, (11.1.11)
(A+ B)C = AC+ BC (11.1.12)
and
C(A+B)=CA+CB. (11.1.13)

On the other hand, matrix multiplication is not commutative. In general,
AB # BA.

o Example 11.1.3

Does AB = BA if

10 11
A:(O 0) and B:(1 0)? (11.1.14)

Because

AB = ((1) 8) (i (1)> = (é é) (11.1.15)
BA:(} (1)) ((1) g>=(} 8) (11.1.16)

AB # BA. (11.1.17)

and
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e Example 11.1.4

Given

11 _ (-1 1
A-(3 3) and B—<1 _1), (11.1.18)

find the product AB.
Performing the calculation, we find that

AB = <§ ;) (_11 _11) = (g 8). (11.1.19)

The point here is that just because AB = 0, this does not imply that
either A or B equals the zero matrix.

We cannot properly speak of division when we are dealing with
matrices. Nevertheless, a matrix A is said to be nonsingular or invertible
if there exists a matrix B such that AB = BA = I. This matrix B is
the multiplicative inverse of A or simply the inverse of A, written AL
A n x n matrix is singular if it does not have a multiplicative inverse.

o Example 11.1.5

If

1 01
A=13 3 4], (11.1.20)
2 2 3

1 2 -3
Al=|-1 1 -1]. (11.1.21)
0 -2 3

We perform the check by finding AA™! or A71A,

1 01 1 2 -3 100
AAT!=1|3 3 4 -1 1 ~1]=|01 0]. (11.1.22)
2 2 3 0 -2 3 001

In a later section we will show how to compute the inverse, given A.

Another matrix operation is transposition. The transpose of a ma-
trix A with dimensions m x n is another matrix, written AT, where we
have interchanged the rows and columns from A. Clearly, (ATYT = A
as well as (A + B)T = AT 4+ BT and (k4)T = kAT. If A and B are
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conformable for multiplication, then (AB)T = BT AT. Note the rever-
sal of order between the two sides. To prove this last result, we first
show that the results are true for two 3 x 3 matrices A and B and then
generalize to larger matrices.

Having introduced some of the basic concepts of linear algebra, we
are ready to rewrite (11.1.1) in a canonical form so that we may present
techniques for its solution. We begin by writing (11.1.1) as a single
column vector:

anzr + a13x2 + - 4+ aipTa by
a2121 + a3z + - 4+  az, by

: : : : =1 :]. (11.1.23)
AGm1T1 + am2T2 + - 4+ Ayunln bm

On the left side of (11.1.23) we can use the multiplication rule to write

anr @ - a4 T by
a1 azz - @y | | o2 b2
: : = (11.1.24)
Am1 Gm2 -+ QAmn Tn bm
or
Ax = b, (11.1.25)

where x is the solution vector. If b = 0, we have a homogeneous set of
equations; otherwise, we have a nonhomogeneous set. In the next few
sections, we will give a number of methods for finding x.

o Example 11.1.6: Solution of a tridiagonal system

A common problem in linear algebra involves solving systems such
as

biyi + c1y2 = dy (11.1.26)
a2yt + bay2 + coys = d (11.1.27)

aN-1YN-2 +bn_ayn—1 + envoiyn = dyog (11.1.28)
bNyN_1 +enyn = dn. (11.1.29)

Such systems arise in the numerical solution of ordinary and partial
differential equations.
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We begin our analysis by rewriting (11.1.26)—(11.1.29) in the matrix
notation:

bl 1 0 ce 0 0 0 Y1 d1

as bg Co 0 0 0 Y2 dz

0 as b3 e 0 0 0 Y3 d3

0 0 0 -+ anv—1 bn-1 eN-1 YN -1 dy-1

o 06 0 - 0 an bn YN dn
(11.1.30)

The matrix in (11.1.30) is an example of a banded matriz: a matrix
where all of the elements in each row are zero except for the diagonal
element and a limited number on either side of it. In our particular case,
we have a tridiagonal matrix in which only the diagonal element and
the elements immediately to its left and right in each row are nonzero.

Consider the nth equation. We can eliminate a, by multiplying the
(n — 1)th equation by a, /b, and subtracting this new equation from
the nth equation. The values of b, and d, become

bl, = by — ancn_1/bn_1 (11.1.31)
and

d;, = dn — andn_l/bn_l (11132)
for n = 2,3,...,N. The coefficient ¢, is unaffected. Because elements

a; and ¢y are never involved, their values can be anything or they can
be left undefined. The new system of equations may be written

bll (5] 0 -+ 0 0 0 Y1 d’l

0 blz cy 0 0 0 Y2 '2

0 0 b --- 0 0 0 v A

0 0 0 --- 0 by_; env-1] | unva e

0 0 0 --- 0 0 by yN dly
(11.1.33)

The matrix in (11.1.33) is in upper triangular form because all of
the elements below the principal diagonal are zero. This is particularly
useful because y, may be computed by back substitution. That is, we
first compute yy. Next, we calculate yy—; in terms of yx. The solution
yN—2 may then be computed in terms of yy and yny-1. We continue

this process until we find y; in terms of yn,yn—1,...,y2. In the present
case, we have the rather simple:

ynv = dy /by (11.1.34)
and

Yn = (d, — cndlyy )/, (11.1.35)
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forn=N-1,N-2,...,2,1.

As we shall show shortly, this is an example of solving a system
of linear equations by Gaussian elimination. For a tridiagonal case, we
have the advantage that the solution can be expressed in terms of a
recurrence relationship, a very convenient feature from a computational
point of view. This algorithm is very robust, being stable! as long as
la; + ¢;i| < |b;]. By stability, we mean that if we change b by Ab so that
x changes by Ax, then ||Ax|| < Me, where € > ||Ab]|, 0 < M < oo, for
any N.

Problems
Given A = (i’ ;) and B = (; ;),ﬁnd
1. A+ B,B+ A 2. A-B,B-A 3.34-2B, 324 - B)
4. AT BT (BT - 5. (A+B)T,AT+BT 6. B+BT, B— BT
7. AB,ATB,BABTA 8. A2 B? 9 BBT BTR
10. A2 -3A+1 11. A3+ 24 12. A* —4A% 4 21

Can multiplication occur between the following matrices? If so, compute
it.

2 1 —2 4
13.(_32‘;’» 41 4. (-4 6|1 2 3)
13 —6 1
2\ (32 4 6\ (1 3 6
a1 1 6. (7 5) (1 o %
2) \2 1
2\ (3 1 4
3)\2 0 6

11
IfA= (1 2) verify that
3

1

18. TA=4A+34, 19. 104 = 5(24), 20. (AT)T = A.

! Torii, T., 1966: Inversion of tridiagonal matrices and the stability
of tridiagonal systems of linear systems. Tech. Rep. Osaka Univ., 16,
403-414.
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21 1 -2 11 .
IfA—-(3 1>,B—<4 0),andC.—<1 1>,ver1fythat

91. (A+B)+C=A+(B+C), 22.(AB)C = A(BC),
93. A(B +C) = AB + AC, 24. (A + B)C = AC + BC.

Verify that the following A~! are indeed the inverse of A:
(3 -1 (21
was(3 7)) a=(2 )
0 10 010
26.A=1{1 0 0 A"l=11 0 0
0 01 0 01

Write the following linear systems of equations in matrix form: Ax = b.

27.
T — 21’2 =5
3z +x2=1
28.
2z, + x9 + 423 =2
4z + 229 + 53 =6
6z, —3z2 +Dx3 =2
29.

zo+ 223+ 324 =2

3z; —4z3—4x4=5
r1+ro+aT3t+ags=-3
20y — 3o+ 23— 324 =1T.

11.2 DETERMINANTS

Determinants appear naturally during the solution of simultaneous
equations. Consider, for example, two simultaneous equations with two
unknowns z; and 2o,

a1 +apxy = by (11.2.1)

and
az1z1 + azex2 = bs. (11.2.2)

The solution to these equations for the value of x; and z2 is

b —ajqb
2 = 01822 — 41292 (11.2.3)
a110d22 — Q124a21
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and
boaiy —az1 by

Ty = (11.2.4)

a11az2 — a1202;
Note that the denominator of (11.2.3) and (11.2.4) are the same. This
term, which will always appear in the solution of 2 x 2 systems, is
formally given the name of deferminant and written

a1 G112

= 11022 — @12021. (11.2.5)
az @z

det(A) =

Although determinants have their origin in the solution of systems
of equations, any square array of numbers or expressions possesses a
unique determinant, independent of whether it is involved in a system of
equations or not. This determinant is evaluated (or expanded) according
to a formal rule known as Laplace’s ezpansion of cofactors.? The process
revolves around expanding the determinant using any arbitrary column
or row of A. If the ith row or jth column is chosen, the determinant is
given by

det(4) = a;1An + aizAiz + - + ainAin (11.2.6)
= a1jA1j + azjAzj + - -+ anjAnj, (11.2.7)

where A;;, the cofactor of a;;, equals (-—1)i+j M;;. The minor M;; is the
determinant of the (n — 1) x (n — 1) submatrix obtained by deleting row
¢, column j of A. This rule, of course, was chosen so that determinants
are still useful in solving systems of equations.

e Example 11.2.1

Let us evaluate

2 -1 2
1 3 2
5 1 6
by an expansion in cofactors.
Using the first column,
2 -1 2
13 2|=20-17|3 Z41=12|t 2|ascn)r| Tt 2
1 6 1 6 3 2
5 1 6
(11.2.8)
= 2(16) — 1(—8) + 5(—8) = 0. (11.2.9)

2 Laplace, P. S., 1772: Recherches sur le calcul intégral et sur le
systéme du monde. Hist. Acad. R. Sci., II® Partie, 267-376. (Euvres,
8, pp. 369-501. See Muir, T., 1960: The Theory of Determinants in the
Historical Order of Development, Vol. I, Part 1, General Determinants
Up to 1841, Dover Publishers, Mineola, NY, pp. 24-33.
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The greatest source of error is forgetting to take the factor (-=1)**7 into
account during the expansion.

Although Laplace’s expansion does provide a method for calculating
det(A), the number of calculations equals (n!). Consequently, for hand
calculations, an obvious strategy is to select the column or row that
has the greatest number of zeros. An even better strategy would be
to manipulate a determinant with the goal of introducing zeros into a
particular column or row. In the remaining portion of section, we show
some operations that may be performed on a determinant to introduce
the desired zeros. Most of the properties follow from the expansion of
determinants by cofactors.

o . For every square matrix A, det(A7) = det(A).

The proof is left as an exercise.
. . If any two rows or columns of A are identical, det(A4) = 0.

To see that this is true, consider the following 3 x 3 matrix:

b1 b1 (45}
by by c2| = ci{babs — b3by) — ca(brbz — b3b1)
b3 b3 c3
+ C3(b1b2 — bzbl) =0. (11210)

. : The determinant of a triangular matrix is equal to the
product of its diagonal elements.

If A is lower triangular, successive expansions by elements in the
first column give

ai 0 N 0 try - 0

az; az --- 0 ) ) )

an1 QAn2 - Gpn n2 c1r Gnn
=.--=Q11022" " Ann. (11212)

If A is upper triangular, successive expansions by elements of the first
row proves the property.

° . If a square matrix A has either a row or a column of all
zeros, then det(A) = 0.
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The proof is left as an exercise.

. : If each element in one row (column) of a determinant is
multiplied by a number ¢, the value of the determinant is multiplied by
c.

Suppose |B| has been obtained from |A| by multiplying row i (col-
umn j) of |A| by ¢. Upon expanding |B| in terms of row i (column
J) each term in the expansion contains ¢ as a factor. Factor out the
common c, the result is just ¢ times the expansion |A| by the same row
(column).

° : If each element of a row (or a column) of a determinant
can be expressed as a binomial, the determinant can be written as the
sum of two determinants.

To understand this property, consider the following 3 x 3 determi-
nant:

aj+dy b ¢ a b o dy b o
as+dy by cnf= az by co|+|ds by co). (11213)
az+ds b3 c3 az b3 c3 dz b3 c3

The proof follows by expanding the determinant by the row (or column)
that contains the binomials.

° : If B is a matrix obtained by interchanging any two rows
(columns) of a square matrix A, then det(B) = — det(A).

The proof is by induction. It is easily shown for any 2 x 2 matrix.
Assume that this rule holds of any (n — 1) x (n — 1) matrix. If 4 is
n X n, then let B be a matrix formed by interchanging rows ¢ and j.
Expanding | B| and |A| by a different row, say k, we have that

Bl =Y (1) b, My, and  |A] = (1) **ap Ny, (11.2.14)

s=1 s=1

where My, and Ny, are the minors formed by deleting row k, column
s from |B| and |A|, respectively. For s = 1,2,...,n, we obtain N,
and M, by interchanging rows : and j. By the induction hypothesis
and recalling that Ny, and M;, are (n — 1) x (n — 1) determinants,
Ngs = =My for s = 1,2,...,n. Hence, |B| = —|A|. Similar arguments
hold if two columns are interchanged.

° : If one row (column) of a square matrix A equals to a number
¢ times some other row (column), then det(A) = 0.
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Suppose one row of a square matrix A is equal to ¢ times some
other row. If ¢ = 0, then |[A] = 0. If ¢ # 0, then |A| = c|B|, where
|B| = 0 because |B| has two identical rows. A similar argument holds
for two columns.

° : The value of det(A) is unchanged if any arbitrary multiple
of any line (row or column) is added to any other line.

To see that this is true, consider the simple example:

ag h chy b o ai+chy by a
a, by cof+ chy by coj=laz+ cby by c2], (11.2.15)
az bz c3 cbz b3z ¢3 az+cbs b3 c3

where ¢ # 0. The first determinant on the left side is our original
determinant. In the second determinant, we can again expand the first
column and find that

by b c by b
Cbz bg c2|=¢C bz bg Ca| = 0. (11.2.16)
cbs b3z c3 bz bz c3

o Example 11.2.2

Let us evaluate

1 2 3 4
-1 1 2 3
1 -1 1 2
-1 1 -1 5

using a combination of the properties stated above and expansion by
cofactors.
By adding or subtracting the first row to the other rows, we have

that
1 2 3 4; |1 2 3 4
11 2 3/ lo 3 5 7
1 -1 1 2[T|o -3 —2 -2 (11.2.17)
101 -15 lo 3 2 9

7
5|  (11.2.18)
2

\ = 63. (11.2.19)
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Problems

Evaluate the following determinants:

3 5 5 -1
1. 28 2. _84’
3 1 9 4 3 0
3. 2 4 5 4. 3 2 9
1 4 5 5 —2 _4
13 2 9 —1 9
5 411 6. 1 3 3
2 1 3 5 1 6
20 0 1 2 1 2 1
01 0 0 3 0 2 2
£ 16 1 0 8. -1 92 -1 1
11 -2 3 3 9 3 1

9. Using the properties of determinants, show that

1 1 1 1

b d
@y ¢ |=0-a-ad-al-b)d-bd-o).
a® b» 3 48

This determinant is called Vandermonde’s determinant.

10. Show that

a b+c
b a+ec
¢c a+b

e
il
e

11. Show that if all of the elements of a row or column are zero, then
det(A) = 0.

12. Prove that det(AT) = det(A).
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11.3 CRAMER’S RULE

One of the most popular methods for solving simple systems of
linear equations is Cramer’s rule.® It is very useful for 2 x 2 systems,
acceptable for 3 x 3 systems, and of doubtful use for 4 x 4 or larger
systems.

Let us have n equations with n unknowns, Ax = b. Cramer’s rule
states that

_ det(Al)

1= 7 74N 2

det(A)’

_ det(Az)

e det(An)
T det(A)’ o

det(4)’

(11.3.1)

where A; is a matrix obtained from A by replacing the ith column with
band n =1,2,3,.... Obviously, det(A) # 0 if Cramer’s rule is to work.
To prove Cramer’s rule, consider

a;jry @12 @13 - Gin
a»xr; a2 az3 -+ QG

z)det(4) = | 931%1 a3z @33 - O3n (11.3.2)
apiT1 Gn2 @n3 ' GOnn

by Rule 5 from the previous section. By adding 2 times the second
column to the first column,

a;nry +a12x¢2 a1z a1z -+ Gin
ag1xy + Qa2 G2z @23 - O2n

£y det(A) = | @31%1 + a32%2 az2 433 o0 O3n (11.3.3)
An1ZT1 + An2T2 Gn2 Qp3 - 4nn

Multiplying each of the columns by the corresponding z; and adding it
to the first column yields,

a1z + aizx2+ -+ ain&n 12 13 Gin
a2ty + a2+ -+ amTy a2z @23 Q2n
2, det(A) = | @121 +@32T2 + *- -+ d3nTs 432 033 a3n
Ap1Z1 + an2Za+ -+ Gunln An2 An3 Gnn
(11.3.4)

3 Cramer, G., 1750: Introduction d I’analyse des lignes courbes algé-

briques, Geneva, p. 657.
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The first column of (11.3.4) equals Ax and we replace it with b. Thus,

b1 a1z a3 -+ ai
bz azy a3 .- az
zidet(A) = |03 @z as oo asn | = det(4;) (11.3.5)
bn Gn2 @n3z - Gpn
o det(A4y)
€ 1
= 11.3.6
1 det(A) ( )
provided det(A) # 0. To complete the proof we do exactly the same
procedure to the jth column. nj

e Example 11.3.1

Let us solve the following system of equations by Cramer’s rule:

2z + 29 + 223 = —1, (1137)
ry+x3=-1 (1138)

and
—z1+ 329 — 223 =1T. (1139)

From the matrix form of the equations,

2 1 2 ) -1
1 0 1 o | = -1], (11.3.10)
-1 3 -2/ \z3 7

we have that

2 1 2

det(A)=(1 0 1 |=1, (11.3.11)
-1 3 -2
-1 1 2

det(A1)={-1 0 1 |=2, (11.3.12)
7T 3 -2
2 -1 2

det(A2)=|1 -1 1 (=1 (11.3.13)
-1 7 =2

and

2 1 -1

det(Az)=f1 0 -1|=-3. (11.3.14)

-1 3 7
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Finally,

L2 1 -3
171

=2, z»= 1= 1 and z3= T = —3. (11.3.15)

Problems
Solve the following systems of equations by Cramer’s rule:

1.21+229=3, 3z14+22=6

2. 281+ x9==3, z1—z2=1

3. 214 2z5—223=4, 221+ 23+ T3=—2, —zi+ro—23=2
4. 221+ 3z —23=—1, =21 — 2z + 23 =5, 3r; —T2= —2.

11.4 ROW ECHELON FORM AND GAUSSIAN ELIMINATION

So far, we have assumed that every system of equations has a unique
solution. This is not necessary true as the following examples show.

o Example 11.4.1

Consider the system
T+ T2 =2 (11.4.1)

and
2z + 2z, = —1. (1142)

This system is inconsistent because the second equation does not follow
after multiplying the first by 2. Geometrically (11.4.1) and (11.4.2) are
parallel lines; they never intersect to give a unique z; and z».

o Example 11.4.2

Even if a system is consistent, it still may not have a unique solu-
tion. For example, the system

1 +29=2 (1143)

and
2x1 + 2z, =4 (11.4.4)

is consistent, the second equation formed by multiplying the first by 2.
However, there are an infinite number of solutions.

Our examples suggest the following:
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Theorem: A system of m linear equation in n unknowns may: (1)
have no solution, in which case it is called an inconsistent system, or
(2) have ezactly one solution (called a unique solution), or (3) have an
infinite number of solutions. In the latter two cases, the system is said
to be consistent.

Before we can prove this theorem at the end of this section, we need
to introduce some new concepts.

The first one is equivalent systems. Two systems of equations in-
volving the same variables are equivalent if they have the same solution
set. Of course, the only reason for introducing equivalent systems is the
possibility of transforming one system of linear systems into another
which is easier to solve. But what operations are permissible? Also
what is the ultimate goal of our transformation?

From a complete study of possible operations, there are only three
operations for transforming one system of linear equations into another.
These three elementary row operations are

(1) interchanging any two rows in the matrix,
(2) multiplying any row by a nonzero scalar, and

(3) adding any arbitrary multiple of any row to any other
row.

Armed with our elementary row operations, let us now solve the
following set of linear equations:

Ty — 304 Teg =2, (11.4.5)
2z + 4o — deg = —1 (11.4.6)
and
-z + 13(82 - 211‘3 = 2. (1147)
We begin by writing (11.4.5)-(11.4.7) in matrix notation:
1 -3 7 T 2
2 4 3 {az]=(-1]. (11.4.8)
-1 13 -21 T3 2

The matrix in (11.4.8) is called the coefficient matriz of the system.
We now introduce the concept of the augmented matriz: a matrix
B composed of A plus the column vector b or

1 -3 7|2
B=[2 4 =-3|-1]. (11.4.9)
-1 13 -21| 2
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We can solve our original system by performing elementary row opera-
tions on the augmented matrix. Because the z;’s function essentially as
placeholders, we can omit them until the end of the computation.

Returning to the problem, the first row may be used to eliminate
the elements in the first column of the remaining rows. For this reason
the first row is called the pivotal row and the element aj; is the pivot.
By using the third elementary row operation twice (to eliminate the 2
and —1 in the first column), we finally have the equivalent system

1 -3 7|2
B=1[0 10 —17|-5]. (11.4.10)
0 10 —14| 4

At this point we choose the second row as our new pivotal row and
again apply the third row operation to eliminate the last element in the
second column. This yields

1 -3 7|2
B=1|0 10 -17|-5]. (11.4.11)
0 0 319

Thus, elementary row operations have transformed (11.4.5)~(11.4.7) into
the triangular system:

Iy - 31‘2 + 71‘3 = 2, (11412)
102y — 1723 = -5, (11.4.13)
3z3=9, (11.4.14)

which is equivalent to the original system. The final solution is obtained
by back substitution, solving from (11.4.14) back to (11.4.12). In the
present case, £3 = 3. Then, 10z2 = 17(3) — 5 or z3 = 4.6. Finally,
21 =3zy—Tzs+2=-5.2.

In general, if an n x n linear system can be reduced to triangular
form, then it will have a unique solution that we can obtain by per-
forming back substitution. This reduction involves n — 1 steps. In the
first step, a pivot element, and thus the pivotal row, is chosen from the
nonzero entries in the first column of the matrix. We interchange rows
(if necessary) so that the pivotal row is the first row. Multiples of the
pivotal row are then subtracted from each of the remaining n — 1 rows
so that there are 0’s in the (2, 1), ...,(n, 1) positions. In the second step,
a pivot element is chosen from the nonzero entries in column 2, rows 2
through n, of the matrix. The row containing the pivot is then inter-
changed with the second row (if necessary) of the matrix and is used as
the pivotal row. Multiples of the pivotal row are then subtracted from
the remaining n — 2 rows, eliminating all entries below the diagonal
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in the second column. The same procedure is repeated for columns 3
through n — 1. Note that in the second step, row 1 and column 1 remain
unchanged, in the third step the first two rows and first two columns
remain unchanged, and so on.

If elimination is carried out as described, we will arrive at an equiv-
alent upper triangular system after n — 1 steps. However, the procedure
will fail if, at any step, all possible choices for a pivot element equal
zero. Let us now examine such cases.

Consider now the system

1+ 229+ 23 = -1, (11415)
2z, + 429 + 223 = -2, (11416)
z1 +4xs + 23 = 2. (11417)
Its augmented matrix is
1 2 1|-1
B=1[|2 4 2|-2]. (11.4.18)
' 1 4 2| 2
Choosing the first row as our pivotal row, we find that
1 2 1|-1
B=|0 0 0} 0 (11.4.19)
0 2 1] 3
or
1 2 1|-1
B=[0 2 1| 3 |. (11.4.20)
0 0 00

The difficulty here is the presence of the zeros in the third row. Clearly
any finite numbers will satisfy the equation 0z; + 0xz + 0x3 = 0 and we
have an infinite number of solutions. Closer examination of the original
system shows a underdetermined system; (11.4.15) and (11.4.16) differ
by a factor of 2. An important aspect of this problem is the fact that
the final augmented matrix is of the form of a staircase or echelon form
rather than of triangular form.
Let us modify (11.4.15)—(11.4.17) to read

Ty + 229 + 23 = -1, (11421)
2z + 4z + 223 = 3, (11.4.22)
z1+4xs + 23 =2, (11423)

then the final augmented matrix is

1 2 1|-1
B=1]0 2 1|3 }. (11.4.24)
0 0 0|5
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We again have a problem with the third row because 0z;+0x,+0z3 = 5,
which is impossible. There is no solution in this case and we have an
overdetermined system. Note, once again, that our augmented matrix
has a row echelon form rather than a triangular form.

In summary, to include all possible situations in our procedure, we
must rewrite the augmented matrix in row echelon form. Row echelon
form consists of:

(1) The first nonzero entry in each row is 1.

(2) If row k does not consist entirely of zeros, the number of leading
zero entries in row k + 1 is greater than the number of leading zero
entries in row k.

(3) If there are rows whose entries are all zero, they are below the
rows having nonzero entries.

The number of nonzero rows in the row echelon form of a matrix is
known as its rank. Gaussian elimination is the process of using ele-
mentary row operations to transform a linear system into one whose
augmented matrix is in row echelon form.

e Example 11.4.3

Each of the following matrices is not of row echelon form because
they violate one of the conditions for row echelon form:

2 2 3
02 1 <8 g 8)(‘1’ 3) (11.4.25)
0 0 4

e Example 11.4.4

The following matrices are in row echelon form:

1 2 3 1 4 6 1 3 40
o1 1],f00 1),[{0o 0 1 3]. (11.4.26)
00 1 000 0000
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o Example 11.4.5

Gaussian elimination may also be used to solve the general problem
AX = B. One of the most common applications is in finding the inverse.
For example, let us find the inverse of the matrix

4 -2 2
A=|-2 -4 4 (11.4.27)
-4 2 8

by Gaussian elimination.
Because the inverse is defined by AA~! = I, our augmented matrix

4 -2 2
-2 —4 4
-4 2 8

Then, by elementary row operations,

4 -2 2(1 0 0 -2 —4 4
-2 -4 4|0 1 0] = 4 -2 2
-4 2 8|0 0 1 -4 2 8
4
2

is

100
01 0]. (11.4.28)
001

010
100 (11.4.29)
0 0 1

-2 -4 010
= 4 -2 10 0] (11.4.30)
0 0 10|10 1
—2 —4 4|0 1 0
= 0 -10 10{1 2 0} (11.4.31)
0 0 10{1 0 1
(-2 -4 4]0 1 0
=| 0 =10 0|0 2 -1} (11.4.32)
0 0 10{1 0 1
[—2 -4 0]-2/5 1 -2/5
- -10 0| 0 2 -1
0 0 10 1 o0 1
(11.4.33)
(-2 0 —2/5 1/5 0
={ 0 =10 0] 0 2 -1
0 o 100 1 0 1
(11.4.34)
1 0 0|1/5 -1/10 0
=010 0 -1/5 1/10].
0 0 1[1/10 0  1/10

(11.4.35)
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Thus, the right half of the augmented matrix yields the inverse and it
equals
1/5 -1/10 0
A=} 0 -1/5 1/10]. (11.4.36)
1/10 0 1/10

Of course, we can always check our answer by multiplying A~! by A.

Gaussian elimination may be used with overdetermined systems.
Overdetermined systems are linear systems where there are more equa-
tions than unknowns (m > n). These systems are usually (but not
always) inconsistent.

o Example 11.4.6

Consider the linear system

21 +z2=1, (11.4.37)
—z1 + 225 = =2, (11.4.38)
1 — 29 = 4. (11.4.39)

After several row operations, the augmented matrix

1 111
-1 2]-2 (11.4.40)
( 1 =11 4
becomes
1 1|1
0 1] 2 }. (11.4.41)
0 0f-7

From the last row of the augmented matrix (11.4.41) we see that the
system is inconsistent. However, if we change the system to

214+ x2 =1, (11442)
—z1 + 2z9 =5, (11.4.43)
r; = -1, (11.4.44)

the final form of the augmented matrix is

1 1)1
0 1]/2]. (11.4.45)
0 0}0

which has the unique solution z; = —1 and z2 = 2.
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Finally, by introducing the set:

T+ o =1, (11.4.46)
2, + 2z0 = 2, (11.4.47)
3z, + 323 = 3, (11.4.48)

the final form of the augmented matrix is

1 1|1
0 0]/0]. (11.4.49)
0 0]o0

There are an infinite number of solutions: ; =1 — o and z5 = a.

Gaussian elimination can also be employed with underdetermined
systems. An underdetermined linear system is one where there are fewer
equations than unknowns (m < n). These systems usually have an
infinite number of solutions although they can be inconsistent.

o Example 11.4.7
Consider the underdetermined system:

221 + 229 + 23 = —1, (11.4.50)
4z + 49 + 223 = 3. (11.4.51)

Its augmented matrix may be transformed into the form:

2 2 1| -1

(22 17). aras

Clearly this case corresponds to an inconsistent set of equations. On
the other hand, if (11.4.51) is changed to

4z, + 429 + 223 = -2, (11.4.53)

then the final form of the augmented matrix is

2 2 1|-1
(0 0 0‘ 0) (11.4.54)

and we have an infinite number of solutions, namely z3 = a, 2 = 8,
and 2z; = -1 — a — 20.

Consider now one of most important classes of linear equations: the
homogeneous equations Ax = 0. If det(A) # 0, then by Cramer’s rule
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Ty =xy=2x3=--=&, = 0. Thus, the only possibility for a nontrivial
solution is det(A) = 0. In this case, A is singular, no inverse exists, and
nontrivial solutions exist but they are not unique.

e Example 11.4.8

Consider the two homogeneous equations:
T +z2=0 (11.4.55)
z; —x2=0. (11.4.56)

Note that det{A) = —2. Solving this system yields z; = x5 = 0.
However, if we change the system to

Ty +z2=0 (11.4.57)
o1 +z2=0 (11.4.58)
which has the det(A) = 0 so that A is singular. Both equations yield

r, = —2s = «, any constant. Thus, there is an infinite number of
solutions for this set of homogeneous equations.

We close this section by outlining the proof of the theorem which
we introduced at the beginning.

Consider the system Ax = b. By elementary row operations, the
first equation in this system can be reduced to

1+ aas+ -+ ainy = P (11.4.59)
The second equation has the form
Tp+ Q2 pi1Tpy1 + -+ QonTn = P, (11.4.60)
where p > 1. The third equation has the form
Tq+ 03 g418g41 + -+ a3 = B3, (11.4.61)

where ¢ > p, and so on. To simplify the notation, we introduce z; where
we choose the first k values so that 21 = &1, 22 = &p, 23 = x,, ...
Thus, the question of the existence of solutions depends upon the three
integers: m, n, and k. The resulting set of equations have the form:

1 y2 -+ Tk 7T1k41 0 Yin o5
0 1 - 721 Y241 - Yon B

. 21 .

. Z9 :

0 0 - 1 Yer+r -0 Vin 1= B
0 0 --- 0 0 e 0 : Br+1

. Zn .

\o 0 - 0 0 - 0 ' B

(11.4.62)



584 Advanced Engineering Mathematics

Note that Bx41, ..., Bm need not be all zero.

There are three possibilities:

(a) k < m and at least one of the elements Bry1, ..., On 1s nonzero.
Suppose that an element 3, is nonzero (p > k). Then the pth equation
1s

021 + 0294+ -- -+ 0z, = ,Bp #0. (11.4.63)

However, this is a contradiction and the equations are inconsistent.

(b) £ = n and either (i) ¥ < m and all of the elements Bi41,...,0mn
are zero, or (i) k = m. Then the equations have a unique solution which
can be obtained by back-substitution.

(¢) £ < n and either (i) k¥ < m and all of the elements Bk41, ..., 0m
are zero, or (ii) k = m. Then, arbitrary values can be assigned to the n—
k variables zg41,...,2z,. The equations can be solved for 21, 22,..., 2
and there is an infinity of solutions.

For homogeneous equations b = 0, all of the 3; are zero. In this
case, we have only two cases:

(b’) k = n, then (11.4.62) has the solution z = 0 which leads to the
trivial solution for the original system Ax = 0.

(c') ¥ < n, the equations possess an infinity of solutions given by
assigning arbitrary values to zg41,..., 2n. O

Problems

Solve the following systems of linear equations by Gaussian elimination:

1. 2.’L‘1+.’L‘2=4, 5171—21,‘2:1
2. 21+22=0, 3y —4x, =1
3. —z1+xo+223=0, 3r1+4dro+23=0, —a27+x2+223=0
4. 42y +6xo+23=2, 2x3+x9—403=3, 3r;—222+bx3=28
5. 321+ x93 —-203=-3, v —x2+203=-1, —4x, +325—6x3=4
6. 1 — 3x2+ Txz = 2, 22y + 420 — 323 = —1,

—3z1+ 729 +223=3
7. 21— z2+4 323 =5, 201 — 4z + Tz =17,

421 — 929 + 223 = —15
8. xy+ a2+ a3+ 24 =—1, 2z) — 22+ 3x3 =1,

229 + 324 = 15, ~21+ 229 + 24 = -2

Find the inverse of each of the following matrices by Gaussian elimina-
tion:

o (31) o (5 7)
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199 2 -9 1 2 5
11. -4 -1 2 12. 0 -1 2

-2 0 1
13. Does (A?)~! = (A~1)?? Justify your answer.
11.5 EIGENVALUES AND EIGENVECTORS

One of the classic problems of linear algebra* is finding all of the
A’s which satisfy the n x n system

Ax = Ax. (11.5.1)

The nonzero quantity A is the eigenvalue or characteristic value of A.
The vector x is the eigenvector or characteristic vector belonging to A.
The set of the eigenvalues of A is called the spectrum of A. The largest
of the absolute values of the eigenvalues of A is called the spectral radius
of A.
To find A and x, we first rewrite (11.5.1) as a set of homogeneous
equations:
(A= ADx = 0. (11.5.2)

From the theory of linear equations, (11.5.2) has trivial solutions unless
its determinant equals zero. On the other hand, if

det(A — AI) =0, (11.5.3)

there are an infinity of solutions.

The expansion of the determinant (11.5.3) yields an nth-degree
polynomial in A, the characteristic polynomial. The roots of the charac-
teristic polynomial are the eigenvalues of A. Because the characteristic
polynomial has exactly n roots, A will have n eigenvalues, some of which
may be repeated (with multiplicity ¥ < n) and some of which may be
complex numbers. For each eigenvalue A;, there will be a correspond-
ing eigenvector x;. This eigenvector is the solution of the homogeneous
equations (A — A; I)x; = 0.

An important property of eigenvectors is their linear independence
if there are n distinct eigenvalues. Vectors are linearly independent if
the equation

a1X1 +asXo+ -+ apx, =0 (11.5.4)

can be satisfied only by taking all of the a’s equal to zero.

4 The standard reference is Wilkinson, J. H., 1965: The Algebraic
Figenvalue Problem, Clarendon Press, Oxford.
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To show that this is true in the case of n distinct eigenvalues
A1, A2,..., A, each eigenvalue A; having a corresponding eigenvector
x;, we first write down the linear dependence condition

a1Xy + aoXs + -+ apXx, = 0. (11.5.5)
Premultiplying (11.5.5) by A,
a1 Ax] +FasAxs + - -+ anAX, = a1 X1 FasAeXa + - - +ap,Anx, = 0.
(11.5.6)
Premultiplying (11.5.5) by A2,

a1 A%x a2 A%xo+- - Ha, A%x, = a1/\3x1+a2)\§xz+- . ~+an/\,21xn =0.

(11.5.7)
In similar manner, we obtain the system of equations:
1 1 1 o1X, 0
A1 Ay e A, Qa2X2 0
A A asxs | =1 0], (11.5.8)
APt oAt o ant CnXn 0
Because
1 1 1
A Xa A,
,\% ,\% . ’\?1 _ (/\2 - )\1)()\3 - /\2)(/\3 — )\1)()\4 - /\3)
: : : : (A= A2) (A = A1) #0,
/\;1—1 /\;L—l . /\2—1

(11.5.9)
since it i1s a Vandermonde determinant, a1X; = a9Xs = agXg = ---
apXn, = 0. Because the eigenvectors are nonzero, &y =az =az = ---
a, = 0 and the eigenvectors are linearly independent.

This property of eigenvectors allows us to express any arbitrary
vector x as a linear sum of the eigenvectors x; or

a

X =C1X] + CoXg+ -+ CnXp. (11.5.10)
We will make good use of this property in Example 11.5.3.

o Example 11.5.1

Let us find the eigenvalues and corresponding eigenvectors of the
matrix

A= (:‘11 _21) : (11.5.11)
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We begin by setting up the characteristic equation:

—4-A 2

det(A—-/\I)zl R

=0. (11.5.12)

Expanding the determinant,
(=4 =N (=1=X+2=22+5X1+6=(A+3)(A+2) =0. (11.5.13)

Thus, the eigenvalues of the matrix A are A; = —3 and Ay = —2.
To find the corresponding eigenvectors, we must solve the linear

system:
—4— A 2 z1y_ (0
(2 (E)=(). ms
For example, for Ay = -3,
-1 2 Iy _ 0
(3 (=)=() (1510
or
21 = 22 (11.5.16)
Thus, any nonzero multiple of the vector ? is an eigenvector belong-
ing to Ay = —3. Similarly, for A, = —2, the eigenvector is any nonzero
multiple of the vector (i

o Example 11.5.2

Let us now find the eigenvalues and corresponding eigenvectors of

the matrix
-4 5 5
A=}1-5 6 5. (11.5.17)
-5 5 6
Setting up the characteristic equation:
det(A — AI)
—4 - 5 5 -4 —A 5 5
={ -5 6—A 5 |=]| -5 6—A 5
=5 5 6—A 0 A-1 1-2A
- (11.5.18)
—4-Xx 5 5 -1 o
=A=1] -5 6-Xx 5 |=(A=-1%*-5 6-X {5
0 1 -1 0 1 -1
(11.5.19)
-1 (00 0

—(A=1)?|=5 6= (0|=(r—1)>%*6-1) =0. (11.5.20)
o 1 -1
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Thus, the eigenvalues of the matrix A are A; 2 = 1 (twice) and A3 = 6.
To find the corresponding eigenvectors, we must solve the linear
system:

(-—-4 - /\)1‘1 + 529 4+ 5z3 =0, (11.5.21)

—b521 4+ (6 — Nza + 523 =0 (11.5.22)
and

—bxy + bxoy + (6 - /\)(L‘s =0. (11523)

For A3 = 6, (11.5.21)—(11.5.23) become

—10z1 + 522 + 5x3 =0, (11.5.24)
—5z1+52z3=0 (11.5.25)

and
—bz1 + Hxy = 0. (11.5.26)

Thus, ; = 22 = z3 and the eigenvector is any nonzero multiple of the

1
vector | 1 .
1

The interesting aspect of this example involves finding the eigen-
vector for the eigenvalue Ay 2 = 1. If A\; ; = 1, then (11.5.21)-(11.5.23)
collapses into one equation

-1+ Lo+ T3 = 0 (11527)

and we have fwo free parameters at our disposal. Let us take z3 = o

1 1
and z3 = . Then the eigenvector equals « 1) +610 | for A =1

0 1
In this example our 3 x 3 matrix has three linearly independent
1 1
eigenvectors: 1 ] associated with Ay = 1, | 0 | associated with
0 1
1
Az =1, and | 1 | associated with A3 = 6. However, with repeated
1

eigenvalues this is not always true. For example,

a=(1 1 11.5.28
(s 1) (11.5.28)

has the repeated eigenvalues A; » = 1. However, there is only a single

eigenvector <(1)> for both Ay and A,.
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o Example 11.5.3

When we discussed the stability of numerical schemes for the wave
equation in Section 7.6, we examined the behavior of a prototypical
Fourier harmonic to variation in the parameter cAt/Az. In this exam-
ple we shall show another approach to determining the stability of a
numerical scheme via matrices.

Consider the explicit scheme for the numerical integration of the
wave equation (7.6.11). We can rewrite that single equation as the
coupled difference equations:

u:]+1 = 2(1 — Tz)’ll:‘n + T'Z(U::H.l + u:‘n—l) - U:;, (11529)
and
JiH =yt (11.5.30)

where 7 = cAt/Az. Let ul,, = eP2%u? and ul_; = e~P2%u],
where 3 is real. Then (11.5.29)-(11.5.30) becomes

n M ﬂAI n
uptl =2 [1 — 2r?sin? (—2— Uy — Uy (11.5.31)
and
ot = ol (11.5.32)
or in the matrix form
— 9p2gin? [ B8Z -
wiHl = (2 [1 2r Sl‘“ ( 2 )] 01> u? (11.5.33)

n
where u}, = (z,'{‘ ) The eigenvalues A of this amplification matriz are
m

given by

PL [1—2r2sin2 (ﬂ‘;’”)] A+1=0 (11.5.34)

)i )

(11.5.35)

Because each successive time step consists of multiplying the so-

lution from the previous time step by the amplification matrix, the

solution will be stable only if u?, remains bounded. This will occur only
if all of the eigenvalues have a magnitude less or equal to one because

ul =5 e Amxy = > adix, (11.5.36)
k k

or

Alg=1— 2r? sin? (E—Z;—x) + 2rsin (ﬂAI
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where A denotes the amplification matrix and x; denotes the eigen-
vectors corresponding to the eigenvalues Ax. Equation (11.5.36) follows
from our ability to express any initial condition in terms of an eigenvec-
tor expansion:

ul, = crxx. (11.5.37)
k

In our particular example, two cases arise. If r?sin?(8Az/2) < 1,

A1z =1-2r%sin? (ﬂ_?_a:) + 2risin (ﬂ?z) \/1 — r2sin? (ﬂ?w)

(11.5.38)
and |A;2] = 1. On the other hand, if r?sin®(3Az/2) > 1, |A\1 2| > 1.
Thus, we will have stability only if cAt/Az < 1.

Problems

Find the eigenvalues and corresponding eigenvectors for the following
matrices:

3 2
RN
2 -3 1
3.A=1]1 -2 1
1 -3 2
1 11
5 A=1]10 2 1 6.
0 01
4 -5 1 -2 0 1
7. A=]1 0 -1 8. A= 3 0 -1
6 1 -1 0 1 1

Project: Numerical Solution of ‘the Sturm-Liouville Problem

N
S
I

b
Il

b

S

it
/\/—\/'\

OO OO0 =W

ST N O O =
'»—lo—A <

[y

N

You may have been struck by the similarity of the algebraic eigen-
value problem to the Sturm-Liouville problem. In both cases nontrivial
solutions exist only for characteristic values of A. The purpose of this
project is to further deepen your insight into these similarities.

Consider the Sturm-Liouville problem:

Y +dy=0, y0)=y(r)=0. (11.5.39)
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- Ax -

Figure 11.5.1: Schematic for finite-differencing a Sturm-Liouville
problem into a set of difference equations.

We know that it has the nontrivial solutions Ay, = m?, ym(2) = sin(me),
where m=1,2,3,...

Step 1: Let us solve this problem numerically. Introducing centered
finite differencing and the grid shown in Figure 11.5.1, show that

y" o~ Un+1 — 2Yn + Yn-1
Az '

n=12,...,N, (11.5.40)

where Az = m/(N+1). Show that the finite-differenced form of (11.5.39)
is

—h%Yns1 + 20y — BPyn_1 = Ay (11.5.41)
with yo = yv41 = 0 and h = 1/(Az).

Step 2: Solve (11.5.41) as an algebraic eigenvalue problem using N =
1,2,.... Show that (11.5.41) can be written in the matrix form of

th —h2 0 e 0 0 0 )1 Y1
—h% 2h%2 —AZ ... 0 0 0 Yo Ya
0 -—h% 2n%2 ... 0 0 0 Y3 \ Y3
0 O 0 M '—h2 2h2 —h2 yN—l YN-1
o 0 0 -~ 0 —h* 2A? YN YN
(11.5.42)

Note that the coefficient matrix is symmetric. Except for very small
N, computing the values of A using determinants is very difficult. Con-
sequently you must use one of the numerical schemes that have been
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Table 11.5.1: Eigenvalues computed from (11.5.42) as a numerical
approximation of the Sturm-Liouville problem (11.5.39).

N A A2 A3 A4 As g A7

1 0.81057

2 0.91189 2.73567

3 0.94964 3.24228 5.53491

4 0.96753 3.50056 6.63156 9.16459

5 0.97736 3.64756 7.29513 10.94269 13.61289

6 0.98333 3.73855 7.71996 12.13899 16.12040 18.87563

7 0.98721 3.79857 8.00605 12.96911 17.93217 22.13966 24.95100

8 0.98989 3.84016 8.20702 13.56377 19.26430 24.62105 28.98791
20 0.99813 3.97023 8.84993 15.52822 23.85591 33.64694 44.68265
50 0.99972 3.99498 8.97438 15.91922 24.80297 35.59203 48.24538

developed for the efficient solution of the algebraic eigenvalue problem.®
Packages for numerically solving the algebraic eigenvalue problem may
already exist on your system or you may find code in a numerical meth-
ods book.

In Table 11.5.1 1 have given the computed values of A as a function
of N using the IMSL routine EVLSF so that you may check your an-
swers. How do your computed eigenvalues compare to the eigenvalues
given by the Sturm-Liouville problem? What happens as you increase
N7 Which computed eigenvalues agree best with those given by the
Sturm-Liouville problem? Which ones compare the worst?

Step 3: Let us examine the eigenfunctions now. First, reorder (if nec-
essary) your eigenvectors so that each consecutive eigenvalue increases
in magnitude. Starting with the smallest eigenvalue, construct an zy
plot for each consecutive eigenvectors where r; = iAz, i =1,2,..., N,
and y; are the corresponding element from the eigenvector. On the
same plot, graph ym(z) = sin(mz). Which eigenvectors and eigenfunc-
tions agree the best? Which eigenvectors and eigenfunctions agree the
worst? Why? Why are there N eigenvectors and an infinite number of
eigenfunctions?

Step 4: The most important property of eigenfunctions is orthogonality.
But what do we mean by orthogonality in the case of eigenvectors?
Recall from three-dimensional vectors we had the scalar dot product:

a-b=ajb + asby + azbs. (11.5.43)

5 See Press, W. H., Flannery, B. F., Teukolsky, S. A., and Vetter-
ling, W. T., 1986: Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, Cambridge, chap. 11.
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For n-dimensional vectors, this dot product is generalized to the inner
product

n
X y= Z:ckyk. (11.5.44)
k=1

Orthogonality implies that x -y = 0 if x # y. Are your eigenvectors
orthogonal? How might you use this property with eigenvectors?

11.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

In this section we show how we may apply the classic algebraic
eigenvalue problem to solve a system of ordinary differential equations.
Let us solve the following system:

1"1 =z + 3z, (1161)

and
x5y = 3z + z2, (11.6.2)

where the primes denote the time derivative.
We begin by rewriting (11.6.1)-(11.6.2) in linear algebra notation:

x' = Ax, (11.6.3)

x = (2) and A= (; ?) (11.6.4)

1',1 _i 1\ __ s
(5) -4 (2) ¢ .

Assuming a solution of the form

where

Note that

x = xge*?, where Xg = (Z) (11.6.6)

is a constant vector, we substitute (11.6.6) into (11.6.3) and find that
Ae*ixg = Ae*xo. (11.6.7)
Because e*! does not generally equal zero, we have that
(A—-2ADxe =0, (11.6.8)

which we solved in the previous section. This set of homogeneous equa-
tions is the classic eigenvalue problem. In order for this set not to have
trivial solutions,

1-2A 3

det(A—-AI):‘ 3 1— 2

l =0. (11.6.9)
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Expanding the determinant,
(1-2)%-9=0 or A=-2/4. (11.6.10)

Thus, we have two real and distinct eigenvalues: A = —2 and 4.
We must now find the corresponding xq or eigenvector for each
eigenvalue. From (11.6.8),

(1-Na+3b=0 (11.6.11)

and
3a+ (1 —A)b=0. (11.6.12)

If X = 4, these equations are consistent and yielda = b =¢;. If A = -2,
we have that a = —b = c¢;. Therefore, the general solution in matrix
notation is

x=c (i) e* +co (_11> e~ 2t (11.6.13)

To evaluate ¢; and ¢y, we must have initial conditions. For example,
if £1(0) = x2(0) = 1, then

(i)zcl(})”z(_ll)- (11.6.14)

Solving for ¢; and ¢2, ¢4 = 1 and ¢ = 0 and the solution with this
particular set of initial conditions is

x = (}) e*. (11.6.15)

o Example 11.6.1

Let us solve the following set of linear ordinary differential equa-
tions:

z) = —zo + z3, (11.6.16)
rh =4z, — z2 — 423 (11.6.17)

and
.’C% = =3z, — x9 + 4z3; (11.6.18)

or in matrix form,

0 -1 1 1
xX=|4 -1 —-4]x, x=|z|. (11.6.19)
-3 -1 4 I3
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Assuming the solution x = xge*?,
0 -1 1
4 —1 —4|x0=x (11.6.20)
-3 -1 4
or
-A -1 1
4 —1-) -4 |xe=0. (11.6.21)
-3 -1 4-A

For nontrivial solutions,

- -1 1 0 0 1
4 —-1-X -4 |= 4 —4x —5—-X -4 (=0
-3 -1 4— ) ~34+4XA—=2%2 33— 4-)
(11.6.22)
and
A-DA=-3)(A+1)=0 or 2=-1,1,3. (11.6.23)

To determine the eigenvectors, we rewrite (11.6.21) as

—da—b+c=0, (11.6.24)
4a—(14+X2)b—4c=0 (11.6.25)

and
~3a—b+(4-A)c=0. (11.6.26)

For example, if A =1,

—a—b+c=0, (11.6.27)
4a—2b—4c=0 (11.6.28)

and
—3a—~b+3c=0; (11.6.29)

1
or a = c and b = 0. Thus, the eigenfunction for A = 1 is xo = 0) .
1

1 1
Similarly, for A = -1, xo = (2) and for A = 3, xo = (—1). Thus,

1 2
the most general solution is

1 1 1
X=c (0) el + ¢y (2) et 4¢3 (—1)63’. (11.6.30)
1 1 2
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o Example 11.6.2

Let us solve the following set of linear ordinary differential equa-
tions:
=z — 229 (11.6.31)

and
zh = 2z — 3zo; (11.6.32)

or in matrix form,

x = (; _g)x, x = (zl) (11.6.33)
- 2

Assuming the solution x = xge*?,

<1;’\ _3_2)\)::0 =0. (11.6.34)

For nontrivial solutions,

I-2A -2
2 -3-2A

‘: A+1)2=0. (11.6.35)
Thus, we have the solution

X =rc (}) e t. (11.6.36)

The interesting aspect of this example is the single solution that
the traditional approach yields because we have repeated roots. To find
the second solution, we try a solution of the form

_ a+ct —t
X = <b+dt) e ", (11.6.37)

Equation (11.6.37) was guessed based upon our knowledge of solutions
to differential equations when the characteristic polynomial has repeated
roots. Substituting (11.6.37) into (11.6.33), we find that ¢ = d = 2¢;
and a — b = ¢3. Thus, we have one free parameter, which we will choose
to be b, and set it equal to zero. This is permissible because (11.6.37)

/
can be broken into two terms: b k}) e~ ! and c; (1;%) e~!. The

first term may be incorporated into the ¢; } e~* term. Thus, the

general solution is

X =c (i)e_t+62 ((1))6"+262 (i)te"’. (11.6.38)
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o Example 11.6.3
Let us solve the system of linear differential equations:
) =2z — 3z, (11.6.39)

and
zh = 3z + 2295 (11.6.40)

or in matrix form,

’_ 2 -3 _ T
x = (3 9 )x, X = (12). (11.6.41)

Assuming the solution x = xqe*?,
(2 g A 2‘_3/\) Xo = 0. (11.6.42)
For nontrivial solutions,
Pg'\ 2—_3)\‘ —(2-A2+9=0 (11.6.43)

(5

A = 2 — 3i. Thus, the general solution is

X =c (_11) e2 3t 4 ¢y (:) eZt-3it (11.6.44)

and A =2+ 3i. If x9 = >,thenb:—aiif/\:2+3iandb:aiif

where ¢; and ¢ are arbitrary complex constants. Using Euler relation-
ships, we can rewrite (11.6.44) as

X=c3 [Z?jgg ] 2t + ey [_s‘c’(‘)(j?t)] e2t, (11.6.45)

where ¢3 = ¢1 + ¢2 and ¢4 = i{c; — ¢2).
Problems

Find the general solution of the following sets of ordinary differential
equations using matrix techniques:

1 z) =z + 222 zh =2z + z5.

2. 2 =2, — 4z, zh = 31 — 6z2.
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3. 1"1=131+.’L‘2

cx) =z + 5z
2] = -3z, — 2z,
i = =321 — 2z,

) =z — 22

z) =321 + 225

© ® N> oo

) = -2z, — 13z,

10. 2} = 32y — 2z

11. 2} = 421 — 2z,

12. z{ = =3z; — 4z,

13. 2} = 3z, + 42,

14. 2] + 521+ 24 + 322 =0

15. 2} —2y + 2 — 22, =0

Advanced Engineering Mathematics

zh = 2z, + z4.

Th =z + 3z,.

zh = —2z; — zs.

1:’2 =) + 4z,.

(L’f«z = 51!1 - 31’2.

zh = 25z; — 10zs.

17,2 =2z1 + z4.

(8/2 = —2131 — 2.
21"1+1'1+17’2+1‘2=0.

z] —bxy + 224 — Tzo = 0.

16. z = 21 — 2z, zh = zh = =5z + Tzs.
17. 2 = 224 zh = 21 + 223 zh = z3.
18. 2} = 3z, — 223 Th = —x; + 2x9 + 23 z5 = 4z — 3x3
1 2 3
19. 2} = 32y — 23 zh = =22, + 2x2 + 3 zh = 8z — 3z3



Answers
To the Odd-Numbered Problems

Section 1.1

11+2 3.-2/5 5.2+ 2iV/3
7. 4e™ 9. 51/2e37i/4 11. 2¢27i/3
Section 1.2

1.
3, 23 [1+ ﬁ] L 1e [-§+—?’i}

272 2
3.
; V3 i LoV3 i
2 2 2T 9 73
5.

w1=\/Li[—\/7a2+b2+a+i\/\/a2+b2+a], wy = —wy.
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7. zZ1,2 = :1:(1 + i); 234 = :t?(l — Z)

Section 1.3

1. u=2-y,v==zx 3. u=2z%-3zy?, v=32%y -4
5. f'(2) = 3z(1 + 2%)Y/? 7. f'(2) =2(1 +4i)z -3
9. f(z) = —3i(iz — 1)~ 11.1/6

13. v(z, y) = 2zy + constant

15. v(z,y) = zsin(z)e™Y + ye~¥ cos(z) + constant.

Section 1.4

1.0 3.2 5.14/15—14/3
Section 1.5

1. (e 2 —e™%)/2 3.7/2

Section 1.6

1. wi/32 3. mif2 5. —2mi

7. 2m: 9. —67

Section 1.7

1. .
S (n+1)2"
n=0
3. L o
_Jo_, % _E . ...__* ...
fy=2"-2+ 5 -F+ 1z T

We have an essential singularity and the residue equals —1/11!

5.
1 22 2t
R =g+g+at

We have a removable singularity where the value of the residue equals
zero.
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f(z) = ———2—-6——-2——“'

We have a simple pole and the residue equals —2.

9.
1 1 z-2

f=3:=5 1t 7% ~

We have a simple pole and the residue equals 1/2.
Section 1.8
1. -3#i/4 3. —2m7i. 5. 2w 7. 2mi

Section 2.1

1.
3.
f@t) =— + Z -t 1) L cos(nt) + —Q%Q-sin(nt)

” cos[(2m — 1)t]

cos[(2m — 1)mt

=2 Z (2m — 1)?
7. -
9. - o
f(t) = Z sm[(2m — 1)wt]

11.

| 2

B 4a — 1 (2m — 1)xt
f(t)—Q_ﬁmZ;@m—l)zcos[ a ]

2a o= (=1)* . (nwt
P Y (=)

601
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13.

f(t) = 5L7—rsin (”f’) _ % 5 (n—zlzﬂln N (nT,rt>
n=2

15.

£(8) = 4a cosl;(mr/?) Z cos[(2m — 1)t]

2 — 1\2°
m=1 a+ (2m 1)

Section 2.3

1.
T 4 <= cos[(2m — 1)z
f(’”):TFE([z#m_V”

m=1

2 (-1)"*+sin(ne
f(:c):%z&-*n_(__)

1 2 & cos[2(2m — 1)z
f@):rﬁmz1 [(2(m_1)2)]

4 & (-1)™Hsin(2m — 1)z
f@):Fz}( ) (2m[—(1)2 i

~,
—~~~
8
e
|
-\-lwl_,;
[~
—~~
¥l
—_
p—
3
+
-
——
—
N
3
o |
—
N’
3
8
—_
|
EREN]
[~
—~—
=L
 —
3
2]
=
—~
|:
nof
8
S’

sin
—1)?

fz) = 1 f: 1+ cos(nm/2) — 2(-1)" sin (nzx)

n

3

n=1
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9.
_3a 2a 2. cos(nm/2) =1 nre
flz) = —+ —~ n? OS( a )
_a [ 2 . /nr (-1 . (nwz
=23 en (5) -5 Jin (%57)
11.
1 2 & (=)™ . T 2m
f(z) = 3 + ;mzz:l m) sin (mT) cos ( am:)
4 S (=)™ [@em-Dr] . [@m-Dr
f($)=;2=1(2m)_1 sin [( 1 ]Sln[ ik a z’]
13. \
1 nerd — 1
f@) = + 2ka Z Icza)2+n21r2 cos (n:zm)
1)" ka -1] .
= Z Ic2a2)+ n?mr? ]sm ("Z:")
Section 2.4
1.
sin[(2n — 1)t}
fO=3 + Z 2n-1
1 2 cos[(2n— 1)t — w/2]
-2 F; 2n ~ 1
3.

fit)y=2 i %cos [nt +(-1)" 12[]

f(t) =2 i %sin {nt+0+ (—1)”]%}
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Section 2.5

1.
T 9 ei(2m—1)t
)= —— —
f® 2 m;w (2m - 1)?
3.
: enm't
f@)=1+ ;n_—.z—oo -
n#0
5.
1 i L e22m-1)it
)= - — — _—
1) 2 m;oo 2m—1

Section 2.6

1.

y(t) = Acosh(t) + Bsinh(t) — % - %E (2ns_i-n£()2-t (—2711)? e

cos[(2n — 1)t]
2-(2n-1)22+9(2n—1)2

1
4

2 f: [2 — (2n — 1)?]sin[(2n — 1){]

T (2n - 1){[2 - (2n — 1)2]2 + 9(2n — 1)2}

600
t) = Ae* + Be' -
y(t) = Ae® + Be' + +TZ

n=1

sl ei(@n—1)t

—, (2n—1)?[4 - (2n - 1)?]

n=

2
WiPn 6z'nwot

t) =
a(t) z_:co (tnwo)? + 2ianwy + w?
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Section 2.7

1. z(t) = £ — cos(wz/2) — sin(rz/2) — § cos(z)

Section 3.3

1. we~1w/al/|a]

Section 3.4

1. —t/(1 +t2)? 3. f(t) = s tH(t) + et H(-t)

5. f(t) = e tH(t) — e 2 H(t) + Lte~*/2H(t)

7.
. 1 —alt| _ 1, t>0
@) = 2sgn(t)e , where sgn(t) = { 1, t <0
9. )
7(t) = 5o (1 = afte™ ¥
11. (—1y+
. 2n+1_—at
O =Gt ¢ H®)
13. ot
_ e t>0
) = {e", t<0.

Section 3.6

" y(t) = [(t = e + e >]H(t)
3. Lo
y(t) = { %ezfi %;e'zt, : Z g
Section 4.1
1. F(s) = s/(s% — a?) 3.F(s)=1/s+2/s?+2/s3

5. F(s) = [1—e2¢"Y] /(s - 1)

7. F(s) = 2/(s* + 1) — s/(s® + 4) + cos(3)/s — 1/s?
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9. f(t) = e~ 11. f(t) = % sin(3t)

13. f(t) = 2sin(t) — 4% + 2" — 6 cos(2t)

15. sF(s) — f(0) = as/(s* + a?) — 0 = L[f'(2))]

17. F(s) = 1/(2s) = sT?/[2(s*T? + 7))

Section 4.2

1. f(t) = (t — 2)H(t — 2) — (t — 2)H(t — 3)

3.y +3y +2y=H(t-1) 5.y +4y +4y=tH(t - 2)
Ty =3y +2=etH(t—-2) 9.y +y=sin@®)[l - H(t — )]
Section 4.3

1. F(s) =2/(s®> + 25 + 5)

3. F(s) = 1/(s — 1) + 3/(s2 — 25 + 10) + (s — 2)/(s2 — 4s + 29)

5. F(s)=2/(s+1)®+2/(s2 —2s+5)+ (s + 3)/(s? + 65 + 18)

7. F(s) = e%¢=3% /(5 — 2)

9. F(s)=2e7*/s® +2e7*/s? +3e~* /s + e~ /s

11. F(s) = (1+e™*")/(s>+1)  13. F(s) = 4(s + 3)/(s? + 65 + 13)?
15. f(t) = 1t%e72 — 1432 17. f(t) = e~* cos(t) + 2e~*sin(t)
19. f(t) = e~ — 2te=2* + cos(t)e~" + sin(t)e™"

21. f(t) = €e'"3H(t-3)

23. f(t) = e=(=Dcos(t — 1) — sin(t - ]H(t - 1)

25. f(t) = cos[2(t — )] H(t — 1) + 3(t — 3)32(* =9 H (¢ - 3)

27. £(t) = {cos[2(t — 1)] + L sin[2(t — D)]}H(t — 1) + 1(t - 3)3H(t — 3)

29. f() =t{HX) - H(t —a)|; F(s) = 1/s% — e /5% —ae % /s
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31.F(s)=1/s* —e % /s —e"2 /s

33. F(s) =e~*/s? —e 2 [s? —e™3 /s

35. Y (s) = s/(s% +4) + 3e~4/[s(s? + 4))]

37 ¥ (5) = =G (s = 1)(s + 1)(s + 2]

39. Y(s) = 5s/[(s = 1)(s — 2)] + e~ /[s3(s — 1)(s — 2)]
+2e7*/[s%(s = 1)(s = 2)] + € 7" /[s(s — 1)(s - 2)]

41.Y(s) = 1/[s*(s + 2)(s + 1)) + ae=% /[(s + 1)*(s + 2)]
~e=% /[s*(s + 1)(s +2)] — €7 /[s(s + 1)(s + 2)]

43. lim, oo SF(s) = lim,_.c 52/(s% + a?) = 1 = f(0).
45. lim, .00 $F(s) = lim,_ o 35/(s2 — 25 + 10) = 0 = f(0).
47. Yes 49. No 51. No

Section 4.4

—(1+as)e™*
82(1 — e—Zas)

1 sT 1
1. F(S) = 52—_*:—1 coth (?) 3. F(s) =

Section 4.5

1 f(t) =€t —e™? 3. f(t) = Semt — Sem2 — LBt
5. f(t) = e~ cos (t + 3F) 7. f(t) = 2.3584 cos (4t + 0.5586)
9. f(t) = 1 + ¥Ecos (2t + F)

Section 4.6

1.
L) = Slz = £(1)L(1)
3.
£l =1) = 77 - 5 = 5o = SEE)
5.

1 1 1

L[t —sin(t)] = = L(t)L{sin(t)]

—s2+1=32(32+1)=
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{8 _2h _cosan)b = 2 (-2 = ca)cpsingat))
ad s2+a2/) s

t —-b
H(t—b)*H(t—a):/ H(t—b—w)dm:—/ H(n) dn,

t—b—a

ift>aandnp=t—-b—zx.

11.
f)=¢" —t—1

13. Assuming that a,b > 0,

/té(t—x—a)é(z—-b)d:c=6(t—-b—a)

Section 4.7

Lfit)y=1+2t 3. ft)y=t+ 312

5. f(t) = t3+ 551° 7. f(t) =1* — 3t

9. f(t) = 5e?! — 4et — 2te! 11. f(t) = (1 — t)2e~!

13. f(t) = 4+ 312 + Lt 15. z(t) = 2AV1/(xC) — Bt/(2C)
17.

2, 28V 287 AV,
(t)_ﬁ<eﬁ -1+ I \/;"—/o e " du

Section 4.8

Loy(t) = 3e** — 3 + 4t 3. y(t) = &3 — e

5.yt) = —3e 3 + Te7t+ Jtemt T.y(t) = Zemt 4 Lot — L
9. y(t) = (t = DH(t — 1)

11 y(t) = e — et + [ + 22D — =1 H(t - 1)
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13. y(t) = [1 — 7202 — 2(t — 2)e" 2 =] H(t - 2)

15. (t)_‘ [1 2(t-2) _ 1 et~ 2+ le—(t 2)]H(t_2)

17. y(t) = 1 — cos(t) — {1 —

19.

cos(t =T H(t - T)

wt) =t = e - 4

—[e —(t-a) _

1 —Z(t a) _ 3 + %(t _ a)]H(t _ a)

+al}e 20~ ") +(t— a)e"("") —-1|H(t - a).

21. y(t) = te* +3(t — 2)e'"2H(t - 2)

23. y(t) = 3 [e720D) — ¢=3U-D] H(t - 2)
+4 [e—3(t-5) _ 6—2(1—5)] H(t _ 5)

25. .’L‘(t) = 2¢!/2 —2—t;y(t) —etl2_1—1

27. z(t) = 27t + 3~ y(t) = 7" — 1

Section 4.9

1. G(s) = 1/(s + k)

3.G(s)=1/(s* +4s+3)

5. G(s) = 1/[(s = 2)(s — 1)]

7.G(s)=1/(s*—-9)

9. G(s) = 1/[s(s - 1)}

g(t) =€
a(t) = (1 —e*) /k
o)==

a(t) = te73 — Je7' + i

g(t) =™ — ¢
a(t) = 3 + 3¢ — ¢
g(t) = § (¥ —e™)

a(t) = {5 (¥ +e7* - 2)
gty =€ -1

a(t)y=e -t -1
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Section 4.10

L ft) = (2—t)e™2 — 23

300 = (3* - 4t +3)e” -5

5.f(0) = [3(t=1) = § + §e V] H( 1)
7.

_ 2 8in[(2n — 1)7t/(2a))
f) = cosh( b) 8ab2( 1) 4a2b? + (2n — 1)272

»(2n — 1)mwcos[(2n — )7t /(2a
+4Z( 2 : a)2b2+[((2n—1))27r2/( )]

n=1

Section 5.1
1. F(z) = 22/(2z = 1) if 2| > 1/2.

3. F(z) = (25 — 1)/(2% — 25) if |2| > 0.

5. F(2) = (a® + a — 2)/[2(z — )] if |2| > a.

Section 5.2

1. F(z) = zTe T [(ze°T — 1)2 3. F(2) = 2(z + a)/(z — a)®

5. F(z) = [z — cos(1)]/{z[z% — 2z cos(1) + 1]}

7. F(z) = z[zsin(0) + sin(woT — 6))/[2? — 2z cos(woT) + 1]

9. F(z)=2/(z+1) 11 faoxgo=n+1  13. f, *g, = 2"/n!
Section 5.3

1. fo =0.007143, f; = 0.08503, f» = 0.1626, f3 = 0.2328

3. fo =0.09836, fi = 0.3345, fo = 0.6099, f3 = 0.7935

5. fn=8-8(3)"-6n()" 7 fa=(1-a")/(1-a)
9. fo=(3)""" Hocro+ (1)" " Hooiy

I fa=§6n=9-1"+3(3)" 13 fa=a"/(n))
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Section 5.4

Lya=1+ n(n-1)(@2n—-1) 3.y, =3n(n—-1)

5. 9 = § [5" = (=1)"] Ton=0@n-1)(3)" +(-3)"
9.y =2"—n-—1 1.2, =24+ (- ya =14+ (-1)"
13. 2 = 1 — 2(=6)"; yn = —7(—6)"

Section 5.5

1. marginally stable 3. unstable

Section 6.1

1. Ap = (2n — 1)27%/(4L?) with y(z) = cos [(2n — 1)7z/(2L))

3. do = —1, yo(x) = =% and A, = n?, ya(x) = sin(nz) — n cos(nz)
5. Ap = —n*x?/L* y,(z) = sin (nwz/L)

7. An = k2, yn(x) = sin(kpz) with k, = —tan(k,)

9. Ao = —m, yo(z) = sinh(moz) —mg cosh(moz) with coth(mom) = mo
and A, = k2, yo(2) = sin(k,z) — kn cos(knz) with k, = — cot(kn)

11.

(a) An =n’7%  yo(z) = sin[n7ln(z)]

(b) A =(2n—1)°7%/4, yau(2) =sin[(2n — D)7 In(z)/2]

(©) X=0, w(z)=1  A=n"7", ya(z) = cos[nmin(z)]
13. Ap = n2+ 1, yo(x) = 2~ sin[n In(z)]

Section 6.3

1.

n+l nrz
=23 e ()

Z ((2,,11":)12 sin [(2n ;Ll)m]
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Section 6.4

1.

f(x) = %Po(.’l:) + gpz(l’) - %P4(z) + .-

f(.l‘) 3P1(:L')— ZP3($)+ Ps(a;)+

Section 7.3

1.

0= 25 5, o ] 0

9h - 1 2nm . nre nmwet
u(z,t) = ”—2,,2-_-:1 —5sin (—3—) sin (T) cos ( T )

u(z,t) = sin (—L—) i (ch:t)

i (=1 [(Qn— 1)7r] G [(2n - 1)m]

= n-1p” 4 L
. [@2n—= et
X sin [ T

u(z, ) = _% i:: 1)n+1 i [(2n —Ll)vr:c] cos [(2n —Ll)wct]

z,t) = 8_ ~ht Z((Q,:z":;z [(271 ;Ll)ﬂ':c] {cos [t S h2]

+ hsin [t\//\nc2 - hz]/\//\,,cz _ hz},
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where A, = (2n — 1)?72/4L%.

‘Section 7.4

1.
u(z,t) = sin(2z) cos(2ct) + cos(z) sin(ct)/c
3.
(2,1) = 14 22 + 42 e® sinh(ct)
WEY = (T 27 4 22)2 + 42222 c
5.

u(z, 1) = cos (gﬁ) cos (_71'2it> N smh(aa:)ascmh(act)

Section 7.5

1.
_ 4 >\ sin[(2m — 1)wz] sin[(2m — 1)7t]

uz =3 mz_:l (@m — 1)

3.
u(z,t) = sin(mz) cos(mt) — sin(wz) sin(wt)/x
5.
u(z,t) = zt — te”% + sinh(t)e™”
+ [1 — e~ (=) 4t _ z —sinh(t — a:)] H(t - z)
7.
w(z,t) = gz 2gw? sin(Ap ) cos(Ant)
T w2 L A2(w? 4+ w?/L + A2)sin(A, L)’

where A, is the nth root of A = w? cot(AL).

9.

2¢ 2¢

4ESN 1 . [@n-Drz (2n — 1)cmt
u(:c,t)—E——-ﬂ_—nz_:l2n_lsm[ ]cos[

613
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) u(z,t) = Ei(_l)nH (t oz +c2n£)
n=0
ST 4Nz
a2
11.
p(z,t) = po — 4P;loc nio:l 2(;1)"1 sin [(Qn ;Ll)m:} sin [(Qn ;Ll)c,rt]
13.

gttt gL? 2L X (- 1)n nmwet
e =G e s () s (7

Section 8.3

1.
44 sin[(2m — 1)2] _209m_1)%
u(z,t) = — ————— e (Im-1)
T ";1 2m —1
3. , -
u(z,t) = —22 (= sin(nz)e=2""t
5.
_x (— )m +1 _ —-a?(2m-1)t
u(z,t) = Z (2 —1) 5 sin[(2m — 1)z]e
7.
_mT 4 - cos[(2m — 1)z] ~a?(2m-1)%t
u(:c,t) = 2 - mz=:1 we
9.

w(z, 1) = _725_ %Z cos{(2n — 1)z] o-a?(2n=1)%

~ (2n —1)2
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11.
(z,1) = é_i =n" (2” — 1)z e—a’(2n=1)%/4
T = (2n - 1)3 2
13.
4 o sin[(2n — 1)z/2] —a%(2n-1)’t/4
u(x,t)_—nzz;l 51 e
15.
= S 4 8(=1)"*t ] . [(@n—1Dz]| _a2(2n-1)2/4
u(@,t)= ; [2n 1 e 2 °
17.
T n?
u(z,t) = oF 4 2:0 ;sm(nx)e K
n=1
19.
u(z’t) — hl + (i2_-ll_hl_)£
h2 - — (- 1)" T a’n?n?
) $ 200 (12 (S8,
21.
u(z,t) = ho
_4ho (2n - V)7z (2n — 1)27%a%
Z2n—1 [ L ]ex"[_ 12
23. -
u(z,t) = % —t— —27 Z cos(nmwz)e”* a?n?r’t
25.

X 1\yn+1l )
u(z,t) = %Z (—(Q—n'll_ﬁ‘fsin [(2n — 1)z] [] — e~ (2n-1) t]
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27.

Ag(L? — 22 AL
we,t) = 0(2/c )+l(;

_2L2Ao Sin(ﬂn) cos (,8,,:1:) ox (_02ﬁ£t>
21 BAl1 + ksin®(k)/h L] L )*P\"z )

K
where 3, is the nth root of Ftan(g) = x/hL.

NE

29.
2 ¢ (_1)n+1 : —a’n?x?t
u(r,t) = ”_r,,z:l — sin(nnr)e

31.

_ G 5 ) 2Gb2 = Jo(lc,,r/b) vk?

where ky, is the nth root of Jo(k) = 0.

Section 8.4

1.
u(z,t) = Ty (1 - e'“at)
3. t 9 f: > n2en,
(z,t)=2+ mp sm(mr:c)e
5. -
m 4 (2m - 1)7717] (2m—1)21r2t
t) = - — - /%,
u(z,t) = = mX:l @m 1)
7. )
z t z

u(z,t) = zerfc (5-\—/—5) - 2\/;exp (_E)

9.

u(z,t) = u—;-e'é”erfc (25/5 + a1 —26)\/5)

U _, z _a(l—&)\/f
+ 26 erfc (2(1\/{ 7
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11.
u(z,t) = t(L; z) 4 Pav(;az— L) a(z- é,ggz_ 2L)
_ 2(1};:: i (- l)n (mr:v) exp (_gﬁlgﬁ)
AL S i (155) oo ().
13.

3 2= sin(A,r) JESCY

2
.
urt) = g A T 2 e

where tan(A,) = A

15.

y(t) = 4;1Aw 2 Apernt
B L xa — (ZB)(1+ 203 + w22 + N, +wt’

where ), is the nth root of A2+ 2u)3/2 coth(L/A/v )/ (my/v)+w? =0.

17.

u(z,t)=1- 26V::/2—V2t/4

y i A {(V/2)sin[An (1 — 2)] + An cos[An(1 = 2)]e™n!
(A2 + V2/4)[Ansin(An) — (14 V/2) cos(An)] ’

n=1
where ), is the nth root of A cot(A) = =V/2.

19.

_2 22 Jo(k 7’/“) -k2t/a®

u(r,t) = AT ) ,

where k,, is the nth root of Jo(k) = 0.

Section 8.5

u(z,t) = serf (\b/;—a:_t) + ferf ( b+ )

§‘
]
[
o~
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3.
u(z,t) = gToerf (\b/v) + L Tperf (\/;_Zt) _

Section 8.6

1.

u(z,t) = ﬁ f:(gm — 1)sin [(2’" = 1)7”7] e—a*(2m-1)?r2t/L?
L? = L
> /Ot f(T)eaz(zm—l)zwzr/deT
3.

2 h z? 2
= — — =n
u(z, 1) | \/F/I/WV (t 41”’2) e dpn

Section 9.3

1.
_ 4 <= sinh[(2m — 1)7(a — x)/b] sin[(2m — 1)7ry/b]
u(=,y) = ;m2=21 (2m — 1)sinh[(2m — 1)7a/b]
' )sin(nz/
2a =~ sinh(nry/a)sin(nrz a)
u(e,y) = _7?7; n sinh(nwb/a)
9.
- n+1500[(2n — 1)7y/2a] cos[(2n — 1)7z/24]
u(z,y) = _nzl( e (2n — 1)sinh[(2n — 1)7b/24]
7.
u(z,y) =1
9.
w(z,y) =1 — 4 i cosh[(2m — 1)my/a] sin[(2m — 1)7z/a)

(2m — 1) cosh[(2m — 1)7b/a]

s
m=1
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11.
u(z,y) =1
13.
u(z,y) =To + AT cos(27rx/)\)e‘2"y/"
15.

3 21 sinh(knz/a) Jo(kar/a)
u(r,z) = 2a ; k2 cosh(knL/a)J1(kn) ’

where kj, is the nth root of Jo(k) = 0.

17.

2 = [bJ1(knd) — aJi(kna)]Jo(knr) cosh(kn2)
a? Z ky, cosh(knd)JE(kn) ’

u(r,z) = P

where k,, is the nth root of J1(k) = 0.

19.

u(r z) =-= Z (= l)nll(nﬂ'r) sln(n7rz)

— n I;(nma)

21.

exp[z(1 — \/1+4k2)/2]Jo (k r)
u(r, 2) _QBZ 2 7 B9 Jo(bn)

where k,, is the nth root of k J1(k) = B Jo(k).

23.
e 2m—1
u(r,0) =50 3 [Pam-2(0) = Pam(0)] (g-) Po—1[cos(8)]
m=1
95. T
Section 9.4
1.

u(z, y) = %[tan"l (I_Tx) +tan™! (%)]
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3.
T | [z
sen=2 5o ()
u(z,y) = E[ta,n"1 (1—_£> + tan~! (1 +x>]
m Y y
Ty - T, - 1)?
L4 Oy (z—1)? + 42
27 22 4+ y?
+ u T [tan_l (1_—2) + tan-l (i)]
m Y Y
Section 9.5
1.

_ B4R & & (=1)rH(—1)m+1
u(=y) = FTZ: Z (- 1)@m - 1)
« cos[(2n — 1)rz/2a] cos[(2m — 1)7y/b]
(2n —1)(2m — 1)[(2n — 1)2/a2 + (2m — 1)2/b2]

Section 9.6

1.

4 [e.0]
=23 o

exp [_ (2m — 1)7rx] . [(2m - l)wy]

a a
Section 10.1

l.axb=-31+19j+ 10k .axb=1i-8j+ 7k
5,axb=-31-2j-5k

7.

Xx(bxc)+bx(cxa)+cx(axb)=(a-c)b—(a-b)c+ (b-a)c
—(b-c)a+(c-b)a—(c-a)b
=0
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Vf = ycos(yz)i + [z cos(yz) — zyz sin(yz)]j — zy® sin(yz)k

11.
Vf = 22y% (22 + 1)% + 22%y(22 + 1)%j + 42°y° (2 + Dk

13. Plane parallel to the zy plane at height of z =3, n = k

15. Paraboloid,

_ 2z . 2y i+ 1 X
JI+a2 +4y7  1+4a? +4yF  J1+427+ 4y

17. A plane, n = j/v2 — k/V?2

19. A parabola of infinite extent along the y-axis, n = —2zi/V1 + 422+

k/V1+ 4x?
21. y=2/(z+1); z=-exp[(y—1)/y]
23. y=«z; 22 =y/(3y—2)

Section 10.2

1.
V.-F=2z+2°
V x F = (2zy — 2yz)i + (2 - y*)j
V(V-F)=2zi+ (2z 4+ 22)k
3.

V-F=2z-y)—ze ¥ + ze?y
V x F=2zze?i—ze?j+ [2(z — y) — ye'”] k
V(V-F)=(2-e" +zye™™ + )i+ (2% + 2ze™ — 2)j

V-F=0
V x F=—z%i+ (5y—92)j + (222 - 52)k
V(V-F)=0
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7.
V-F=e¥42%2-3¢?
VxF=—-2yzi+ze Yk
V(V-F)=—e"Yj+(22+3e %)k
9.

V- -F = yz + 23z¢* + zye’
V x F = (ze* — z%ye” — 2®yze?)i+ (zy — ye*)j + (3z%yze* — z2)k
V(V-F) = (3z%ze” +ye)i+ (z+ze®)j+ (y+ 2" + 2%z¢* + zye’ )k

11.
V-F =y* + 222 — zysin(z)

VxF=][z ;os(z) — 2zyz]i — ycos(2)j + (y22 — 2zy)k
V(V-F) = [* — ysin(2)]i + [2y - zsin(z)]j + [222 — zy cos(z)| k

13.
V- F=y’+zz— zysin(z)

V x F = [z cos(z) — zy]i — ycos(2)j + (yz — 2zy)k
V(V-F) = [z — ysin(z)]i + [2y — zsin(2)]j + [¢ — zycos(z)]k
Section 10.3
1.16/7+ 2/(3) 3. e2+2e8/3+¢54/2 - 13/6 5. —4m
7.0 9. 27
Section 10.4
1. o(z,y,2) = =2y + y?z + 42 + constant
3. ¢(x,y,2) = zyz + constant
5. ¢(x,y,2z) = z?sin(y) + 23 + 4z + constant
7. o(z,y,2) = ze* + 3 + constant

9. p(z,y,2) = 2y + Tz + constant
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Section 10.5

1.1/2 3.0 5. 27/2
7.5 9.0 11.40/3
13. 86/3 15. 967

Section 10.6

1. -5 3.1 5.0

7.0 9. —167 11. -2
Section 10.7

1. 10 3.2 5.7 7.45/2
Section 10.8

1.3 3.-16 5. 4w 7.5/12
Section 11.1

1.

A+B=(§ i):B-}-A
5 10 15 2
_[7 (15 21
3A—2B_<_1 2), 3(2A—B)_<0 6)
> 4 3 4 3
T _ T T _
(A+ B) _(5 4), AT + B _<5 4)
7. 0
(11 11 ro (5 5
AB‘<5 5)’ AB_(S 8)
(4 6 v, (5 8
BA_(S 12)’ BA‘(5 8)
9. ,
r 4 ro (55
BB‘(4 8)’ BB‘(5 5)
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11.
3 _ (65 100
A +2"1“(25 40)
11 8
13. yes (227 151> 15. yes [ 8 4
5 3
19.
10 10
5(24)=110 20 ) =104
30 10
21.
(A+B)+C:(g g)=A+(B+C)
23.
9 -1
A(B+C’)_<11 _2)_AB+AC
25.
3 -1 2 1y _ /10
-5 2 5 3/ \0 1
27.
1 -2 1\ _ (5
3 1 T2 - 1
29.
0 1 2 3 1 2
3 0 -4 —4 z2) _| 5
1 1 1 1 zz |~ | =3
2 -3 1 =3 24 7
Section 11.2
1.7 3.1 5. —24 7.3

Section 11.3

o
511

1.1’1: , Ly =

3"1‘1:0)1.2:0)393:_2

17.

no
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Section 11.4

l.zo=2,2;=1 zz=aq,89=—-0a, 1 =0
5. 23 = a, £3 = 2a, 21 = -1 T.23=22,29=26,z1=1
1 2 5
- -1/13 5/13 -1
9.A1:( ) 11.A7'=]0 -1 2
2/13  3/13 9 4 11
Section 11.5
1.
2 1
A=4, xo_a<l>; A=-3 xozﬁ( 3)
3.
-1 3 1
A=1 xo=a| 0 |+8|1]; A=0, xo=7|1
1 0 1
5.
1 0 1
A=1 xg=a|0]|+8]| 1 |; A=2, x9=71|1
0 -1 0
7.

Section 11.6

1.
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5.
_ 1 /2 t t/2
X—Cl<_1)6 +Cz(_1/2_t)e .
7.
x=c (_11) e 4 ¢y (_1_;“:) e?t.
9.
_ —3 cos(2t) — 2sin(2t) 2cos(2t) — 3sin(2¢) \ ,
x=cs ( cos(2t) e sin(2t) ¢
11.
_ 2 cos(t) _3¢ 2sin(t) e
x=6 (7 cos(t) + sin(t)) et 7sin(t) — cos(t)
13.
_ — cos(2t) + sin(2t) — cos(2t) — sin(2t) ot
x=c ( cos(2t) e +ey sin(2t)
15.
X=c (—21) 3 + ¢y (—2 )e"'
17.
0 0 2
x=ci | 1) +e2|2)et+es| 1]
0 1 0
19.



Index

abscissa of convergence, 162
absolute value

of a complex number, 2
addition

of complex numbers, 2

of matrices, 561

of vectors, 508
aliasing, 103ff
amplitude

modulation, 128

spectrum, 61
analytic complex function, 11

derivative of, 11
Archimedes’ principle, 556fF
argument of a complex number, 2

back substitution, 577

Bessel
eq of order n, 305
function of the first kind, 307
function of the second kind, 308
function, modified, 309ff

recurrence formulas, 311ff

Bessel, Friedrich Wilhelm, 306
Biot number, 405
boundary conditions
Cauchy, 329
Dirichelet, 392
Neumann, 392
Robin, 393
branches of a function, 11
principal, 4
Bromwich contour, 223
Bromwich integral, 223
Bromwich, Thomas J. ’A., 223

carrier frequency, 128
Cauchy
boundary condition, 329
data, 329
integral formula, 30ff
problem, 329
Cauchy, Augustin-Louis, 13
Cauchy-Goursat theorem, 26
Cauchy-Riemann egs, 14
centered finite differences, 379
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characteristic
functions, 270
polynomial, 585
value, 270, 585
vector, 585
characteristics, 350
circulation, 523ff
closed
contour integral, 24, 520
surface integral, 527
cofactor, 568
column in a matrix, 560
column vector, 561
complementary error
function, 166
complex
conjugate, 1
Fourier coefficients, 85
Fourier integral, 113ff
Fourier series, 84fF
number, 1
plane, 2
-valued function, 11ff
variable, 1
components of a vector, 507
compound interest, 260ff
conformable
for addition of matrices, 561
for multiplication
of matrices, 561
conservative field, 525
consistency in finite differencing
for the heat eq, 459
for the wave eq, 381
consistent system
of linear eqgs, 576
contour integral, 20ff
convergence
of finite difference solution
for heat eq, 460
for wave eq, 383
of a Fourier integral, 116
of Fourier series, 54

convolution theorem
for Fourier transform, 150ff
for Laplace transform, 195ff
for z-transform, 244fF
Coriolis force, 509
Cramer’s rule, 573
Crank-Nicolson method, 460
cross product, 508
curl, 517
curve
simply closed, 27
space, 508

d’Alembert, Jean Le Rond, 351
d’Alembert’s solution, 350fF
deformation principle, 28
degenerate eigenvalue

problem, 273
del operator, 511
delta function, 116ff, 172ff
de Moivre’s theorem, 3
design of film projectors, 190
determinant, 567ff
diagonal

principal, 560
difference eq, 231
differentiation

of a Fourier series, 66
diffusivity, 391
Dirichlet conditions, 54
Dirichlet, Peter G. Lejeune-, 56
Dirichlet problem, 392
dispersion, 336
divergence

theorem, 549fF

of a vector, 516
division of complex numbers, 2
dot product, 508
double Fourier series, 497
Duhamel’s theorem

for the heat eq, 448fF

for ordinary

differential eqs, 221ff
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eigenfunctions, 270ff
orthogonality of, 282
eigenvalue
of a matrix, 585ff
of a Sturm-Liouville
problem, 270ff
eigenvalue problem
for matrices, 585ff
for ordinary differential
eqs, 270ff
singular, 270
eigenvectors, 585fF
orthogonality of, 592
electrical circuit, 209ff
element of a matrix, 560
elementary row operations, 576
electrostatic potential, 474
elliptic partial differential eq, 465
entire complex function, 11
equivalent system, 576
error function, 166
Euler’s formula, 3
explicit numerical method
for heat eqs, 458
for wave egs, 379
exponential order, 162

filter, 105
final-value theorem
for Laplace transforms, 179
for z-transforms, 242
finite differences approximation
to derivatives, 378ff
finite Fourier series, 97
first shifting theorem, 175
flux lines, 512
folding frequency, 104
Fourier
coefficients, 52fF, 286
cosine series, 60
series in
amplitude/phase form, 811
series of an even function, 60
series of an odd function, 60
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series on [~L, L], 52fF
sine series, 60
Fourier, Joseph, 55
Fourier-Bessel
coefficients, 313ff
expansion, 312
Fourier-Legendre
coefficients, 298
expansion, 298
Fourier number, 401
Fourier transform, 113ff
basic properties of, 124ff
convolution for, 150ff
inverse of, 115, 137
of a constant, 121
of derivatives, 127
of sign function, 122
of step function, 123
frequency modulation, 131
frequency response, 155
frequency spectrum, 61, 86, 116
for a damped harmonic
oscillator, 155
for low frequency filter, 158
function
even extension of, 75
generalized, 174
multivalued complex, 10
odd extension of, 75
single-valued complex, 9
vector-valued, 508fF
fundamental of a Fourier series, 52

Gauss, Carl Friedrich, 550
Gauss’ divergence theorem, 549ff
Gaussian elimination, 579
Gauss-Seidel iteration, 502
generating function

for Legendre polynomials, 294ff
Gibbs phenomenon, 70ff
gradient, 511
Green’s function, 155, 217

for a damped harmonic

oscillator, 155
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Green’s function (contd.)
for the Klein-Gordon eq, 376
for low frequency filter, 158
Green’s lemma, 536fF
grid point, 378
groundwater flow, 469f

half-range expansions, 75
harmonic of a Fourier series, 52
harmonic function, 19
conjugate, 19
heat conduction
in a rotating satellite, 92ff
within a metallic sphere, 481ff
heat dissipation
in disc brakes, 429ff
heat eq
for an infinite cylinder, 411
one-dimensional, 391
nonhomogeneous, 391
for a semi-infinite bar, 443
within a solid sphere, 408
Heaviside
expansion theorem, 186fF
step function, 169ff
Heaviside, Oliver, 170
holomorphic complex function, 11
homogeneous system
of linear egs, 582
hydraulic potential, 469
hyperbolic partial
differential eq, 325

ideal sampler, 232
imaginary part

of a complex number, 1
impulse function, 116ff, 172ff
impulse response, 217
inconsistent system

of linear egs, 576
indicial admittance

for heat eq, 451

for ordinary differential eqs, 217

inertia supercharging, 77
initial
conditions, 328ff
-value problem, 203
initial-boundary value
problem, 392
initial-value theorem
for Laplace transforms, 179
for z-transforms, 241
inner product, 561
integral eq
of convolution type, 199
integrals
complex contour, 20
Fourier type, evaluation of, 142
line, 520
real, evaluation of, 46
integration of a Fourier series, 68
inverse
discrete Fourier transform, 98
Fourier transform, 137ff
Laplace transform, 186ff, 222ff
z-transform, 247ff
inversion formula
for the Fourier transform, 138ff
for the Laplace transform, 222fF
for the z-transform, 252ff
inversion
of Fourier transform, 137ff
by contour integration, 138
by direct integration, 137
by partial fractions, 137
inversion of Laplace transform
in amplitude/phase form, 189ff
by contour integration, 222ff
by convolution, 197
by partial fractions, 186ff
inversion of z-transform
by contour integration, 252ff
by partial fractions, 250fF
by power series, 247ff
by recursion, 248ff
irrotational, 517
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isolated singularities, 16, 37
iterative methods

Gauss-Seidel, 502

successive over-relaxation, 504
iterative solution of the radiative

transfer eq, 301ff

joint transform method, 376
Jordan curve, 27
Jordan’s lemma, 138

Klein-Gordon eq, 336
Green’s function for, 376

Lagrange’s trignometric
identity, 5
Laplace integral 161
Laplace, Pierre Simon, 467
Laplace transform(s), 1611F
basic properties of, 175ff
convolution for, 195
definition of, 1611f
of the delta function, 172
derivative of, 178
of derivatives, 167
integration of, 178
inverse of, 186ff, 222fF
of periodic functions, 183
in solving integral egs, 199
in solving ordinary
differential eqs, 203
of the step function, 169ff
Schouten-van der Pol
theorem for, 230
Laplace’s eq
in Cartesian coordinates, 466
in cylindrical coordinates, 468
numerical solution of, 502fF
solution on the half-plane, 492ff
solution by Laplace
transforms, 499fF
solution by separation
of variables, 469ff
in spherical coordinates, 468

631

Laplace’s expansion
n cofactors, 568
Laplacian, 516
Laurent expansion, 37
Lax-Wendroff scheme, 387
Legendre, Adrien-Marie, 290
Legendre polynomial, 292
recurrence formulas, 2951
Legendre’s differential eq, 289
linear dependence of vectors, 585
linearity
of Fourier transform, 124
of Laplace transform, 163
of z-transform, 239
line integral, 520fF
line spectrum, 86
lines of force, 512
Liouville, Joseph, 272
low frequency filter, 158ff

magnitude of a vector, 508
mapping of complex functions, 10
matrix, 560

algebra, 560

amplification, 589

augmented, 576

banded, 565

coefficient, 576

complex, 560

identity, 560

inverse, 563

invertible, 563

method for stability

of a numerical scheme, 589

nonsingular, 563

real, 560

rectangular, 560

singular, 563

square, 560

symmetric, 560

tridiagonal, 565

unit, 560

upper triangular, 565

zero, H60
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matrices

addition of, 561

equal, 561

multiplication of, 561
maximum principle, 467
Maxwell’s eqs, 520
mechanical filter, 194
meromorphic function, 16
method of partial fractions

for Fourier transform, 137

for Laplace transform, 186

for z-transform, 250ff
minor, 568
modified

Bessel function, first kind, 309

Bessel function,

second kind, 310

modulation, 128fF
modulus of a complex number, 2
multiplication

of complex numbers, 2

of matrices, 561
multivalued complex function, 10

nabla, 511
Neumann problem, 392
Neumann’s

Bessel function of order n, 308
Newton’s law of cooling, 404
nondivergent, 516
norm of a vector, 508, 561
normal modes, 336
normal to a surface, 511
not simply connected, 27
numerical solution

of heat eq, 458fF

of Laplace’s eq, 502ff

of wave eq, 378ff
Nyquist frequency, 104
Nyquist sampling criteria, 103

one-sided finite differences, 378
order
of a matrix, 560

of pole, 38
orthogonality

of eigenfunctions, 282ff

of eigenvectors, 592
orthonormal eigenfunctions, 284
overdetermined system

of linear egs, 581

parabolic partial
differential eq, 389
Parseval’s identity
for Fourier series, 69ff
for Fourier transform, 133ff
for z-transform, 256
partial fraction expansion
for Fourier transform, 137
for Laplace transform, 186fF
for z-transform, 250ff
path
in complex integrals, 20
in line integrals, 520
path independence
in complex integrals, 28
in line integrals, 526
phase, 2
angle in Fourier series, 81ff
spectrum, 116
pivot, 577
pivotal row, 577
Poisson, Siméon-Denis, 496
Poisson’s
eq, 495
integral formula
for a circular disk, 488
for upper half-plane, 494
summation formula, 134
polar form
of a complex number, 3
pole of order n, 38
position vector, 508
positively oriented curve, 30
potential function, 525fF
power content, 69
power spectrum, 134
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principal branch, 4

principal diagonal, 560

principle of linear
superposition, 332

quieting snow tires, 60ff

radiation condition, 329
radius of convergence, 34
rank of a matrix, 579
real part of a complex number, 1
recurrence relation
for Bessel functions, 311ff
for Legendre polynomial, 295ff
regular complex function, 11
regular Sturm-Liouville
problem, 270
relaxation methods, 502ff
residue, 37
residue theorem, 40ff
resonance, 206
Riemann, G. F. B., 14
Robin problem, 393
Rodrigues’ formula, 293
root locus method, 158
roots of a complex number, 6ff
row of a matrix, 560
row echelon form, 579
row vector, 561

scalar, 507
Schouten-van der Pol theorem

for Laplace transforms, 230
Schwarz’s integral formula, 494
second shifting theorem, 176
separation of variables

for heat eq, 393ff

for Laplace’s eq, 469fF

for Poisson’s eq, 495fF

for wave eq, 329ff
shifting

in the s variable, 175

in the ¢t variable, 124, 176
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in the w variable, 128
simple
closed curve, 27
eigenvalue, 273
pole, 38
simple harmonic oscillator, 205
simply close curve, 27
sinc function, 116
single-valued complex function, 9
singular Sturm-Liouville
problem, 270
singularity
essential, 37
i1solated, 37
pole of order n, 38
removable, 37
solenoidal, 516
solution of ordinary differential
egs by Fourier series, 88ff
space curve, 508
spectral radius, 585
spectrum of a matrix, 585
stability of numerical methods
by Fourier method
for heat eq, 459
for wave eq, 382
by matrix method
for wave eq, 589
steady-state heat eq, 466
steady-state transfer function, 155
step function, 169fF
step response, 217
Stokes, Sir George Gabriel, 542
Stokes’ theorem, 541
streamlines, 512
Sturm, Charles, 271
Sturm-Liouville
eq, 269
problem, 270
subtraction
of complex numbers, 2
of matrices, 561
of vectors, 508
successive over-relaxation, 504
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superposition integral
for heat eq, 448fF
for ordinary differential egs, 221
superposition principle, 332
surface conductance, 404
surface integral, 527ff
system of linear
homogeneous eqs, 564
linear differential eqs, 593ff
nonhomogeneous eqgs, 564

tangent vector, 508
Taylor expansion, 34
telegraph eq, 339, 3581f
thermal conductivity, 390
threadline eq, 327ff
time shifting, 124, 176
transfer function, 217
transform

Fourier, 113ff

Laplace, 161ff

z-transform, 231
transpose of a matrix, 563

underdetermined system
of linear eqgs, 582

unit
normal, 512
step function, 169ff

vector, 507

Vandermonde’s determinant, 572
vector, 507, 561

vector element of area, 531
vibrating string, 325ff

vibrating threadline, 355
Volterra eq of the second kind, 199
volume integral, 549ff

wave eq, 325ff
for a circular membrane, 343fF
damped, 339ff
for an infinite string, 350ff
one-dimensional, 327

weight function, 282

zero vector, 507

z-transform, 231fF
basic properties of, 239f
convolution for, 244
final-value theorem for, 242
initial-value theorem for, 241
inverse of, 247ff
of periodic sequences, 243
of a sequence multiplied by an

exponential sequence, 239

of a shifted sequence, 240
solving of difference egs, 257ff
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